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Abstract: This study presents the structure and the performance of a new inference engine: the MIE 
(Meta Inference Engine). It is able to manipulate not only the rules but also the metarules. The article 
first describes the architecture of the MIE and gives an example to illustrate its use. A comparison of 
performance between an RETE network and the MIE is then made. This shows that the MIE is more 
efficient at manipulating metaknowledge (metarules) but that an RETE network is quicker when the 
system inserts or deletes a fact. 
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INTRODUCTION 
 
 The domain of metaknowledge was conceived in 
the 1970s and 80s[10] at the same time as the emergence 
of rule-based systems. A metaknowledge can be 
defined as being knowledge about knowledge. Different 
classes of metaknowledge were established by Jacques 
Pitrat[20] metaknowledge for acquiring, for explaining, 
for using or for stocking knowledge. 
 The study and manipulation of metaknowledge are 
transverse in several domains in Artificial Intelligence 
(AI). They are often used to model many levels of 
decisions or structures such as meta-systems developed 
in LCF[7] and FOL[24]. Metaknowledge was evoked for 
decision support[18], learning[1,16], monitoring[11], 
generation of comments[17], manipulation of the 
temporal graph[9], strategy of a inference engine[24], 
problem solving in geometry[2], checking on the 
coherence of a rules-based systems[21] and the discovery 
of new knowledge[14]. 
 There is no specific architecture (or programming 
language) for manipulating metaknowledge: 
MALICE[19] metaknowledge is written in language C; 
those of GénéCom[17] and SNARK[13] with rules and 
those of SADE[11] with Lisp. However, rules-based 
systems have the advantage of catering for the building 
of different levels of knowledge[9] a chronology to 
execute packages of rules for example. The other 
advantage of the rules is they allow the developer to be 
focused on the transcription of methods in the form of 
rules without being concerned about their triggering. 
An inference engine takes responsibility for the 
matching of conditions and the execution of rules. 

 It is in this context that the idea to conceive a new 
inference engine, called MIE (Meta-Inference Engine) 
appeared. This idea had already been introduced in a 
theoretical way by Clancey[5] or Torsun[22] who had 
developed a logic allowing the programming of a 
"meta" level by using a language such as PROLOG. 
The development of a tool allowing the manipulation of 
metaknowledge[20,12] would facilitate the 
implementation of AI systems. 
 So, the MIE allows the developer to build systems 
based on rules and meta-rules (a meta-rule is executed 
as a rule). Contrary to most systems which use meta-
rules[3,21] in a static way, the triggering of meta-rules 
can dynamically modify the rules structure during the 
session. Also, reflective systems can be made by the 
MIE. 
 Two types of inference engines are known: those 
based on a filter algorithm and those using an RETE 
network[8]. Various models were developed according 
to the principle of an RETE network. One of the 
differences between all these models comes from the 
memorization of facts in the nodes of the network. 
SNARK[13] and TREAT[15,23] use fewer memorization 
techniques whereas OPS[3] and TANGO[6] memorise all 
the facts and sets of facts (representing instances). 
 The use of an RETE network is much more faster 
than a filtering technique. On the other hand, it has a 
physical structure which is more complex: various 
types of nodes and joints. If this implementation had 
been chosen, every execution of a meta-action (for 
example to modify or to delete a rule) would have 
entailed, every time, an expensive reorganization of the 
RETE network. The idea is to imagine a new structure 
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which would be a compromise between RETE and 
filtering. This new structure would be faster than the 
filtering solution and more flexible than the RETE 
network. This flexibility would make the use of 
metaknowledge easier when a rule needs to be created, 
modified or deleted during an execution. 
 The goal of this article is to present the structure 
used by the MIE and to compare its performances with 
an RETE network. 
  In the following section, the structure of the meta-
inference engine is presented. Several algorithms are 
described to explain how the performances of the MIE 
and an RETE structure have been calculated to insert 
and to delete a fact, a condition or a rule. The last part 
shows the result of the comparison with graphs and 
commentaries.  
 

