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Abstract: The group mutual exclusion (GME) problem is a generalization of the mutual exclusion 
problem. In group mutual exclusion, a process requests a session before entering its critical section 
(CS). Processes requesting the same session are allowed to be in their CS simultaneously, however, 
processes requesting different sessions must execute their CS in mutually exclusive way. The paper 
presents a token-based distributed algorithm for the GME problem in asynchronous message passing 
systems. The algorithm uses the concept of dynamic request sets. The algorithm does not use any 
message to be exchanged in the best case and uses n+1 messages in the worst case, where n is the 
number of processes in the system. The maximum concurrency of the algorithm is n and 
synchronization delay under heavy load (worst case) is 2T, where T is the maximum message 
propagation delay. The algorithm uses first come first serve approach in selecting the next session type 
and satisfies the concurrent occupancy property. The static performance analysis and correctness proof 
is also included in the present exposition. 
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INTRODUCTION 

 
 A distributed system is a collection of independent 
computers, which are capable of collaborating on a 
task. Although, mutual exclusion is a classical problem 
of distributed systems, group mutual exclusion (GME) 
is a comparatively new problem. Joung proposed GME 
problem as an interesting generalization of the mutual 
exclusion problem in[1] and modeled it as congenial 
talking philosophers (CTP) problem[2]. In CTP problem, 
there are n philosophers and m forums; however, there 
is only one meeting room. A philosopher may be in any 
one of the following three states - thinking, waiting or 
talking. A philosopher interested in a forum may enter 
the meeting room, if the meeting room is empty or 
some philosopher interested in the same forum is 
already in the meeting room, otherwise he has to wait.  
 The well-known readers-writer problem is a special 
case of GME problem, where we can use a common 
read session for all processes and a unique write session 
for each individual process. Another interesting 
application of GME is, when several users share large 
data objects stored in secondary storage (such as CD’s) 
and only one data object can be loaded in the buffer at a 
time. The users interested in the data object, currently 

loaded in the buffer, are allowed to access it 
concurrently; however, users trying to access different 
object(s) must wait. 
 The requirements for group mutual exclusion 
problem are: 
 
Mutual exclusion: No two processes, requesting for a 
different session can be in their critical sections 
concurrently. 
 
Starvation freedom: A process attempting to attend a 
session will eventually succeed. 
 
Concurrent occupancy: If some process P, has 
requested for a session X and no philosopher is 
currently attending or requesting a different session, 
then P can attend X without waiting for any other 
process to leave the session. 
 Kean and Moir[3] were first to introduce the term 
concurrent occupancy. Hadzilacos[4] redefined the term 
concurrent entering, though it was introduced by Joung 
in his seminal work[1], for shared memory model, 
according to which If a philosopher P requests a forum 
and no other philosopher is requesting a different 
forum, then P enters the meeting room, within a 
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bounded number of its own steps. However, the 
bounded number of its own steps can not be guaranteed 
by any process in the message passing systems. 
Therefore, the idea of concurrent occupancy, defined by 
Kean and Moir, has been followed in most message 
passing GME algorithms.  
 The GME problem was introduced and solved by 
Joung[1] for shared memory model. Later on Joung[2] 
extended the solution for message passing systems 
using the idea of Ricart and Agrawala[5]. Numbers of 
non token-based solutions, for GME problem, have 
been proposed in the literature[3,6-9]. Token-based 
algorithms for ring networks are given in[10,11]. Token-
based algorithms for fully connected networks are 
presented in[12-14]. Mittal-Mohan algorithm[12] is 
particularly suitable for those applications, where some 
small numbers of groups are more in demand compared 
to other groups. The scheduling policy of Mittal-Mohan 
algorithm is not fair; nevertheless, the algorithm is 
starvation free. The message complexity of the 
algorithms is 2*(n-1), where n is the number of 
processes. In Mamun-Nazakato algorithm[13], a session 
is opened for a predefined time and process are made 
aware about it through broadcast. Hence, the processes, 
interested in the currently opened session, may join it 
without incurring any message overhead. Further the 
algorithm needs that the processes maintain 
synchronized logical clocks. No message is propagated 
in the best case and n+2 messages are used in the worst 
case. The synchronization delay of the algorithm is 2T 
in the worst case. 
 The present paper illustrates an FCFS token-based 
algorithm for solving the GME problem. Our algorithm 
is based upon Chang-Singhal-Liu algorithm[15], which 
uses the concept of dynamic request sets to solve the 
mutual exclusion problem. In our algorithm, the 
process, entering first in a session, is declared captain 
and starts the session. A start message is sent to all 
other processes willing to attend the same session. The 
processes, allowed by captain to join the currently open 
session, are called followers.  
 
