
Journal of Computer Science 4 (12): 1056-1060, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Mohamed Othman, Faculty of Computer Science and Information Technology,
 University Putra Malaysia, 43400 Serdang, Selangor, Malaysia

1056

A New Computation Algorithm for a Cryptosystem Based on Lucas Functions

1Mohamed Othman, 2Esam M. Abulhirat, 3Zulkarnain Md Ali,

4Mohd Rushdan Mohd Said and 1Rozita Johari
1Faculty of Computer Science and Information Technology,

University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
2Department of Human Resources, Science and Technology, African Union Organization,

African Union Headquarters, P.O. Box 3243, Roosevelt Street, W21K19, Addis Ababa, Ethiopia
3Faculty of Technology and Information Science,

University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
4Institute for Mathematical Research, Faculty of Science,

University Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Abstract: Most of public-key cryptosystems rely on one-way functions. The cryptosystems can be
used to encrypt and sign messages. The LUC Cryptosystem is a cryptosystem based on Lucas
Functions. The encryption process used a public key which was known publicly and the decryption
used a private key which was known only by sender and receiver of the messages. The performance of
LUC cryptosystem computation influenced by computation of Ve the public key process and Vd the
private key process. Very large scales of computations and timing overhead involved for large values
of e and d. We are presenting the so-called Doubling with Remainder compared to the existing
technique. It shows better performance in LUC computations by reducing time consumed in its
computations. The experimental results of existing and new algorithm are included.

Key words: Cryptography, Computation algorithm

INTRODUCTION

 Since the concept of public-key cryptosystems was
first published in[2], there are a lot of possible trapdoor
functions proposed. Probably, the best known and most
widely used trapdoor function is the exponentiation
based cryptosystems. This system is known as RSA
public key cryptosystems[7].
 After two decades, the authors in[8] introduced a
public key based on Lucas Functions instead of
exponentiation based. This system is believed offers
good alternative to the RSA.
 Lucas Functions are special form of second-order
linear recurrence relations using large public integer as
modulus. The key distribution concept[2] can be
constructed using Lucas Functions. Another interested
point is its cryptographic strength. It is much stronger
than or at least strong as the exponentiation based
systems.
 The performance of cryptographic functions is the
most critical issues. The effectiveness determined by
the performance of its computation. Smith and
Lennon[8] concluded that, it has big complications in

terms of storage and timing overheads. With very big
number e (Ve), the encryption of LUC Cryptosystem
cost a huge time and space.
 On the other hand, several researchers on fast
exponentiation evaluation for RSA have been proposed.
Knuth in[5] presented a simple square-multiply method
based on the binary representation of the exponent.
 Similarly, some researchers worked on fast
computation technique for Lucas Functions. Yen and
Laih[11] are among the first to propose an efficient
algorithms to compute the Lucas Function. They
showed the way to reduce the number of multiplications
when evaluating the Lucas Function by shortens the
length of the LUC Chain. They also proposed two
algorithms by scanning the binary form of the exponent
and sequentially evaluate the Lucas sequences. A LUC
Chain is based on Addition Chain where has been
discussed in detail in[5].
 Chiou and Laih in[1] proposed another fast
algorithm in which their computation techniques that
was slightly better than works in[11]. In other related
study[9] also proposed another algorithm. Joye and

J. Computer Sci., 4 (12): 1056-1060, 2008

1057

Quisquater in[4] proposed a technique to compute both
Un and Vn.
 In this study, we proposed fast computation
algorithm that was based on Doubling Step. Doubling
Steps technique is discussed in[10]. Our algorithm
concentrates on how to use a remainder sequence in
order to organize the computations and finally obtain
the required value of Vn.
 We proposed a Doubling with Remainder
technique. Our technique follows these steps:

• Generate a remainder sequence
• Use this sequence to direct the LUC cryptosystems

computations

Lucas function and LUC cryptosystems: Lucas
functions can be seen as generalized linear recurrences.
A Lucas Function is a sequence of integers Vn defined
as V0=2, V1=P, Vn=PVn-1-QVn-2 for n�2. This dentition
referred as nth order linear recurrence as stated by[6].
 The other sequence in Lucas Function is known as
Un. It is defined as U0=0, U1=1, Un=PUn-1-Un-2 for n�2.
We know that for Un, if the parameters are selected as
P=1 and Q=-1, the sequence is the well known
Fibonacci sequence.
 Noted that, the sequence Vn with Q=1 is usually
used to devise cryptosystems by cryptographers.