STRUCTURE OF THE META  
INFERENCE ENGINE 

 
 The structure shown on Fig. 1 is used to encode a 
set of rules. Each encoded rule contains three lists: the 
list of conditions, the list of actions and the list of 
variables. The latter is composed of a set of variables 
used in the conditions of the rules. This is useful when 
the MIE has to create a new instance. The list of actions 
contains the sequence of actions which will be executed 
if the information encoded in an instance satisfies all 
the conditions of a rule. 
 Each condition is characterized by a name, an 
object, an attribute, a value, a list of facts which satisfy 
the condition, a list of instances (see below the 
explanation of its use), and a complexity value which 
evaluates the matching calculation between the 
condition and a fact. The list of conditions is sorted 
from  the  simplest to  the most complex with the use of 
Table 1 and 2. For example, the condition (cube1  = 
color  !color) will have the compexity 2 while the 
condition (!cube > height (+ !var 10)) (the condition 
will be satisfied if the cube !cube has a height greater 
than the value of the variable !val incremented with 10) 
will have the complexity 12. 
 This sorted list of conditions allows for the 
progressive building of instances as the conditions are 
satisfied. The idea is to insert in the first places the 
conditions which give rise to few calculations and 
which determine the values of the variables. The 
complex conditions (the costliest) will be computerized 
at the very end.  
 A condition contains a list of facts and a list of 
instances. Each fact (from the list of facts) is matched 
with the condition and is used to create or modify an 
instance (from    the   list    of instances).   The   list    of  

Rule name

Variable

Complexity Class

Object

Operator

Attribute

Value

Name

Class
List of parameters

Name

L_rules List of rules

List of conditions

List of actions
List of variables

A condition

An action
List of  facts

List of  instances

An instance

List of  variables with a value

List of  facts which compose the
instance  

 
Fig. 1: The structure used by the MIE 
 
Table 1: The complexity of a condition with the operator = 
Operator =  Object 
  Variable Not Variable 
Value Variable 3 2 
 Not Variable 1 0 
 Variable in an expression 5 4 
 Variable not in an expression 1 0 

 
Table 2: The complexity of a condition with an operator different 

from = 
Operator different  Object 
from   --------------------------- 
  Variable Not Variable 
value Variable 9 6 
 Not Variable 3 0
 Variable in an  expression 15 12 
 Variable not in an expression 3 0 

 
instances possesses partial instances which have been 
constructed from the first condition (the less complex) 
to the condition being tested. The last condition of the 
rule (the most complex) contains the complete instances 
usable to execute the rule. 
 For the condition at position i, an instance is 
composed of a list of facts and a list of variables which 
allows for matching all the conditions from position 1 
to position i and which allocates a value to all the 
variables of all the conditions from position 1 to 
position i. To be more explicit, an example is described 
below. 
 
An example to illustrate the use of the MIE 
structure: Supposing that the rule written by the 
developer (respecting the syntax described in annexe 
A1) is the example1 rule, the first task of the MIE is to 
calculate the complexity of each condition and to sort 
them Table 3. 
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Table 3: Calculation of the complexity and ascending sort of the 
condition condition 

Condition Complexity 
(!cube1 = color red) 1 
(!cube2 = below table) 1 
(!cube1 = below !cube2) 3 
(!cube1 = height !val) 3 
(!cube2 > height !val) 9 

 
(Defrule example1 
 (!cube1 = color red) 
 (!cube1 = below !cube2) 
 (!cube1 = height !val) 
 (!cube2 = below table) 
 (!cube2 > height !val) 
=> 
 (assert agregate shape pyramid) 
) 
 
 Once the conditions have been sorted into 
ascending order, the MIE can build the structure which 
allows the facts to match the conditions. Now, if the 
three facts (CubeA below CubeB), (CubeB below 
CubeC), (CubeC below table) are sent, the two first 
facts match the third condition (they are stored in the 
list of facts) and the last fact matches the second 
condition. 
 

  List of instances 
Condition List of facts  List of 

variables 
List of 
facts 

(!cube1 = color 
red) 

   

(!cube2 = below 
table) 

(CubeC 
below table) 

  

(!cube1 = 
below !cube2) 

(CubeA 
below 
CubeB) 
(CubeB 
below 
CubeC) 

  

(!cube1 = height 
!val) 

   

(!cube2 > height 
!val) 

   

 
 Let us now suppose that the two following facts 
(CubeA color red) and (CubeB color red) are sent to the 
structure. These two facts match the first condition and 
they are stored in the list of facts. Two partial instances 
are built in the first condition and they are propagated 
in the second condition. Two partial instances are also 
built and they are propagated in the third condition. But 

only one partial instance is built to respect the link 
between the variables !cube1 member of condition 1 
and 3 and !cube2 member of condition 2 and 3. 
 
