
Journal of Computer Science 4 (2): 117-124, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Aruna Varanasi, Department of CSE, SNIST, Hyderabad, India
117

A Block Cipher using Feistal’s Approach Involving Permutation and Mixing of the

Plaintext and the Additive Inverse of Key Matrix

1Aruna Varanasi and 2S. Udaya Kumar
1Department of CSE, SNIST, Hyderabad, India

2Aurora’s Engineering College Bhongir, A.P., India

Abstract: In this research, we have developed a block cipher for a block of size 112 bits by using an
iterative method involving a permutation of the plaintext and the subkeys generated in each iteration.
Here we have represented the plaintext as a matrix of size 14×8, comprising binary bits. In the process
of encryption, we have used a key matrix (K), which also consists of binary bits and generated subkeys
from K for each iteration. For decryption, we have used the Additive inverse (K′i)−1 of the subkeys. In
this, we have discussed the cryptanalysis and have shown that the cipher cannot be broken by any
cryptanalytic attack.

Key words: Block cipher, subkeys, key matrix, additive inverse

INTRODUCTION

 A number of block ciphers[1-6] have been developed
in the recent past, which can be found in the literature.
Feistal[7,8] has used the concepts of Hill cipher[9] and
developed the Feistal cipher. However, subsequently he
found that his approach is vulnerable for cryptanalytic
attacks. Recently Udaya et al.[10-16] developed a few
block ciphers using Feistal’s approach and have shown
that the ciphers developed by them are
cryptographically stronger.
 In the present research, we proposed a block cipher
with a different approach based on the Feistal structure.
Here, we use the concept of permutation and diffusion,
in the development of cipher. In this, we have shown
that a thorough mixing of the elements of the subkeys
generated for each iteration and the plaintext permuted
in each iteration will lead to a cipher, which cannot be
broken by any cryptanalytic attack.

DEVELOPMENT OF CIPHER

 In this study before we discuss the development of
cipher, we first discuss the generation of key matrix
from the given key, denoted by K0.
Let

 klmnopabcdefghij = K 0 (1)

 Now we convert each element in the key, K0 to its
corresponding 7 bit ASCII code. Since the key, K0

contains 16 elements, the corresponding ASCII code
bits of key, denoted as K0A will comprise 112 bits. Thus

 0 A

1 1 0 0 0 0 1 1 1 0
0 0 1 0 1 1 0 0 0 1
1 1 1 0 0 1 0 0 1 1
0 0 1 0 1 1 1 0 0 1
1 0 1 1 0 0 1 1 1 1

 K = 1 0 1 0 0 0 1 1 0 1
0 0 1 1 1 0 1 0 1 0
1 1 0 1 0 1 1 1 1 0
1 1 0 0 1 1 0 1 1 0
1 1 1 0 1 1 1 0 1 1 0
1 1 1 1 1 1 1 0 0 0 0

� �
� �
� �
� �
� �
� �
� �
� �� �
� �
� �
� �
� �
� �
� �
� �
� �
� �� �

 (2)

 Let us now generate a matrix and denote it as K′0
of size 28×4. The process of generation of K′0 is as
follows:
 The first element of the 112 bits of K0A is placed in
the 1st row of 1st column of the matrix K′0. The second
element in K0A is placed in the 1st row 2nd column of
K′0. Then the third and the fourth elements of K0A are
placed in the 1st row, 3rd and 4th columns of K′0

respectively. Now the fifth element of K0A is placed in
the 2nd row 1st column, sixth element is placed in 2nd
row 2nd column, the seventh and eighth elements are
placed as 2nd row 3rd and 4th columns of K′0
respectively. This process continues until all the
elements of K0A are exhausted. Thus, K′0 is

J. Computer Sci., 4 (2): 117-124, 2008

 118

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

=

0000

1111
1110
1101

1101
1101
1011

0011
0111
1010

1101
0101
1100

1011
0001
0111

1100
1101
1001

1101
0011
0010

0111
1000
1101
0001

1100
0011

K '
0

 (3)

From K′0 let us now generate a 28×8 matrix, wherein
the elements of K′0 are repeated and permuted to give
rise to a matrix of size 28×8, denoted as K′. The
procedure for generating K′ is detailed as given under:
 The 28×4 matrix of K′0 are placed as it is. Then,
the first element under column 1 in 28th row of K′0 is
placed in the first row fifth column and the first element
in the 27th row is placed in the second row fifth column
and so on. Then we get the first column elements of K′0
will appear in the descending order in the fifth column
of K′ similarly we place the elements in other columns
2, 3, 4 of K′0 in the sixth, seventh and eighth columns.
Thus K′ is

