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Abstract:  Problem statement: Program testing is expensive and labor intensive, often consuming 
more than half of the total development costs, and yet it is frequently not done well and the results are 
not always satisfactory. The objective of this paper is to present an automatic test data generation tool 
that aims to completely automate unit testing of JavaScript functions.  The methodology:  In order to 
use the proposed tool, the tester annotates the files that contain the class to be tested. Moreover, the 
tester must specify the test data coverage criterion to be used, either branch coverage or mutation 
analysis. However, the tool is then integrated into the JavaScript compiler and test generation is 
invoked by a command line option.  Also, the code to be tested is parsed into an abstract syntax tree 
from which the test tool generates a program dependency graph for the function under test.  However, 
if mutation analysis coverage is required, the abstract syntax tree for a meta-mutant program is also 
generated. To provide guidance for the test data search, the function under test instrumented in 
accordance with the coverage criterion. Branch predicate expressions are always instrumented, in the 
case of mutation coverage, mutated statements are also instrumented. Compilation then continues from 
the modified abstract syntax tree to generate instrumented executables that were loaded into the test 
data search module. Results: The experiment done in our study by using the proposed tool for branch 
coverage shows that the most effective result for string equality was obtained using the edit distance 
fitness function, while no significant difference was found in the fitness function for string ordering.  
Through exhaustive mulation coverage 8% are found to be equivalent. Conclusion: By having a 
complete automation it reduces the cost of software testing dramatically and also facilitates continuous 
testing.  It is reported that at least 50% of the total software development costs is due to testing, and 
10–15% of development time is wasted due to frequent stops for regression testing. Automation will 
also help get rid of cognitive biases that have been found in human testers.  Acknowledgment: The 
researcher would like to express their gratitude to the anonymous referees for their valuable and 
helpful comments and suggestions in improving the study. 
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INTRODUCTION 

 
 Software testing is as old as the hills in the history 
of digital computers. The testing of software is an 
important means of assessing the software to determine 
its quality. Since testing typically consumes 40-50% of 
development efforts and consumes more effort for 
systems that require higher levels of reliability, it is a 
significant part of the software engineering. With the 
development of Fourth Generation Languages (4GL), 
which speeds up the implementation process, the 
proportion of time devoted to testing increased. As the 
amount of maintenance and upgrade of existing systems 
grow, significant amount of testing will also be needed 
to verify systems after changes are made[20]. Despite 
advances in formal methods and verification 
techniques, a system still needs to be tested before it is 

used. Testing remains the truly effective means to 
assure the quality of a software system of non-trivial 
complexity, as well as one of the most intricate and 
least understood areas in software engineering [21]. 
Testing, an important research area within computer 
science is likely to become even more important in the 
future. 
 This retrospective on a fifty-year of software 
testing technique research examines the maturation of 
the software testing technique research by tracing the 
major research results that have contributed to the 
growth of this area. It also assesses the change of 
research paradigms over time by tracing the types of 
research questions and strategies used at various stages. 
So, the sooner in the development process that a fault is 
found, the less expensive it is to correct. Unit testing, 
which occurs at the start of the testing phase has the 
potential to be a very cost effective form of testing. In 
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practice, however, unit test cases are invariably 
constructed manually by a tester who may need to 
spend significant time analyzing the program under test. 
Consequently, there is much interest in the prospect of 
generating unit test data automatically or with 
assistance. The test data generation tool described in 
this study attempts to generate test data for the unit 
testing of JavaScript (also known as JScript or 
EcmaScript). The code to be tested must reside in a file. 
To use the tool, the tester must annotate the file to 
specify the class and the function under test. For each 
function, the tester must specify the input domain and 
the test data coverage criterion to be used, only two are 
available either branch coverage or mutation analysis, 
DeMillo et al.[1] and Hamlet[2], which requires that test 
data demonstrate the absence of a specified set of faults. 
In practice, mutation analysis subsumes branch 
coverage. In addition, some optional annotations may 
specify the search strategy to be used and other search 
parameters. The tool is integrated into the JavaScript 
compiler and test generation is invoked by a command 
line option. 
 At the core of the test data generation tool is the 
test data search module. This module uses a dynamic, 
search-based approach to software test generation [3-8]. 
This approach requires that the program under test be 
instrumented and executed to assess candidate test 
cases. The program analysis module is responsible for 
analyzing the program under test so that it may be 
suitably instrumented. 
 