  List of instances 
Conditio
n 

List of facts List of 
variables 

List of facts 

(!cube1 = 
color red) 

(CubeA color 
red) (CubeB 
color red) 

1:(!cube1 = 
CubeA) 
2:(!cube1 = 
CubeB) 

1:(CubeA 
color red) 
2:(CubeB 
color red) 

(!cube2 = 
below 
table) 

(CubeC below 
table) 

1: (!cube1 
= CubeA ; 
!cube2 = 
CubeC) 2: 
(!cube1 = 
CubeB ; 
!cube2 = 
CubeC) 

1: (CubeA 
color red) ; 
(CubeC 
below 
table) 2: 
(CubeB 
color red) ; 
(CubeC 
below 
table) 

(!cube1 = 
below 
!cube2) 

(CubeA below 
CubeB)  
(CubeB below 
CubeC) 

2: (!cube1 
= CubeB ; 
!cube2 = 
CubeC) 

2: (CubeB 
color red) ; 
(CubeC 
below 
table) ; 
(CubeB 
below 
CubeC) 

(!cube1 = 
height 
!val) 

   

(!cube2 > 
height 
!val) 

   

 
If we go on to send the fact (CubeC height 40). It 
matches the two last conditions but no new partial 
condition are created because the variable !cube1 has to 
have the value CubeB and not CubeC. So, the fourth 
condition does not build an instance. 
 
  List of instances 
Conditio
n 

List of facts List of 
variables 

List of facts 

(!cube1 = 
color red) 

(CubeA 
color red) 
(CubeB 
color red) 

1:(!cube1
= CubeA) 
2:(!cube1
= CubeB) 

1:(CubeA color 
red) 2:(CubeB 
color red) 

(!cube2 = 
below 
table) 

(CubeC 
below table) 

1: 
(!cube1= 
CubeA ; 

1: (CubeA color 
red) ; (CubeC 
below table) 2: 
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!cube2= 
CubeC) 
2: (!cube 
= CubeB ; 
!cube2= 
CubeC) 

(CubeB color 
red) ; (CubeC 
below table) 

(!cube1 = 
below 
!cube2) 

(CubeA 
below 
CubeB) 
(CubeB 
below 
CubeC) 

2: (!cube1 
= CubeB ; 
!cube2 = 
CubeC) 

2: (CubeB color 
red) ; (CubeC 
below table) ; 
(CubeB below 
CubeC) 

(!cube1 = 
height 
!val) 

(CubeC 
height 40) 

  

(!cube2 > 
height 
!val) 

(CubeC 
height 40) 

  

 
 Finally we can send the fact (CubeB height 20). It 
matches the two last conditions. The fourth condition 
can create a partial instance because !cube1 (object of 
the condition) matches with the value CubeB. This 
instance is propagated in the last condition which can 
create a complete instance. 
 
  List of instances 
Conditio
n 

List of facts List of 
variables 

List of facts 

(!cube1 = 
color red) 

(CubeA 
color red) 
(CubeB 
color red) 

1:(!cube1 
= CubeA) 
2:(!cube1 
= CubeB) 

1:(CubeA color 
red) 2:(CubeB 
color red) 

(!cube2 = 
below 
table) 

(CubeC 
below table) 

1: 
(!cube1= 
CubeA ; 
!cube2= 
CubeC) 2: 
(!cube1= 
CubeB ; 
!cube2 = 
CubeC) 

1: (CubeA color 
red) ; (CubeC 
below table) 2: 
(CubeB color 
red) ; (CubeC 
below table) 

(!cube1 = 
below 
!cube2) 

(CubeA 
below 
CubeB) 
(CubeB 
below 
CubeC) 

2: 
(!cube1= 
CubeB ; 
!cube2= 
CubeC) 

2: (CubeB color 
red) ; (CubeC 
below table) ; 
(CubeB below 
CubeC) 

(!cube1 = 
height 
!val) 

(CubeC 
height 40) 
(CubeB 
height 20) 

2: 
(!cube1= 
CubeB ; 
!cube2= 

2: (CubeB color 
red) ; (CubeC 
below table) ; 
(CubeB below 

CubeC ; 
!val= 20) 