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

=

00110000
11001111
00011110
11011101
10001101
01111101
00101011
00110011
11010111
10011010
11011101
11000101
01111100
00011011
10110001
11000111
01011100
11011101
10101001
01111101
00110011
10110010
11010111
11011000
11011101
11100001
11111100
00000011

'K

 (4)

 We now once again permute K′ to obtain the key
matrix K of size 28×8 the procedure for generating K
from K′ is described as follows:
The element in the 15th row of the 1st column of the
matrix K′ is placed as element in the 1st row 1st
column; the element in the 15th row 2nd column of the
matrix K′ is placed as the element in the 2nd row fist
column and so on. This way the eight elements
belonging to the 15th row have now appeared as the
first eight elements in the first column of the matrix K.
We continue in this fashion till we exhaust the first 4
elements of 18th row of K′ this gives the first column of
28 elements in K. We now use the same procedure and
obtain the 2nd, 3rd and 4th column of K from the
remaining elements of 18th row (4 bits) till the final
element of 28th row. We now come back to row 1 of K′
and place these eight elements as the first eight
elements of the fifth column of K. Then we take the
eight elements of the second row and third row of K′
respectively and place them as the next sixteen
elements of 5th columns of K. We now take the first
four elements of the fourth row of K′ and place them as
the remaining four elements of 5th column of K. We
continue this process till all the remaining elements of
the fourth row to end of 14th row. Thus we have
generated key matrix, K is given by,

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

=

11110101
01010101
10101010
11111111
01010101
00010001
01110010
10000010
11101110
10101111
00000000
01110111
00011000
11111111
11111111
11111111
01110111
11110101
00000000
11101110
10101010
10001000
01001110
01000001
10101111
10101010
01010101
11111111

K

 (5)

 Let us now generate the subkeys twenty (20) in
number to be used in the twenty (20) iterations with one
subkey in each iteration. The procedure involved in the
generation of subkeys is discussed below.

J. Computer Sci., 4 (2): 117-124, 2008

 119

The first subkey K1 is generated from K as follows:
 The element in the 8th column of the first row of
the matrix K is placed as the element in the first row,
first column of the matrix K1. Then the element in the
7th column first row of the matrix K is placed as the
element in the 2nd row of the first column of the matrix
K1. This process is continued for the remaining
elements of the first row of the matrix K. Thus, we have
the elements of the first row of the matrix K have
appeared in the descending order in the first column as
the first eight elements of the matrix K1. In a similar
manner, this process is continued for the 2nd and 3rd
rows of K. At this stage, we have twenty four (24)
elements in the first column of the matrix K1. Now, we
take the last four (4) elements of the 4th row of K and
we place them as the remaining elements in the first
column of K1. Thus we have 28 elements in the first
column of K1. Now the first four (4) elements of the 4th
row are placed as the first four elements in the second
column of K1 and the elements of 5th, 6th, 7th rows of
K appear in descending order in the second column of
matrix K1. We continue this process of placing the
remaining elements of the matrix K as the remaining
elements of the matrix K1. Thus we have a 28×8
Matrix, K1 given by

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

=

11001100
01101101

11001100
01001111

11011000
10011001
11011000

10101011
11011000

00111011
11111010

00101011
11001001

00101100
10101111

00111100
01111011

10101100
00101101
10100100

00011001
11111101

00011011
10110101

11011011
11010111

11011011
10010111

K 1

 (6)

 Now the subkey K2 is generated from K1 as
follows:

 Here, we place the first element of 28th row of K1
as the element in the first row, first column of the
matrix K2. We then place the 2nd element of the 28th
row of K1 as the 2nd element of the first column of K2.
Similarly we place all the remaining six (6) elements of
the 28th row of matrix K as the remaining elements of
first column of K2 Proceeding in a similar, we place the
elements belonging to 27th and 26th rows of K1 as the
next sixteen (16) elements in the first column of K2. We
now take the elements of the 25th row belonging to
columns 1, 2, 3 and 4 and place them as the remaining 4
elements of the first column of K2. At this stage, we
have 28 elements in the first column of K2. Similarly
the remaining elements of 25th row of the columns 5, 6,
7 and 8 of K1 are placed as the first four elements of the
second column of K2. Proceeding in this way we place
all the remaining elements of K1 and obtain K2.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

=

11010111
00010011
01001101

11100011
01101011

10011001
11010100
11110100

10111111
11001001
00110100

11010110
10001110
00100101

10010001
11011110
11010111

10010011
01101000
11000011

01111111
11100001
11011100

11101000
11111101
11011011

00111100
11011100

K 2

 (7)

K3 is generated from K2 like the way K1 was generated
from K. In a similar manner K5, K7, K9…..K19 are
generated from K4, K6, K8…K18 respectively.
K4 is generated from K3 using the same procedure
adopted in the generation of K2 from K1. In the same
manner K6, K8, K10…K20 are generated from K5, K7,
K9…K19 respectively.