Background and related works: There are several 
types of tools in order to facilitate the software testing 
process and they have different functionalities. Among 
these functionalities we can find the following ones: to 
automate the path achieved in source code by a test 
case, to automate the execution of software tests[22] and 
to automate the generation of test cases by means of the 
instrumentation of the source code under test[18,22]. This 
instrumentation can be in automatic way or by hand. 
 The program-based approach, such as statement 
testing, branch testing, condition testing and path 
testing, generates test data by analyzing the source 
program to be tested[19]. This approach is practical and 
supported by several commercial tools; however, it 
requires separate test oracle code to be written. 
 
Automatic tool description: The several tool has 
several modules: 
 
• Parser: It generates the control flow graph of the 

source code under test 
• Instrumenter: It generates the instrumented source 

code 

• Test cases generator: It generates the test cases, 
using the instrumented source code and the control 
flow graph 

 
 The scheme of our tool appears in Fig. 1. 
 
 A parser has been developed that generates   files 
with the control flow graph, data flow graph, data 
dependency graph and control dependency graph from 
the source code of the program that is going to be 
tested. Each graph node stores important information 
that is used in the testing process. The instrumenter 
then reads the source file and instruments the program 
under test using the control flow graph. 

 

Control flow 
graph 
Data flow graph 
Data dependency graph 
Control dependency graph 

Source code 
(Program under testing) 

Parser Instrumenter Instrumented
source code 

Dynamic test data
Generator

Results: 
 - % coverage 
- test cases  

 
Fig. 1: Automatic tool scheme 

 
Finally, the test case generator is executed from the 
instrumented source code and its complexity graph: in 
each iteration it generates test cases for the program 
under test and executes it with them to store their 
behaviour. The generator finishes when it obtains a 
desired branch coverage percentage or reaches the 
maximum number of attempts allowed. 
 
Input domain specification: The following is an 
example of an annotated class file. The tester is 
responsible for writing the class initialiser and the 
function ExecFUT. This function allows the tester to 
specify how the Function Under Test, FUT, will be 
called on an instance of CUT. The class CUT has an 
instance variable array a that must first be initialised by 
calling Init. This function stores multiples of 5 in 
successive elements. Then any of the function members 
Inc, Dec or Swap may be called before FUT is called 
last. The function Inc increments a given element in the 
array a, Dec decrements a given element and Swap 
exchanges a given element with the first element. A 
sequence of calls beginning with Init and ending with 
FUT is a test case. 
 The tester must write a function, ExecFUT that 
implements a valid sequence of function calls. An 
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object array is provided into which values of the in-
built types may be placed. These values are used to 
select functions to call and to provide the arguments for 
them. In the example below, each call within the test 
case is coded as a segment of an integer array as 
defined in the class initialiser. The first 18 elements 
contain 6 segments of 3 elements. The first element of 
any 3 determines which function will be called, as 
implemented by the switch statement. The second 
element is the argument to Inc or Dec; the third element 
is the argument to Swap. A single value may encode the 
argument to both Inc and Dec but in general a different 
value is required for each function as is the case for the 
argument to Swap: 
public class CUT { 
static CUT { 
var domfun: Doma1inInt32 = new DomainInt32 ([1, 4, 
2], [[0, 0], [1, 2], [3, 3]]); 
var domincdec: DomainInt32 = new DomainInt32 ([1], 
[[0, 5]]); 
var domswap: DomainInt32 = new DomainInt32 ([1], 
[[1, 5]]); 
GA.Init ([domfun, domincdec, domswap,  
domfun, domincdec, domswap, 
//4 MORE ROWS AS ABOVE 
domswap]); 
  } 
var a : int[] = new int[6]; 
function Init() { 
    var i : int = 0; 
    for (i = 0; i < 6; i++) { 
     a[i] = i * 5;} 
} 
function Inc(n : int) { 
    a[n] = a[n] + 1; 
 } 
function Dec(n : int) { 
     a[n] = a[n] - 1; 
} 
function Swap(n : int) { 
   var temp : int = a[n]; 
   a[n] = a[0]; 
   a[0] = temp; 
 } 
public function FUT(n : int) : int { 
   if (a[0] == a[n]) { 
    return 1} 
    return 0; 
} 
function ExecFUT(gen : Genotype) { 
    Init(); 
    var i : int; 
    i = 0; 

     while (i < 18) { 
     switch (gen.chron[i]) { 
     case 0: 
          break; 
      case 1: 
          Inc(int(gen.chron[i + 1])); 
          break; 
       case 2: 
          Dec(int(gen.chron[i + 1])); 
           break; 
        case 3: 
           Swap(int(gen.chron[i + 2])); 
            break; 
           } 
         i = i + 3; 
  } 
  Subject(int(gen.chron[18])); 
    } 
 } 
 