CubeC) ; 
(CubeB height 
20) 

(!cube2 > 
height 
!val) 

(CubeC 
height 40) 
(CubeB 
height 20) 

2: 
(!cube1= 
CubeB ; 
!cube2 = 
CubeC ; 
!val= 20) 

2: (CubeB color 
red) ; (CubeC 
below table) ; 
(CubeB below 
CubeC) ; 
(CubeB height 
20) ; (CubeC 
height 40) 

 

565 687 811 907

L_codes List of
codes

List of
links

List of
links

Toward a
condition

Toward a
condition  

 
Fig. 2: Structure to route the facts to the condition 
 
 The insertion of a new fact uses a special structure 
which allows us to ignore uninteresting conditions, 
rather than testing all the conditions of all the rules. 
This structure offers a quick propagation of facts for all 
the conditions Fig. 2. The MIE works with a first order 
logic: all conditions have an attribute which is not a 
variable. To have a match between a fact and a 
condition, they (the fact and the condition) must have 
the same attribute. The idea is to encode the attributes 
with the conditions and to regroup them in an ordered 
list. 
 Each code reaches a set of conditions having the 
same attribute zone. When the MIE has to look for a 
new fact in the structure, it calculates the code of the 
attribute (of the fact) and seeks it out in the list of 
codes. If the code is found then the MIE can test all the 
conditions linked to this code with the fact. 
 

DEFINITION AND ALGORITHMS 
 
 The aim of this section is to show how the 
comparison of performance between the MIE structure 
and the RETE network has been done. First, some 
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variables are defined which are used in several 
algorithms: insert a fact, delete a fact, insert a condition, 
delete a condition, insert a rule and delete a rule. 
 

DEFINITION OF VARIABLES 
 
Number of facts : nb_facts 
Number of rules : nb_rules 
Number of conditions in a rule : nb_conditions 
Number of original conditions in a rule : nb_original 
Number of common conditions in a rule : nb_common 
= nb_conditions - nb_original 
 
 If we suppose that a common condition appears on 
average in 1/3 of the rules : 
The total number of conditions : 
 
total_nb_conditions = nb_rules * nb_original + 
(nb_rules/ 3)*(nb_conditions - nbr_original) 
total_nb_conditions = (nbr_règles/ 3)*(nbr_conditions 
+ 2*nbr_originals) 
 
The number of copies of a common condition (see 
annexe A2) 
nb_copies_common_condition=(3*nb_original+nb_co
mmon*nb_rules)/(3*nb_conditions)   
 
We will assume that the facts are equitably distributed 
in test nodes : 
nb_facts_in_a_test_node = nb_facts / 
total_nb_conditions. 
 
The number of outputs for a joint node : 
nb_outputs_joint = log (total_nb_conditions - 
nb_common) 
 
The number of outputs for a test node (see annexe A2) 
nb_outputs_test = (3* nb_original + nb_common * 
nb_rules) / (3*nb_conditions)  
 
The coefficient of matching in a joint node between 2 
facts or between 1 fact and 1 instance: Coef_matching 
= 20% 
 
The number of instances in a joint node: 
nb_instances_joint_node = (Uo(1-rn+1)/(1-r))/n  
with Uo=nb_facts/ total_nb_conditions; 
r= nbr_facts/ total_nb_conditions * coef_matching; 
n=nb_conditions-1 
 
The number of instances in a condition in the MIE 
strucure (an average) : 

nb_instances_condition_mie = (nb_facts/ 
total_nb_conditions) * Coef_matching 
 
To simplify counting, we assume that a fact matches 
only one test node. 
 

ALGORITHMS 
 
 Four algorithms are presented below: 
Insert_a_fact_OPS, Insert_a_fact_MIE, 
Insert_a_condition_OPS and Insert_a_condition_MIE. 
The other algorithms are described in annexe A3. 
 Figure 3 proposes the propagation of a fact in an 
RETE network. This network has 5 test nodes: the first 
one contains 1 fact, the second and the fourth contain 3 
facts and the fifth 4 facts. The first joint node has 2 
partial instances. When a new fact is sent in the RETE 
network, it is tested with all test nodes. In figure 3, the 
new fact satisfies the matching fonction of the third test 
node. It is memorised and it is propagated in the joint 
node B. Then, this node verifies if a new partial 
instance can be made from the partial instance of the 
node A and the new fact. In the example, two new 
partial instances are created and stored in node B. They 
are propagated towards node C which verifies if new 
partial instances can be built from partial instances of 
node B and the facts of the test node 4. So, three new 
partial instances are created and stored in node C. The 
same comparison is done with node D which builds 4 
instances from node C and node 5. Then, these 4 
instances are proposed to the node rule which can 
execute them. 
Algorithm Insert_a_fact_OPS 
 