J. Computer Sci., 4 (2): 117-124, 2008

 120

 We now use the subkey of each iteration (K1,
K2…K20) which are of size 28×8 matrix and convert
each of them in to 14×8 matrix (K′1, K′2… K′20) by
using addition modulo 28. This was done as follows.
 First two rows of 28×8 matrix (K1) are taken and
addition modulo 28 is performed on these two rows to
give rise to a single row of 8 bits, this is the first row of
a new matrix, K′1 of size 14×8, then the next two rows
i.e. 3rd and 4th rows of K1 are taken and addition
modulo 28 is performed on these two rows, which gives
a row of 8 bits which is the 2nd row of K′. In a similar
manner the 5th and 6th, 7th and 8th…up to 27th and
28th rows are taken and addition modulo 28 is
performed on each pair of rows there by generating the
complete matrix K′1, of size 14×8.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

=

10010111
10100100
00101101
00001111
11101111
11001100
11100011
10001100

11001000
10011011
11101010
10100001
01100011
00100011

K '
1

 (8)

 Similarly the other matrices K′2, K′3,...,K′20, are
generated from K2, K3,...,K20 respectively.
 Let us now consider the plaintext P0 comprising 16
characters, given by

 P0 = network security (9)

By taking the 7 bit ASCII code of each character, we
have 112 bits of plaintext given by.

�
�
�
�
�
�

	

�
�
�
�
�
�

�

=

10011110011010011110
10110101111001110001111

10010 111001110110100000
10111111001011011111011
01101011110101101110110

P A0 (10)

 Let us take the first 8 bits of P0A given by equation
(10) and place them as the first row of a matrix P of
size 14×8, the next 8 bits of P0A are taken and placed as

the 2nd row of same matrix. Similarly, we continue this
process and generate the matrix P until we exhaust all
the 112 bits of the plaintext, P0A

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

=

10011110
01011110
01011010
01111010
11111000
11101001
11100111
00000101
10101101
00111111
10111110
11100101
11101001
10111011

P

 (11)

 The ciphertext, C corresponding to the plaintext P0
is generated using the following procedure:

8'

19
'
2020

8'
2

'
33

8'
1

'
22

8'
11

2mod)CK(CHence

.

.

.

2mod)CK(C

2mod)CK(C

2modP(K C

+=

+=

+=

)+=

 It may be noted here that each row of the matrix Ci
is obtained by performing the modulo 28 addition on
each row of the matrix K′I and the corresponding row
of the matrix C′i-l, i.e.,

 Ci = (K′i+ C′i-l) mod 28 (12)

where C′0 = P and C′i-l is a permutation of Ci-l. Here i
takes the values 1-20. Further, C′20 is a permutation of
C20. The procedure used for permutation is the same as
we have obtained the matrix K1 from K. Thus C = C′20,
which is given by

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

=

00101001
00010110

00100011

11000100
11110110

00011100

11000101
11011101

10010101

11011110
00001101

00100101

00110110
00100101

C

 (13)

J. Computer Sci., 4 (2): 117-124, 2008

 121

where C is the ciphertext, which is a 14×8 matrix for
the plaintext P0 given by Eq. 9.
 We concatenate each row of C and get 112
ciphertext bits corresponding to 112 plaintext bits.

�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�

�

=

0 0 1 0 1 0 0 1 0 0 0 1
10 1 0 0 10 0 0 0 1 1 1 1 0 0 0

 1 0 0 1 1 1 1 0 1 1 0 0 0 0 1 1 1
0 0 1 01 0 0 1 0 1 1 1 0 1 1 1 0
 1 1 0 0 1 0 1 0 1 1 1 0 1 1 1 1 0
0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 1

 0 0 1 1 0 1 1 0 0 0 1 0 0 1 0 1

C (14)

 Decryption of the cipher is done using the same
algorithm as encryption with the input being the
ciphertext. The decryption subkeys used are the
additive modular arithmetic inverses of the encryption
subkeys with the key roles being reversed from that of
the encryption.