The data structures used: Each process may be in any 
one of the six states described in table 1. 
 The state of a process Pi is stored in its local 
variable statei. Each process Pi maintains a request set 
RSi, which contains the process ids of all the processes 
to which Pi sends a request, in case Pi wishes to attend 
some session. Besides that, Pi maintains an array of 
sequence numbers SNi. SNi[j] = k denotes that Pi knows 
about k requests made by Pj. In addition, Pi has another 
local variable captaini, which stores id of the ‘captain’ 

of current session, if Pi is in its CS as follower, 
otherwise captaini is set to NULL. 
 
Table 1: The states 
State Semantics 
N Not Requesting 
R Requesting 
EC Executing in CS as captain 
EF Executing in CS as follower 
HS Holding token because some follower processes are 
 still in CS  
HI Holding token because no request is pending 
 
 
 

 
 
Fig. 1: The structure of token.queue 
 
 The token, in our algorithm, is a message that 
contains an FCFS queue, namely token.queue in order 
to store all pending requests. The token contains two 
more variables, namely token.type to store the type of 
current session and token.followers to store the number 
of follower processes to which the start message has 
been sent and which are still in CS. The requests for the 
same session are grouped together and treated as one 
entry in the queue. The structure of token.queue is 
shown below in Fig. 1. 
 
Types of messages: Each process Pi exchanges the 
following types of messages. 
 
• Request (i,SNi,X)-It contains the id of Pi, sequence 

number of the request and the type of session 
requested. When process Pi  wishes to attend a 
forum X and  Pi is not holding the token then it 
sends this message to all processes in its request 
set. 

• Start (i)-This message is sent to the followers in 
order to allow them to join the session, which is 
currently open. 
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• Complete (i)-This message is sent to the captain 
when process Pi exits from CS as follower. 

• Token (token.type, token.queue, token.followers) - 
It is the only token existing in the system and the 
only process holding it can enter in its CS as 
captain. Whenever a session finishes and next 
session is selected, it is passed to the next captain. 

 
Description of the algorithm: The code for 
initialization is given in Fig. 2 and the rest of the 
pseudo code is given in Fig 3; however, its working is 
described below. 
For i = 1 to n 
 { 
   StateI = N; Captaini = NULL 
   RSi = {ids of all processes except that of Pi} 
  For j = 1 to n 
 SNi[j] = 0; 
} 
 
State1 = HI;  RS1 = Ø 
token.type = NULL; token.queue = Ø 
token.followers = 0 
 
Fig. 2: Pseudo code for initialization 
 
 . Initially, all processes are in state N, having their 
captain NULL, all entries of SN are zero and the 
request set of each process contains ids of all other 
processes except its own id. Only exception is P1. We 
assume that P1 holds the token initially, therefore, the 
variable state1 is modified to HI and RS1 is emptied.  
 When process Pi wishes to attend a session X, it 
increments the sequence number SNi[i] by 1. If Pi is in 
state HI then Pi enters the CS and sets statei equal to 
EC. If statei is HS, token.queue is empty and token.type 
= X then Pi enters in its CS and changes its state to EC. 
However, if statei is HS and token.queue is not empty 
or token.type≠X, the request is added in the 
token.queue. Otherwise state of Pi becomes R and it 
sends request messages to all processes in its request set 
and waits for the token or start message. 
 A process Pi, upon receiving a request message 
from Pj, checks whether the request is new or old. Pi 
discards the old request without taking any action. 
However, if the request is new, Pi updates the value of 
SNi[j]. If Pi is also requesting and Pj is not in RSi, Pi 
sends its request to Pj and adds Pj to RSi. If statei is HI, 
it adds id of process Pj to RSi and immediately sends 
the token to Pj. However, if Pi is holding token in state 
HS, it sends start message to Pi, if X is the currently 
open session and the token.queue is empty. Otherwise 
the request is added in the token.queue. If state of Pi is 
N or EF and Pj is not in RSi, then Pj is added to RSi. 