Test Node

Joint Node

Rule Node

Instance already
present

Fact already
present

Instance created by the
propagation

New fact

1 2 3 4 5

A

B

C

D

 
 
Fig. 3: The insertion of a fact in OPS structure 
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Begin 
  Levels_Counter  ← 1 
 
  // Test for the first joint node 
  Instructions_Counter   ←+ nb_instances_joint_node * 
1 + 1 
 
  // Test for the storage of the first joint node 
  Instructions_Counter ←+ nb_instances_joint_node * 1 
* Coef_matching + 1 
 
  Un ← nb_instances_joint_node *1 *Coef_matching 
 
  Loop (nb_conditions div 2) - 1 times 
    // Test for a joint node 
    Instructions_Counter  ←+ Un * Levels_Counter  * 
(Nb_facts/ total_nb_conditions) + 1 
 
    // Test for the storage of a joint node 
    Instructions_Counter  ← + Un * Levels_Counter  * 
(Nb_facts/ total_nb_conditions) * Coef_matching + 1 
 
    Levels_Counter  ←+ 1 
 
    Un  ← Un * (nb_facts/ total_nb_conditions) * 
Coef_matching 
  End Loop 
 
  Return (Instructions_Counter) 
End 
 
 The first step of the insertion of a fact in the RETE 
network consists in testing the fact with all the test 
nodes. This is not taken into account because its 
number of instructions is insignificant in comparison 
with the other steps. The Insert_a_fact_OPS algorithm 
begins with the test and the storage of the first joint 
node. Secondly, a loop used to count the instructions of 
the propagation of partial instances in all joint nodes of 
the RETE network. 
 Figure 4 shows the insertion of a fact in the MIE 
structure. The number of instructions for the calculation 
of the code and the route of the new fact to the node 3 
are considered as insignificant in comparison to the 
total number of instructions. The first step is to test if 
the new fact can be memorized in the node. Then, the 
MIE has to try to combine it with the instances of the 
previous node to build the new instances. In the 
example, 3 new instances are created in node 3. The 
MIE tries to propagate these instances in the following 
node by matching up the fact of node 4. 
 

Condition nodes

Instance already present

Fact already present

Instance created by the propagation

  New fact

1

2

4

3

 
 
Fig 4: The insertion of a fact in the MIE structure 
 
Algorithm Insert_a_fact_MIE 
Begin 
 
  Loop nb_copies_common_condition times 
 
    // Test for the first condition 
    Instructions_Counter ←+ 
nb_instances_condition_mie * 1 + 1 
 
    // Test for the storage of the first condition 
    Instructions_Counter ←+ 
nb_instances_condition_mie * 1 * Coef_matching + 1 
 
    Un  ← nb_instances_condition_mie * 1 * 
Coef_matching  
 
    Loop (nb_conditions div 2) - 1 times 
      // Test for a condition 
      Instructions_Counter ←+ Un * (nb_facts/ 
total_nb_conditions) + 1 
 
      // Test for the storage of the first condition 
      Instructions_Counter  ←+ Un * nb_instances 
_condition_mie + 1 
 
      Un  ← Un * nb_instances_condition_mie 
    End Loop 
 
  End Loop 
 
  Return (Instructions_Counter) 
End 
 
 The Insert_a_fact_MIE algorithm has 2 
overlapping loops. The first one consists in testing the 
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fact with all conditions which have the same attribute. 
For each condition, the algorithm counts the test, the 
memorization of the fact and the creation of new 
instances. Then, it propagates these instances at the end 
of the list of conditions. 
 