ENCRYPTION AND DECRYPTION
ALGORITHMS

 In what follows, we briefly present the algorithms
for subkey generation, encryption, decryption and
additive inverse of the subkeys respectively.

Algorithm for key generation:

Step 1: Initialize key, K0 by reading 16 characters

Step 2: Generate K0A, ASCII code of each character
from K0

Step 3: Find K′0 from K0A

Step 4: Find K′ from K0′

Step 5: Find K from K′

Step 6: Find Ki from Ki-l for i = 1-20 where K0 = K

Step 7: Find Ki′ from Ki for i = 1-20

Algorithm for encryption:

Step 1: Read P, K′I for i = 1-20

Step 2: for i = 1-20 do

Ci = (K′i+ C i-l ′) mod 28, where C0′ = P

Step 3: C = C20′

Algorithm for decryption;

Step 1: Read C, (K′i)−1 for i = 1-20

Step 2: Find C20 from C20′

Step 2: For i = 20-1 do

Ci-l′ = ((Ki′)−1+Ci) mod 28

Find Ci-l from Ci-l′

Step 3: P = C0′

Additive inverse of the subkeys:

Step 1: Read K′i for i = 1-20

Step 2: For i = 1-20 do

Find (K′i)−1 such that ((K′i)+(K′i)−1) mod 28 = 0

ILLUSTRATION OF THE CIPHER

 Let us consider the plaintext, P0 given by

P0 = network security (15)

 This consists of 16 characters including one blank
space. By using the ASCII code of each character, we
represent the plaintext, P0 in terms of seven (7) binary
bits. Let us now place the seven (7) binary bits of each
character in a row and obtain a matrix, P0A given by

�
�
�
�
�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�
�
�
�
�

�

=

01111001
0101101001111
0101101011110
1110010111000
1110000111001
0100101101011
1101111011111
1011111010011
0101101110110

P A0
 (16)

 Let us now convert the matrix, P0A into a 14×8
matrix, P given by

J. Computer Sci., 4 (2): 117-124, 2008

 122

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

=

10011110
01011110
01011010
01111010
11111000
11101001
11100111
00000101
10101101
00111111
10111110
11100101
11101001
10111011

 P

 (17)

 Let us now consider key, K0 comprising 16
characters, which is given by

 K0 = abcdefghijklmnop (18)

 Each character can be represented by the
corresponding 7 bit ASCII numbers. Hence we get 112
bits (16×7 = 112) and place them in the form of a 28×4
matrix. As discussed in section 2, we generate 20
subkeys K1, K2...K20. From these, we get K′i for i = 1 to
20 by adopting the modulo 28 addition.
 We obtain the corresponding modulo arithmetic
inverse (K′i)−1 for each K′i, wherein i takes values 1-20
satisfying the relation

 (K′i+(K′i)−1) mod 28 = 0 (19)

 Now on using the algorithm for encryption
discussed in section 3.2, we obtain the ciphertext, C
corresponding to the plaintext P0 given by Eq. 9. Thus

�
�
�
�
�
�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

=

 0 0 1 0 1 0 0 01 0 0
1 0 1 1 0 0 0 1 0 0 0
 1 1 1 1 0 0 0 1 0 0 1
 1 11 0 1 1 0 0 0 0 1

1 1 0 10 1 0 0 0 1 0
1 1 1 0 1 1 01 1 1 0 0
 1 0 1 0 1 1 1 10 1 1 1
0 0 0 0 0 1 1 0 01 0
 1 0 0 1 0 1 0 0 1 01
 1 1 0 0 0 1 0 0 1 0 1

C (20)

 The receiver who has previously obtained the key
from the sender uses the decryption algorithm discussed
in section 3.3 by using additive modulo inverse 28 as
shown in Eq. 19, obtains (K′i)−1 for i = 1-20 and
retrieves the original plaintext.

 As the process of encryption involving the iterative
scheme contains equations which mix the plaintext and
the key very thoroughly, it can therefore, be anticipated
that the cipher cannot be broken by any cryptanalytic
attack. Now we discuss briefly the cryptanalysis.