 The tester also specifies the domains of the 
arguments to each function by type and value 
constraint. JavaScript is not strongly typed. In the 
absence of type information, function arguments are 
assumed to be of type object. The domain of the object 
type is very large and too large, in practice, to search. 
Value constraints on scalar types are specified in terms 
of a set of intervals, to which the value must belong. In 
the case of the integer argument to Inc or Dec, for 
example, it must be a valid array index. ([1], [[0, 5]]) 
specifies a single interval. From within an interval, 
values are selected randomly with a uniform 
distribution. The integer that encodes the function must 
belong to [0, 3] but the tester decides that a uniform 
distribution is not suitable here, a no-op 0 should occur 
less frequently than a function call. In the specification 
([1, 4, 2], [[0, 0], [1, 2], [3, 3]]), the tester specifies that 
a value is generated by selecting one of the three 
intervals with probabilities in the ratio [1: 4: 2] and then 
selecting from that interval. This mechanism can be 
used to specify non-uniform distributions that simulate 
the expected use profile or assist the search for test 
data. Value constraints are enforced not only when the 
random data is generated to seed the search but also 
when candidate tests are generated during the search by 
the search operators. This makes it easier to ensure that 
all inputs conform to the test program pre-conditions. 
 
Test program analysis: The input file is parsed and if 
no syntax errors are found, an abstract syntax tree is 
created. A program dependency graph[9] is created for 
each function to be tested. JavaScript does not allow 
any unstructured transfers of control and so the program 
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dependency graph can be constructed by traversal of the 
abstract syntax tree[10]. The program dependency graph 
provides the control dependency conditions for each 
branch in the function under test. For branch coverage, 
these conditions form the basis of the test goal that the 
search process seeks to satisfy. 
 The data dependency graph is used to identify 
variable definitions that should be instrumented for data 
state instrumentation. Data state instrumentation is used 
as part of data diversity search strategy and for 
comparing the data states created in a mutant with that 
created in the original program. 
Mutation tables: The current state of the prototype 
implements only behavioural mutations, i.e., 
substitution of operators and operands in statements. 
Object-oriented specific mutations[11] are not 
implemented. The abstract syntax tree nodes that 
represent operators and operands have additional 
attributes computed. Operators are associated with a 
table of replacement operators; operands are associated 
with a table of replacement operands. The replacement 
operand table holds all the in scope variables and 
literals from the program under test of compatible type. 
These mutation tables are constructed during traversal 
of the abstract syntax tree by collecting appropriate 
literals, variables and expressions. By systematically 
iterating through the mutation tables of each mutable 
object in turn, it is possible to generate all the mutations 
of the function under test. 
 
Test program instrumentation: Depending on the 
coverage criterion and the progress of the test data 
search, various instrumented forms of the program 
under test are created. Predicate expressions in 
conditional statements are transformed as shown below 
to instrument for branch coverage: 
 
if (CostEqInt(a[0] == a[n], tr)) { 
return 1 
 
 CostEqInt is the cost function for comparing two 
integers, the cost value is stored in a trace object tr and 
a boolean is returned. Conditional statement trace 
objects accumulate branch cost data over multiple 
executions according to the scheme described in[12]. An 
assignment statement in which a variable of a basic 
type is defined may be associated with an assignment 
trace object. Assignment trace objects accumulate a 
frequency histogram of values assigned. This 
information is used to pursue a data-state diversity 
search strategy and also to compare data-states created 
when a test case is executed on the original function 
and on a mutant function. 