Encryption and decryption for LUC cryptosystems:
It is uses two keys (e,N) and (d,N) which works in pairs
for encryption and decryption respectively. A
ciphertext, C is obtained by f(P)=Ve(P,1)(mod N)�
C(mod N), where Ve is a Lucas Function, or the eth term
of the Lucas sequence. It is derived from the second
order recurrence relation:

Vn = PVn-1-QVn-2 (1)

 Initial conditions V0 = 2 and V1 = P. Meanwhile,
the decryption function is applied to ciphertext C by
f(C)=Vd(C,1)=Vd(Ve(P,1),1)=Ved(P,1)�P(mod N). This
function will recover the original message, P. We can
use Eq. 1 in existing method.
 There are two factors that give impact to the
performance and behavior of calculation of LUC
Cryptosystems:

• Computation of Ve and Vd looks complicated for

large values of e and d
• The private key d has to be recomputed for each

block of message

An existing algorithm: We can use Eq. 1 to design this
algorithm. We used SL to denote the existing algorithm.
It is very simple technique. Let calculate V1103. Using

Eq. 1, we first compute V2 using V1 and V0. This
computation continues with V3, where we have V2 and
V1. After we get V3, we need to calculate V4, until
finally we compute V1103. In general, the computation
of Vn is done by computation of V2, V3, …, Vn-1 and
finally Vn. Algorithm 1 shows an existing algorithm
in[8]. Note that, e is public key and P is message.

Algorithm 1: Existing Algorithm:
1. Input: e, P, V0 =2 and V1 = P
2. Output: Vn.
3. Vf = V0 and Vg = P and Q = 1
4. While (k! = e)
 a. Vj = PVf – QVg
 b. Vg = Vf
 c. Vx = Vj
 d. Vf = Vx
 e. k++
5. End While

Properties of Lucas Functions: Williams[10]
introduced a method of factorization which is known as
“�+1 factorization” technique. He suggested that Lucas
Functions can be used to find a prime divisor � of N
when �+1 have only small prime factors. Smith and
Lennon[8] then used some Lucas Functions relation in
their public-key cryptosystems.
 Some of them are:

V2n = Vn

2-2 (2)

V2n+1 = PVn

2-QVnVn-1-PQn (3)

V2n-1 = VnVn-1-PQn-1 (4)

Vn

2 = DUn
2+Qn (5)

2Vn+m = VnVm+DUnUm (6)

 These properties are not limited. More results on
another property can be found in[10]. Horster et al.[3]
have also introduces another relations on Lucas
Functions.

A proposed algorithm: For the purpose of this study,
we only focused on Eq. 2-4. We are sure that those
selected equations are very useful to reduce a number
of computation steps needed to compute the sequences
of Vn for LUC Cryptosystems. In this study we are only
manipulating the Doubling Steps technique.
 Our algorithm concentrates on how to reduce as
much as multiplication processes. Because, we are sure
that the reduction of multiplication processes can
reduce time consumed for calculating Vn.

J. Computer Sci., 4 (12): 1056-1060, 2008

1058

 We give a name to our algorithm as Doubling with
Remainder (DwR). Here Vn is either Ve or Vd. We have
the following strategies to achieve high speed of
computation technique:

• Generate the remainder sequence. This is

considered as a part 1 of this proposed algorithm. It
is relatively easy as we generate a remainder for
any give value of n.

• Use the generated remainder sequence to direct the
LUC Cryptosystems computation and it is
considered as part 2 of the algorithm

 The Algorithm 2 shows how to use the remainder
sequence.

Algorithm 2: Algorithm to Use Remainder Sequence:
1. Input: Array k, V0=2, V1=P and N
2. Output: Vn
3. Calculate V2, V3 and V4 using Eq. 1
4. If (k[0] = 1)
 Calculate V2n = V3 and V2n+1 = V4
5. Else
 Calculate V2n=V2 and V2n+1 = V3
6. End If
7. For j = x to 2
 If k[x] =1
 i. Vt =V2n+1 * P - V2n (mod N)
 ii. V2n = V2n+1 * V2n+1 – 2 (mod N)
 iii. V2n+1 = V2n+1 * Vt – P (mod N)
 Else
 i. V2n+1 = V2n * V2n+1 – P (mod N)
 ii. V2n = V2n * V2n – 2 (mod N)
 End If
 x = x-1
8. End For
9. If k[x-1] =1
 Vn = V2n+1
10. Else
 Vn = V2n
11. End If

The calculation of private key d: The private key d
can be computed from Eq. 7:

de � 1 (mod R) (7)

R = LCM((p-(D/p),q-(D/q)). Note that, LCM is Least
Common Multiple, D is discriminant for either prime p
or prime q. An e is public key which is known publicly.
 The following steps show the computation of
private key d:

• Find discriminant D, such that D = C2-4, where D
is discriminant and C is ciphertext.