CRYPTANALYSIS

 After the first iteration, the ciphertext can be
written as:

 C1 = (K′1+ P) mod 28 (21)

 At the end of 2nd iteration the cipher can be
written as:

 C2 = (K′2+ C′1) mod 28 (22)

 It is to be noted here that C′1 is the permutation of
C1 while K′2 is the permutation of the subkey, K2.
Similarly as the number of iterations takes the value 1-
20 we have:

 C20 = (K′20+ C′19) mod 28 (23)

and

 C = C20′ (24)

 Knowing the final value of C for a given P (known
plaintext attack), neither K20′ nor C19′ can be obtained.
Hence, the cipher can never be broken by the known
paintext attack (or) for that matter by any other crypt
analytic attack.

AVALANCHE EFFECT

 The strength of any cryptographic algorithm is
often evaluated by testing the algorithm against the
avalanche effect. Here, we test our algorithm by
considering the avalanche effect. Consider the plaintext
given by

 P = management study (25)

 The above plaintext is of 16 characters, which
corresponds to 112 ASCII bits.
 Taking the key

 K0 = abcdefghijklmnop (26)

 The corresponding 112 ASCII bits of K is given
by:

J. Computer Sci., 4 (2): 117-124, 2008

 123

�
�
�
�
�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�
�
�
�
�

�

=

0 0 0
0 1 1 1 1 1 1 1 0 1 1 0 1 1 1
 0 1 1 1 0 1 1 0 1 1 0 0 1 1
 0 1 1 1 1 0 1 0 1 1 0 1 0 1
 0 1 1 1 0 0 1 0 1 1 0 0 0

1 0 1 1 1 1 1 0 0 1 1 0 1 1
0 0 1 1 1 0 1 0 0 1 1 0 0
1 0 0 1 1 1 1 0 0 0 1 1 0
1 0 0 0 1 1 1 0 0 0 0 1 1

K (27)

 On using the key generation algorithm discussed in
section 3.1 and the encryption algorithm discussed in
section 3.2, we obtain the ciphertext C corresponding to
the plaintext P given by

�
�
�
�
�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�
�
�
�
�

�

=

1 1 0 0
1 1 0 0 1 0 1 1 1 1 1 1 1 1 1

01 1 1 1 1 0 1 0 0 1 0 1 0
1 0 0 0 1 0 0 1 0 1 0 1 1
0 1 1 0 11 0 0 0 0 0 10
0 0 1 0 1 0 1 0 0 1 0 00
 0 0 0 1 1 1 1 1 01 0 1 10

1 0 0 0 0 0 1 1 1 1 0 10
 1 1 1 1 0 1 1 0 0 0 0 1 1

C (28)

 Now changing the sixth character in the plaintext
from e to d, which is equivalent to changing the
plaintext in a single bit position, i.e., managdment study
and using the same key, K0 mentioned in 26 and
applying the encryption algorithm discussed in section
3.2, we obtain the ciphertext given by

�
�
�
�
�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�
�
�
�
�

�

=

0 0 1 1 0 0 0 0 1 0
10 11 1 0 01 1 0 0 0 0

1 1 01 1 1 0 1 0 1 0 0 0
0 011 0 1 0 0 0 1 1 01

01 1 1 1 1 0 0 1 1 0 0 0
1 0 1 1 1 0 1 0 1 1 1 1 0
00 0 0 00 0 0 1 1 1 1
0 1 0 1 0 1 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1 0 1 0 0

Cnew (29)

 On comparing the Eq. 28 and 29, it is readily
observed that the two ciphertexts C and Cnew differ in 65
bits out of 112 bits. This indicates that the algorithm
exhibits a strong avalanche effect.

 Now changing the key given by 26 in a single bit
position i.e. abcdefghijkllnop (m is replaced by l),
which results in the new key given by

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

=

0 0 0 0 1
1 1 1 1 1 1 0 1 1 0 1 1

11 1 0 0 1 1 0 1 1 0
0 1 1 0 1 1 1 1 0 1 0

1 1 0 1 0 1 0 1 1 1 0
0 1 0 1 1 0 0 0 1 0

1 1 1 1 1 0 0 1 1 0 1
1 0 0 1 1 1 0 1 0 0

1 1 0 0 1 0 0 1 1 1
1 0 0 0 1 1 0 1 0 0
 0 1 1 1 0 0 0 0 1 1

K new (30)

 On using the key generation algorithm discussed in
3.1 and the encryption algorithm discussed in section
3.2, we obtain the ciphertext Ck new, for the plaintext P
given by 25 and the new key given by 30, i.e.,

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

=

0 0 1 1
0 1 1 1 0 0 0 1 1 1 0

0 1 0 1 1 0 0 1 01 1
1 1 10 1 1 0 1 1 0 0

1 0 1 1 1 0 1 0 1 0 0
0 0 0 0 00110 0

1 0 1 1 0 0 1 1 1 1 0
1 1 0 1 1 1 0 1 0 1 0

0 1 101 0 0 1 1 1 0
1 1 0 0 1 0 0 1 0 1

 0 0 0 1 0 0 1 1 0 1

C newk (31)

 On comparing the two ciphers given by 28 and 31,
it can be seen that these two ciphers differ in 62 bits out
of 112 bits.
 This once again clearly proves that the algorithm
has a pronounced avalanche effect.