 When a follower process comes out of its CS, it 
sends complete message to its captain, changes its state 
to N and sets its captain to NULL. However, when a 
captain process comes out of its CS, it checks the 
number of followers still in CS. If there are still some 
follower processes in their CS, the captain changes its 
state to HS. If no follower process is in CS and there is 
no request pending, the captain process changes its state 
to HI. However, if there are pending requests in the 
token.queue, the captain process changes its state to N 
and starts new session. In order to start new session, it 
removes front element of token.queue and appoints it 
the next captain. Subsequently, it removes followers of 
the newly appointed captain from the token.queue, 
sends token to the newly appointed captain and sends 
start message to all followers of the newly appointed 
captain. 
 On receiving every complete message, the captain 
decrements variable token.followers by one. If the state 
of the captain is HS and token.followers attains value 
zero, the captain changes its state to HI, if token.queue 
is empty. However, if token.queue is not empty, the 
captain process changes its state to N and starts new 
session. 
 The captain process, on receiving token, changes 
its state to EC and enters in its CS. On receiving a start 
message, a process becomes follower. It changes its 
state to EF, stores id of its captain and enters in its CS. 
 
Correctness proof: Our algorithm satisfies the 
properties, which are necessary for a correct solution of 
group mutual exclusion problem. We consider them one 
by one 
 
Mutual exclusion: The mutual exclusion requirement 
in GME problem says that, no two processes requesting 
for a different session, must be in their CS 
simultaneously. There exists only one token in the 
system and only the process holding the token can 
initiate a session as a captain. The process holding the 
token can send the start message to only those 
processes requesting for the same session. Further the 
token is not transferred to another process, until captain 
and all followers have come out of their CS. Therefore, 
no two processes requesting for a different session, can 
be in their CS at the same time. 
 
Freedom from starvation: An FCFS queue is 
maintained by the token to store the pending requests. 
Whenever a session finishes, the process holding the 
token, passes the token to the process stored at the front 
of the queue. A start message is sent to all other process 
n the token.queue, requesting the same session. 
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 Pi request for a forum X: 
SNi[i]=SNi[ i]+1 
If (statei=HI) 
{ 
  token.type=X;  Statei =EC; RSi= Ø; Enter CS 
} 
Else if (statei=HS) 
 { 
    If (token.queue= Ø) && (token.type=X) 
     { 
             Statei=EC; Enter CS 
             } 
    Else Add request (i,SNi [i],X) to token.queue 
 } 
Else 
     { 
       Statei=R; 
       Send request (i, SNi [i], X) to all members of RSi 
     } 
 
Pi receives request (j,SN,X): 
If SN>SNi[j] /* otherwise old request 
{ 
   SNi[j] =SN 
   If (statei=R) && ( ij RS∉ )  /* i  is requesting for Y 
    { 
       Add Pj to RS;  Send request (i,SNi[i], Y) to Pj  
     } 
  Else If (statei=EC) 
         {  
     If (token.type=X) && (token.queue=Ø)  
      { 
        token.followers=token.followers+1 
               Send start (i) to Pj  
      } 
     Else add request (j,SN,X) to token.queue 
         } 
Else If (statei=HI) 

  { 
   Add j to RSi; Send token to Pj 
  } 

Else If (statei=HS) 
 { 
   If (token.type=X) && (token.queue=Ø) 
    { 
      token.followers=token.followers+1 
      Send start (i) to Pj 
     } 
   Else add request (j,SN,X) to token.queue 
} 