• Find Legendre Symbols for (D/p) and (D/q). Here
we could have four possible values of Legendre
Symbols. We used LS(D/p) to denote Legendre
Symbols for (D/p).

• Find LCM for either LCM((p+(D/p),q+(D/q)),
LCM((p+(D/p),q-(D/q)), LCM((p-(D/p),q+(D/q)),
or LCM((p-(D/p),q-(D/q))

 In Algorithm 3, the function with the name of
ExtendedEuclid() is the Extended Euclid Algorithm. It
is a classical computational number theory that can be
found in most numbers theory text books.
 The LCM is also classical computational number
theory which was known as Least Common Multiple.
Algorithm 3 has been tested with the maximum number
of digit up to 2000 digits.
 Once we got private key d, we can compute Vd as
the same way we compute Ve to get back the original
messages, P. We recorded time consume for both
encryption and decryption processes. Algorithm 3
shows how to compute private key d.

Algorithm 3: Algorithm to Compute d:
1. Input: C, p and q
2. Output: d
3. Calculate D = C2 – 4
4. Calculate LS(p) = (D/p) and LS(q) = (D/q)
5. If LS(p) = -1 And LS(q) = -1
 a. X = p+1
 b. Y = q+1
6. End If
7. If LS(p) = 1 And LS(q) = -1
 a. X = p-1
 b. Y = q+1
8. End If
9. If LS(p) = -1 And LS(q) = 1
 a. X = p+1
 b. Y = q-1
10. End If
11. If LS(p) = 1 And LS(q) = 1
 a. X = p-1
 b. Y = q-1
12. End If
13. R = lcm(X,Y)
14. ExtendedEuclid(d,R,e)

Implementations: Algorithm 1, 2 and 3 are
implemented in C Language. We used SL to denote
existing algorithm and DwR to denote new algorithm.

J. Computer Sci., 4 (12): 1056-1060, 2008

1059

The computation time for both algorithms is our main
results. Last but not least we also discuss a difference
between two algorithms.
 We implemented the SL to compute the value of
Vn. We can only start the computation with V2, because
we only know V0 and V1. To calculate V3, we need to
know V1 and V2. It followed by V4 because we know
the values of V2 and V3. This process continues until
we achieved the calculation of Vn. The computation
will be V2, V3, V4, V5, ... Vn. Very simple computation
steps involved. The algorithm is shown in Algorithm 1.
 Meanwhile, the remainder sequence is the heart of
DwR. For example, compute V1103. In this case n =
1103. Table 1 shows how to generate remainder
sequence. Use this sequence to direct the doubling
steps. The illustration on using remainder sequence is
shown in Table 2.

Table 1: Illustration on generating remainder sequence
Value n x k[x] = y
1103 0 k[0] = 1
551 1 k[1] = 1
275 2 k[2] = 1
137 3 k[3] = 1
68 4 k[4] = 0
34 5 k[5] = 0
17 6 k[6] = 1
8 7 k[7] = 0
4 8 k[8] = 0

Table 2: Illustration on using the remainder sequence
k[x] x V2n V2n+1
k[8] 0 V4 V5
k[7] 0 V8 V9
K[6] 1 V16 V17
k[5] 0 V32 V33
k[4] 0 V64 V65
k[3] 1 V128 V129
k[2] 1 V256 V257
k[1] 1 V512 V513
k[0] 1 V1102 V1103

RESULTS

 Table 3-5 show time consumed SL and DwR for
both encryption (Enc) and decryption (Dec) processes.
As a result, the algorithm reduces iterations, speedup
the computation and at the same time reduces the
computation time.
 The results in Table 3-5 are based on the running
time for each algorithm in C language in Windows XP
Environment, Crusoe Processor TM5800 with 658
MHz and 240 MB of RAM. All computation times are
in seconds.

DISCUSSION

 The most important feature to discuss here is the
total number of iterations in the computation of Vn. in

order to compute V1103, SL Algorithm required exactly
1103 iterations (refer to Algorithm 1) while DwR only
need 8 iterations (refer to Algorithm 2 and also Tables 1
and 2). Surely, for the bigger size of public key, we
suffered huge iterations in SL algorithm.