Mutant generation: The abstract syntax tree together 
with the mutation tables is used as a meta-mutant[13] to 
generate mutant programs. The design of the meta-
mutant involves a trade off between the speed with 
which successive mutants are generated and the speed 
with which any specific mutant executes. To arrive at a 
good compromise, it is important to consider that, 
broadly speaking; mutants can be classified as one of 
two kinds. One kind is easily killed, that is, killed by 
almost any test generated at random, such mutants we 
call soft mutants, the other kind is difficult to kill and 
they are usually executed many times during the search 
for a lethal test case, we call this kind hard. Fortunately, 
the vast majority of mutants are soft and so rarely need 
executing more than once. When the meta-mutant is 
generating soft mutants it is more important for the 
meta-mutant to generate them quickly than to generate 
mutants that execute quickly. Fortunately, very little 
instrumentation code need be inserted within a soft 
mutant. It is necessary to compare only the output of 
the subject program with that of the mutant. For speed 
of generation, soft mutants are not generated explicitly 
but emulated. Hard mutants, however, must execute 
quickly in spite of the additional instrumentation code 
that is inserted to guide the search for a lethal test case. 
Since mutant execution time is dominant, hard mutants 
are not emulated but generated explicitly as individual 
program that are compiled to machine code. 
 The hardness of a mutant, can of course, be 
determined only by trying to kill it. Since the vast 
majority of mutants are soft, initially all mutants are 
emulated. Those that survive the first test case that 
reaches the mutated statement are considered hard and 
thus generated as individual mutant programs with 
additional instrumentation to guide test data search. 
In general, for mutation testing, the tool does the 
following: 
 
• Produce mutants 
• Randomly generate test input 
• Run all mutants that have not been killed with 

some test input t, deciding which of these are killed 
to t 

• State which mutants have yet to be killed 
 
Test data search framework: The problem of taking a 
given program and constructing an input that produces 
a given program behaviour, is well known to be 
undecidable. Research effort has thus been directed 
towards heuristic approaches and a number of heuristic 
search methods have been investigated[3,5-8,20]. 
 A genetic algorithm of the so-called steady-state 
variety such as Genitor[14] is the basic search technique 
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that is used to search for test data. For the purpose of 
the study presented here, a genetic algorithm may be 
described crudely in terms of three components, a set of 
candidate solutions, called a population, a cost function 
(also known as a fitness function) and a set of search 
(genetic) operators that can produce new candidate 
solutions by copying and modifying existing candidate 
solutions in the population. 
 The cost function evaluates each test case in terms 
of the search effort required to generate a solution from 
that test case. The selection of existing candidates is 
random but biased towards the most promising 
candidates as estimated by the cost function. The size of 
the population is usually fixed and so as new candidates 
are produced, the least promising are discarded. This is 
survival of the fittest. Over many iterations, the 
population is said to evolve towards a solution. 
 The guidance provided by the cost function is 
crucial to the success of the search. In the context of 
test data search, the candidate inputs are executed to 
establish if they contribute to the test goal. Typically, 
the candidate’s inputs will not satisfy any test goal and 
so it is necessary to assess their utility in terms of 
generating test cases that do. The cost function uses 
information accumulated in the various trace objects of 
the instrumented program. 
 The test coverage criterion for the unit testing of a 
given program typically consists of a set of goals that 
must be satisfied. In the case of branch coverage, each 
branch to be executed is a goal. In the case of mutation 
analysis, the killing of a mutant is a goal. For each such 
goal, the search module eventually creates a genetic 
algorithm. Since the goal of executing a branch that is 
nested within a block controlled by an enclosing branch 
cannot be satisfied until the enclosing branch has been 
executed, a genetic algorithm for a branch or mutant is 
generated only when the predicate expression that 
controls that branch has been reached by some test case. 
At any stage in the search, a genetic algorithm search is 
pursued concurrently for all such goals. 
 All goals are pursued with equal resources and so 
each genetic algorithm is evolved for one cycle in turn. 
Whenever a genetic algorithm finds a test case to 
satisfy its goal, the genetic algorithm is deleted but the 
population of test cases is retained. Whenever a new 
genetic algorithm is created, the initial population of 
test cases it is seeded half randomly and half from all 
the existing test cases. These tests are evaluated by the 
cost function of the new genetic algorithm and the best 
tests accepted until the genetic algorithm population is 
full. 
 A multi-population genetic algorithm[15] extends 
the basic genetic algorithm by including a number of 