       Else Add j to RSi 
  }                                                     

 Pi receives start (j): 
Captaini=j; Statei=EF; Enter CS 
 
Pi exits from CS: 
 If statei=EF 
 { 
    Send complete (i) to captaini 
    captaini=NULL;     Statei=N 
  } 
Else 
  { 
    If (token.followers=0) && (token.queue=Ø) 
     { 
       Statei=HI; token.type=NULL 
      } 
     If (token.followers=0) && (token.queue≠Ø) 
      { 
  statei =N 
       Add all processes which are in token.queue and        
       which can work as captain ,to RSi  
Remove Process Pj and its followers from the queue  
     token.type=X; token.followers=number of followers 
Send token (token.queue, token.type, token.followers) 
to Pj 

Send start (j) to all followers 
       } 
     If (token.followers≠0)  statei =HS 
} 
 
Pi receives complete(j): 
token.followers=token.followers-1 
If (token.followers=0) && (state=HS) 
   { 
   If (token.queue=Ø) statei=HI 
     Else 
     { 
       if (i’s request in token.queue) Statei=R    Else 
Statei=N 
 Add all processes which are in token.queue     and can 
work as captain to RSi 
Remove Pj and its followers from the. queue  
token.type=X; toen.followers=number of followers 
Send token (token.queue, token.type, token.followers) 
to Pj 
Send start (j) to all followers}    } 
 
Pi receives token: 
 Statei=EC; enter CS; RSi =Ø 
 
 
 
Fig 3: Pseudo code of the algorithm 
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However, if a request of the current session type arrives 
at the captain, the captain checks whether the 
token.queue has any pending requests. The captain 
sends start message to the requesting process, only if 
the token.queue is empty. However, if the token.queue 
is not empty, the request is added in the token.queue. 
This entry policy removes the possibility that the 
processes of a particular group keep on requesting for 
the current session and not allowing other processes to 
enter in their critical sections. Therefore, the sessions in 
the algorithm are served in a starvation free manner.  
Concurrent occupancy: In the proposed algorithm, 
when a process starts execution in CS as a captain, it 
allows CS entry to all the processes, requesting for the 
same session, whose requests are stored in the 
token.queue. When the captain is in state EC or state 
HS and a request for the current session arrives, it 
checks whether the token.queue is empty. If it is so, it 
immediately sends a start message to the requesting 
process. The requesting process enters in its CS upon 
receiving the start message.   Hence, it is proved that 
our algorithm satisfies the concurrent occupancy 
property. 
 
Performance analysis: We will analyze the 
performance of our algorithms using following 
performance parameters: message complexity per CS 
request, average message size, forum switch 
complexity, maximum concurrency and 
synchronization delay. Forum switch complexity 
(defined below) and maximum concurrency are 
applicable for GME algorithms but not for mutual 
exclusion algorithms. 
 
Forum switch complexity: The forum switch 
complexity[1] is measured by the maximum number of 
rounds of passages a process may wait, before it can 
access the requested resource. A passage by Pi through 
a session F is an interval [t1, t2], where t1 is the time 
when process Pi enters the session and t2 is the time 
when Pi leaves the session. Further a set of passages S, 
where ts = min {t|[t, t′]∈S} and tf = max {t′|[t, t′]∈S} is 
a round of passage through session F, if following 
conditions are satisfied 
 
• Only those passages which are in S, are initiated 

between ts and tf 
• The last passage before ts and the first passage after 

tf are for a session other than F 
 
 Forum switch complexity is particularly significant 
in applications, where changing a session is time 

consuming, such as applications which require 
unloading and loading of disk during a session switch. 
 The following Table 2 describes the size of various 
messages used in our algorithm. 
 
Theorem 1: The number of messages exchanged per 
CS entry in our algorithm is n+1 in the worst case and 
zero in the best case. 
 