Table 3: The computation time in second for each algorithm for

different key size
Key Enc Enc Private Dec Dec
size E SL DwR key d SL DwR
19 320 9 199 56815 160
79 1848 37 199 61600 174
159 3227 65 199 69644 197
239 4793 97 199 80519 227
559 16212 329 199 89824 254
719 34397 711 199 94769 268

Table 4: The computation time in second for each algorithm for

different primes size
Primes size Enc Enc Private Dec Dec
p and q SL DwR key d SL DwR
50 1743 35 99 15390 43
100 3194 65 198 21829 161
110 3500 71 219 68937 195
160 9278 188 319 260788 738
180 10481 213 359 330412 935
220 11912 242 437 445442 1261
280 15400 313 559 76321 2160
300 18201 370 599 930909 2635

Table 5: The computation time in second for each algorithm for

different message size
Message Enc Enc Private Dec Dec
size P SL DwR key d SL DwR
20 1238 25 399 368469 1043
80 1321 26 398 370120 1047
160 1345 27 398 377754 1041
190 1375 28 398 373905 1058
250 1828 37 398 381578 1080
330 1922 39 399 386299 1093

In the same situation, DwR required small number of
iterations. The calculation of V1111111111111111103,
obviously shows SL technique needs exactly
1111111111111111103 iterations. Meanwhile, for DwR
the computations were only required 59 iterations. The
generating of remainder sequence would reduce
numbers of modular multiplications.
 Therefore, the computation time is reduced in the
proposed method. The remainder sequences achieved
less numbers of modular multiplications.
 The computation of private key d is possible
because we know the values of prime p and q. We also
know the value of ciphertext C and public key e. All
these values are needed in the computation of private
key. In real world, it is not easy to compute private key
d.

J. Computer Sci., 4 (12): 1056-1060, 2008

1060

 In our experiments, the times recorded for
decryption process also include the time for calculation
of Legendre Symbols, Lease Common Multiple and
Extended Euclid Algorithm. These three processes
required approximately 35% of total decryption
process. If we can construct or apply any fast
computations algorithm for these three processes, we
are sure that we can reduce a computation time.

CONCLUSION

 We can speed up the LUC Cryptosystem
computation by Doubling with Remainder. The
comparison as shown in Table 3-5 proved that the
speed can be increased by reducing the number of steps
of multiplication. It makes the LUC cryptosystem
computations more efficient for security
implementation.
 Likewise, the reduction of multiplications with the
DwR algorithm, enabled us to achieve a good reduction
of computation time. It also leads to high reduction in
the multiplications required for both the encryption and
decryption operations without sacrificing the key size
of LUC cryptosystem security.
 However, the construction of shorter sequence than
the remainder sequence could be interesting research
topics. Another interesting research topic is the
reduction of some modular multiplications in Lucas
Functions itself.

ACKNOWLEDGEMENT

 Researchers are glad to thank many people on their
suggestions and comments throughout this research.
The third author would like to thank the Government of
Malaysia and UKM for awarding PhD scholarship.

REFERENCES

1. Chiou, S. and C. Laih, 1995. An efficient algorithm

for computing the LUC chain. IEEE Proc. Comput.
Digital Tech., 147: 263-265.

2. Diffie, W. and M.E. Hellman, 1976. New direction in
cryptography. IEEE Trans. Inform. Theor., 22: 644-654.

3. Horster, P., M. Michels and H. Petersen, 1996.
Digital signature schemes based on lucas functions.
Proceeding of the 1st International Conference on
Communications and Multimedia Security,
September 1995, Chapman and Hall, Graz, 178-
190

4. Joye, M. and J.J. Quisquater, 1996. Efficient
computation of full lucas sequences. IEEE Elect.
Lett., 32: 537-538.

5. Knuth, D.E., 1998. The Art of Computer
Programming, Vol 2 (Seminumerical Algorithms),
Third Edition, Addison-Wesley, Reading,
Massachusetts : 356-379.

6. Ribenboim, P., 1996. The New Book of Prime
Number Records, Third Edition (February 1996),
Springer, New York : 53-74

7. Rivest, R.L., A. Shamir and L.M. Adleman, 1978.
A method for obtaining digital signatures and
public-key Cryptosystems. Commun. ACM., 2: 120-126.

8. Smith, P. and M. Lennon, 1993. LUC: A new
public key system. Proceeding of the 9th IFIP
Symposium on Computer Security, North-Holland,
Amsterdam (1993), Elsevier Science Publishers:
103-117.

9. Wang, C.T., C.C. Chang and C.H. Lin, 1999. A
method for computing lucas sequences. Int. J.
Comput. Math. Appl., 38: 187-196.

10. Williams, H.C., 1982. A �+1 method of factoring.
Math. Comput., 39: 225-234.

11. Yen, S. and C. Laih, 1995. Fast algorithm for LUC
digital signature computation. IEEE Proc. Comput.
Digital Tech., 142: 165-169.