populations. Any genetic algorithm may create a 
number of populations as part of a search 
diversification strategy. The different populations 
within a genetic algorithm are intended to evolve 
different species that aim to satisfy the genetic 
algorithm goal but in different ways. In the context of 
branch coverage, the most general condition for 
execution of a branch is the control dependency 
condition for that branch. Initially, this condition is the 
basis of the cost function that evolves a single 
population. if after some time, a population is no longer 
evolving towards a solution, the control dependency 
condition is refined in different ways by adding 
additional branches (that do not conflict with the 
control dependency condition) that must be executed. 
These refined test goals are used to create cost 
functions for additional populations. In general, the 
population structure of a single genetic algorithm is a 
tree. Details are in[16]. 
 In general, multi-population genetic algorithms 
may allow individuals to “migrate” from one 
population to another. Migration is normally limited in 
order to maintain the differences between populations. 
In the tool, the migration of test cases between 
populations is unrestricted. There are two reasons for 
this; firstly, each population has its own cost function 
which is the overriding determinant of which test cases 
remain in a population irrespective of the number of 
migrants from other populations. For this reason, 
unrestricted migration does not lead to the loss of 
diversity that it might in other multi-population genetic 
algorithms. Secondly, it is efficient to reuse executed 
tests wherever possible since the time required to 
execute the program under test is usually the most 
important factor that determines the speed with which 
test data is generated. Once a test case has been 
executed and the instrumentation data has been 
collected from the trace objects, an evaluation of the 
instrumentation data against any specific cost function 
can be produced relatively quickly. 
 

RESULTS 
 
 Branch-coverage results:  This tool is used to find 
test cases in order to satisfy different types of variables 
in branch coverage such as number, string and Boolean 
(flag problem). 
 This tool is used by the author in[12] which we 
focused on the test data generation to cover branches 
with string predicates. 
 We address in this study string equality, string 
ordering and regular expression matching. We applied a 
fitness function that depends on the string predicate. 
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 Thus, for string equality we use the binary 
Hamming distance, character distance, edit distance and 
string ordinal distance, while for string ordering, the 
ordinal value method and single character pair ordering 
is applied. 
 The search for adequate test data is done using a 
GA. To improve the efficiency of the search, the input 
domain is restricted to characters within an ordinal 
range from 0 to 127. Further, the solution candidates 
are biased towards string literals that appear within the 
program under test. The experiment done in our study 
shows that the most effective result for string equality 
was obtained using the edit distance fitness function, 
while no significant difference was found in the fitness 
function for string ordering. 
 
Mutation testing results: The most important 
functionality of the program would of course be to 
create mutants.  Following explains how to do 
that. 
 The problem is reduced to mutate individual 
program elements, since a mutant normally differs from 
the program under test in one program element only. 
 Consider this statement in the program under test: 
 
... 
z = x + y; 
... 
 
 How do we mutate this statement? One approach is 
to create a mutant which is one program containing all 
mutants. To declare which mutant is executing, an 
environment variable is set. 
 The mutant version of the above statement could 
be something like: 
 
... 
z = plusIntInt(x, y, 230, 232); 
... 
 
 Each binary expression eligible for mutation is 
replaced with a function similar to the one above. The 
automatically generated plusIntInt function: 
 
... 
plusIntInt(int x, int y, int firstMut, int lastMut) 
{ 
if (getCurrentMutation() >= firstmut && 
getCurrentMutation() <= lastmut) 
{ 
if (getCurrentMutation() == firstmut) 
return x - y; 
if (getCurrentMutation() == firstmut + 1) 
return x * y; 

if (getCurrentMutation() == firstmut + 2) 
return x / y; 
return x + y; 
} 
else 
return x + y; 
} 
... 
checks whether, at this point in the program, it should 
execute a mutated statement. In the example, mutation 
number  230 mutates x+y into x-y, 231 into x*y and 
232 into x/y. All other mutants executes the unmutated 
x+y. 
 
Testing the triangle program: The benchmark 
program used to determine the type of a triangle; either 
it is illegal (the sides do not connect properly) or it is 
one of three valid cases scalene (no sides equal), 
isosceles (two sides equal) or equilateral (all sides 
equal). 
 