Algorithm Insert_a_condition_OPS 
Begin 
// Assumption that the condition is a new condition: 
 
- Search to see if the condition already exists = 
total_nb_conditions 
- Search for the links (object or attribute) with other 
conditions of the rule = nb_conditions *2 
- Creation of test and joint nodes = 2 
- Creation of links = 3 
- Delete instances in rule node = 
nb_instances_joint_node  
- Propagation of facts = insert_a_fact_ops * nb_facts 
- Delete instances in the joint node downstream = 
nb_conditions / 2 * nb_instances_joint_node 
- Search for the place where they are going to insert the 
condition = the insertion of an element in a sorted list = 
Ln (nb_conditions+1); 
- Update functions of validation in all nodes 
downstream = (Uo(1-rn+1)/(1-r))/n with Uo=10; r= 
nb_outputs_joint, n=nb_conditions / 2. 
End; 
 The insertion of a condition in an RETE network 
implies the creation of new nodes and links, the 
modification of the several functions of validation 
(which belong to several nodes), and the propagation of 
facts (and instances) in the new nodes (and the nodes 
downstream) 
 
Algorithm Insert_a_condition_MIE 
Begin 
- Creation of the condition = 1 
- Counting of the condition complexity = 1 
- Insertion of the test node in the rule = 
nb_conditions/2 
- Delete instances in nodes which are downstream of 
the condition = (nb_conditions / 2) * 
nb_instances_condition_mie 
- Propagation of facts: insert_a_fact_MIE * 
(nb_facts / total_nb_conditions) 
- Propagation of metafacts:  
a. Insertion of metafacts representing the condition = 6 
* insert_a_fact_MIE 
b. Modification of metafacts representing the rule = 2 * 
insert_a_fact_MIE + 2 * delete_a_fact_MIE 
End, 
 

 The insertion of a condition in an MIE implies the 
creation of a node (a condition) and a link, the 
propagation of the facts from the new node (the new 
condition) to the last node of the rule, and the managing 
of metafacts to taking into account this insertion. 
 

RESULTS AND ANALYSE 
 
 All algorithms are tested in 3 different situations: 
 
• the number of facts increases and the number of 

rules is constant 
• the number of rules increases and the number of 

facts is constant 
• the number of facts and the number of rules 

increase simultaneously 
 
 Figures 5, 6 and 7 concern the execution of the 
algorithms in order to insert and to delete a fact in an 
RETE network and the MIE structure. The figures show 
that for the three cases, the performance of the RETE 
network is clearly better than the MIE. 
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Fig. 5: Performance of the insertion and the deletion of 

a fact with a number of fact variations 
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Fig.  6: Performance of the insertion and the deletion of 
a fact with a number of rule variations 
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Fig. 7: Performance of the insertion and the deletion of 

a fact with a number of fact and rule variations 
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Fig. 8: Performance of the insertion and the deletion of 

a condition with a number of fact 
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Fig. 9: Performance of the insertion and the deletion of 

a condition with a number of rule variations 
 
Figures 8, 9 and 10 concern the insertion and the 
deletion of a condition in an RETE network and MIE 
structure. The figures show that for the three cases, the 
performance of the MIE is clearly better than the RETE 
network. The annexe A4 concerning the insertion and 
deletion of a rule gives the same result. 
 These comparisons show that the MIE has a better 
performance when the system is needed to work at a 
metalevel (with metarules). But a classic inference 
engine is preferable for executing simple rules. 
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Fig. 10: Performance of the insertion and the deletion of 

a condition with a number of fact and rule 
variations 

 
CONCLUSION AND PERSPECTIVES 

 
 The version of meta inference engine presented in 
this paper is the first one which has been found to be 
usable. The first results and the comparison of 
performances show that the MIE gives a better 
performance than a classic inference engine in the case 
of the use of metaknowledge even if it is slower to 
insert and delete a fact. Nevertheless, it is still 
experimental and incomplete: it does not take into 
account negative conditions and it needs a dedicated 
environment which will allow for the easy application 
of learning techniques based on meta rules. For 
example, some modules, which manipulate execution 
traces, can be developed. Many classes of traces can be 
imagined: a short term trace, a middle term trace and a 
long term trace. The short term trace will contain all the 
executed rules and possible instances. The middle term 
trace will synthesize the short term trace by counting 
the number of executions for each rule, or the number 
of times when a rule would be executed. The long term 
trace will regroup statistics and evaluate the 
performance of a rule or a package of rules. All these 
traces will allow the MIE to learn techniques during the 
running time (with short term and middle term traces) 
and after the execution (with the long term trace). 
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