EXPERIMENTAL RESULTS AND
CONCLUSIONS

 In this study, we have developed a block cipher for
a block of size 112 bits. Here, the plaintext size is taken
as 112 bits and key size is also taken as 112 bits.
 In the generation of the cipher, the plaintexts and
the subkey generated in each iteration are permuted.
The subkey generation involves a very complex
procedure, which provides enough confusion.

J. Computer Sci., 4 (2): 117-124, 2008

 124

 The algorithm, which involves the permutation of
intermediate ciphertexts and the permutation of subkeys
generated in each iteration, provides a very strong
diffusion. Hence, the algorithm provides a very strong
diffusion and confusion, which are the fundamental
requirements for a block cipher.
 In this study, we have briefly discussed the
cryptanalysis and have logically deduced that no
cryptanalytic attack can break the cipher
 Towards the end, we have evaluated the algorithm
against the avalanche effect, which clearly indicated
that this algorithm is indeed a very strong one with
inherent cryptographic strength and it cannot be broken
by any cryptanalytic attack.

REFERENCES

1. Schneier, B., 1994. The blowfish encryption

algorithm. Dr. Dobbs’ J., 19: 38-40.
2. Rivest, R.L., 1995. The RC5 encryption algorithm.

Dr. Dobbs J., 20: 146-148.
3. Adams, C.M., 1997. The CAST-128 encryption

algorithm. RFC 2144, May 1997.
4. Daemen J. and V. Rijmen, 2001. Rijndael, the

advanced encryption standard (AES). Dr. Dobb's
J., 26: 137-139.

5. Daemen, J., S. Borg and V. Rijmen, 2002. The
Design of Rijndael: AES-the Advanced Encryption
Standard. Springer-Verlag, ISBN 3-540-42580-2.

6. Hussein Ahmad Al Hassan, Magdy Saeb and
Hassan Desoky Hamed, 2005. The Pyramids Block
Cipher. Int. J. Network Secur., 1: 52-60.

7. Feistel, H. 1973. Cryptography and computer
privacy. Sci. Am., 228: 15-23.

8. Feistel, H., W. Notz and J. Smith, 1975. Some
Cryptographic techniques for machine-to-machine
data communications. Proceedings of the IEEE,
63: 1545-1554.

9. William Stallings, 2006. Cryptography and
Network Security: Principles and Practices. 3rd
Edn., Chapter 2, pp: 37.

10. Sastry, V.U.K., S. Udaya Kumar and A. Vinaya
babu, 2006. A large block cipher using modular
arithmetic inverse of a key matrix and mixing of
the key matrix and the plain text. J. Comput. Sci.,
2: 698-703

11. Udaya Kumar, S., V.U.K. Sastry and A. Vinaya
babu, 2006. An iterative process involving
interlacing and decomposition in the development
of a block cipher. Int. J. Comput. Sci. Network
Secur., 6: 236-245.

12. Udaya Kumar, S., V.U.K. Sastry and A. Vinaya
babu, 2006. A large block cipher using an iterative
method and the modular arithmetic inverse of a key
matirx. IAENG Int. J. Comput. Sci., 32: 395-401.

13. Udaya Kumar, S., V.U.K. Sastry and A. Vinaya
babu, 2006. A block cipher basing upon a revisit to
the feistel approach and the modular arithmetic
inverse of a key matrix. IAENG Int. J. Comput.
Sci., 32: 386-394.

14. Udaya Kumar, S., V.U.K. Sastry and A. Vinaya
babu, 2007. A block cipher involving interlacing
and decomposition. Inform. Technol. J., 6: 396-404

15. Udaya Kumar, S., V.U.K. Sastry and A. Vinaya
babu, 2007. A block cipher using an iterative
method and the modular arithmetic inverse of a key
matrix. Int. J. Sci. Comput., 1: 69-78.

16. Udaya Kumar, S., V.U.K. Sastry and A. Vinaya
babu, 2007. A block cipher basing upon
permutation, substitution and iteration. J. Inform.
Privacy Secur., 3: 47-62.