Proof: The messages exchanged, during the execution 
of the algorithm are, request, token, start and complete. 
The token message is used only once per session, when 
 
Table 2: Messages and their size 
Message type Size 
Request O (1) 
Token O (n) 
Start O (1) 
Complete O (1) 
 
the current captain transfers the token to the next 
captain. The start message is sent to the follower and 
the follower process sends complete message to its 
captain. Therefore, besides the request messages only 
one start and one complete message would be required 
per CS entry by a follower process. Moreover, no start 
or complete message is needed in case of captain. The 
request message is sent by a requesting process to all 
processes in its request set. The maximum cardinality 
of a request set can be n-1; therefore, a requesting 
process has to send at most n-1 request messages. 
Hence, in the worst case, the number of messages 
exchanged is n+1 in case of follower (n-1 request 
messages, one start message and one complete 
message) and n in case of captain (n-1 request messages 
and one token message). 
 However, in the best case, no messages are 
exchanged. If a process is in HI state and wishes to 
attend a session, in that case a new session will be 
started immediately and the state of the process changes 
from HI to EC. No message exchange is required in this 
case.  
 
Theorem 2: The average message size in our algorithm 
is O (n) in the worst case and O (1) in the best case. 
 
Proof: All the messages used in the algorithm (request, 
start, and complete), except the token, have O (1) size. 
The size of the token is O (n). The token is exchanged 
only, when a session change occurs. The worst case 
will occur, when there are n-1 pending requests and 
each request is for a different session (if we assume that 
number of processes< = number of sessions). In that 
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case, the token of size O (n) will be exchanged with 
every CS execution and the average message size will 
be O (n). 
 The best case will occur when there are n-1 
pending requests; however, all of these requests belong 
to the same session. In that case, besides the request 
messages only one token will be transferred and n-1 
start and n-1 complete messages will be exchanged. 
Therefore, the average message size in the best case 
will be O (1). 
 
Theorem 3: The maximum concurrency of our 
algorithm is n. 
Proof: In our algorithm, all the processes can be in 
their CS concurrently provided that they request the 
same session. The request of a process requesting the 
current session can be fulfilled, if no request for some 
other session is pending in the token.queue. Therefore, 
maximum concurrency of our algorithm is n. 
 
Theorem 4: The forum switch complexity of the 
algorithm is min (n , m), where n is the number of 
processes and m is the number of sessions. 
 
Proof: The pending requests for a particular session in 
token.queue are grouped together and the requests for 
one session are treated as a single entry in token.queue. 
Therefore, at any point of time there can be at the most 
min (n, m) entries in token.queue. If a process requests 
a new session, which has no entry in token.queue till 
now, then a new entry is created and added at the tail of 
the queue. Hence, after a process has made a request, at 
most min (n, m) forum switches can take place, 
therefore, the forum switch complexity of the algorithm 
is min(n,m). 
 
Theorem 5: In the worst case, the synchronization 
delay of the algorithm, under heavy load, is 2T.  
 
Proof: Under heavy load conditions, there will always 
be some pending requests in  token.queue, therefore, as 
soon as a captain comes out of CS and no follower is in 
its CS, the token is passed to the next captain  and the 
heavy load synchronization delay is T. However, if the 
last process to come out is a follower, it will first send a 
complete message to the captain, which in turn 
terminates the session and passes the token to next 

captain. Therefore, the synchronization delay in this 
case will be 2T. 
 

CONCLUSION 
 
 In the present paper, we proposes a token-based 
algorithm for the group mutual exclusion problem. Our 
algorithm uses the concept of dynamic request sets. It 
satisfies safety, concurrent occupancy and the strongest 
fairness requirement. The maximum concurrency of the 
algorithm is n and the forum switch complexity is min 
(n, m). The dynamic performance analysis of the 
proposed algorithm and the quantitative comparison, 
with other token-based GME algorithms, is being 
postponed for a future work. The entry policy of a 
GME algorithm is very critical, in order to increase the 
resource utilization. We plan to investigate alternate 
entry policies and compare them with the entry policy 
adopted in the present algorithm. 
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