Equivalent mutants: The problem with equivalent 
mutants still stands out as a time-consuming, error-
prone and hence expensive task. To find all equivalent 
mutants in this specific case, we exhaustively tested 
every integer value in the domain: 
 

D = (x, y, z) 
 
where, x, y and z 2 [-20, 40]. Obviously, this method is 
infeasible in the general case. 
 Of the 117 mutants, these 9 (8 %) were found to be 
equivalent: 47, 81, 83, 96, 97, 99, 109, 110, 112. 
(Mutants 1 and 3 would be equivalent had the domain 
been limited to three integers; test case 13 tests with 
more and less parameters and kills those two mutants.) 
The numbers have no meaning other than identifying 
individual mutants. 
 
Experiment: Mutation adequacy of a test set known 
to be adequate: Myers[23] lists 13 test cases that 
thoroughly test the triangle program in the appendix: 
 
• A test case which represents a valid scalene 

triangle 
• A test case which represents a valid equilateral 

triangle 
• A test case which represents a valid isosceles 

triangle 
• At least three test cases which represent valid 

isosceles Triangles such that you have tried all 
three permutations of two equal sides 

• A test case in which one side is zero 
• A test case in which one side is negative 
• A test case with three positive integers such that 

the sum of two of them is equal to the third 
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• At least three test cases in category 7 such that you 
have tried all three permutations where the length 
of one side is equal to the sum of the lengths of the 
other two sides 

• A test case with the sum of two of the numbers less 
than the third 
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Fig. 2: The percentage of non-equivalent mutants killed 

by each test case. The total is the mutation score 
of the entire test set. The “statement coverage” 
column shows the percentage of executed 
statements of the program under test 

 
• At least three cases in category 9 such that you 

have tried all three permutations 
• A test case with all side lengths equal to zero 
• At least one test case specifying non-integer values 
• At least one test case specifying the wrong number 

of values (two or four) 
 
 Figure 2 shows the results of the test run. We can 
not draw any statistically valid conclusions based on 
this test run due to the limited number of mutants and 
the low complexity of our program under test. Yet, it is 
instructive to consider two things: that our test set 
indeed seem to be mutation adequate, although it could 
be better still and the correlation between statement 
coverage and mutation score. 
 To kill a mutant, it must be reached. If it is 
reached, the statement of that mutant is covered. 
Therefore, statement coverage must necessarily be a 
worse measure of test set adequacy. 
 

DISCUSSION 
 
 The tool has been implemented by modifying the 
JScript compiler (written in C#) that is part of the 
SSCLI[17] distribution which implements the .NET 
framework. An abstract syntax tree walker was written 
in order to implement a number of abstract syntax tree 
operations which include, program dependency graph 
construction, various transformations for program 
instrumentation, collection of various lexical elements, 

literals, variables, to construct mutation tables. The 
.NET framework provides reflection from which it is 
possible to extract information about the program under 
test. Given access to the abstract syntax tree, no use is 
made of reflection to analyse the program under test. 
 The test tool does not generate test data entirely 
automatically. Many script programs execute in a 
complex context which contains large complex objects. 
For example, the context of a script program may 
include the browser in which it is executing, the 
window, various user interface forms, a word document 
and so on. The tester is still responsible for creating a 
significant part of this context. The test tool provides 
the tester with a tool to search for parameter values and 
statement selection and sequencing. 
 The tool is a prototype and currently, a number of 
the JavaScript language constructs cannot be handled. 
Programs that contain these constructs cannot be tested. 
 In general, this testing tool is generally laboratory 
prototypes. I am not aware of any fully featured 
commercial tools for testing. 
 

CONCLUSION 
 
 The test data generation tool is able to generate test 
data for JavaScript functions. The tool may be directed 
to generate branch coverage data or mutation coverage 
data. The tester is responsible for ensuring that the 
function under test executes in an appropriate context 
,but the tool will search for parameter values and 
statement selection and sequencing.  Requiring the 
tester to providing an appropriate context means that 
although test generation is not entirely automatic, it is a 
practical tool.  
This is significant because complete automation will 
reduce the cost of software testing dramatically and also 
facilitate continuous testing. It is reported that at least 
50% of the total software development costs is due to 
testing, and 10–15% of development time is wasted due 
to frequent stops for regression testing. Automation will 
also help get rid of cognitive biases that have been 
found in human testers. 
 
 A graphical user interface is to be added to allow 
the tester to add test cases manually, execute the test 
cases and to obtain path and data state information. The 
tester will be able to modify and re-execute the test. 
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