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Abstract: Emerging trends in design of real-time digital signal processing systems indicate that in the 
future, a significant amount of performance improvement can be achieved using dynamically 
reconfigurable embedded architectures consisting of reconfigurable, general-purpose components.  
Although embedded real-time systems have long been prevailing in our society, no firm scientific base 
has been established yet to handle timing requirements in a systematic manner in real-time embedded 
computing. Because of this lack of the scientific base, many embedded systems have been designed in 
an ad hoc manner and most of them have been customized to specific applications, showing 
inflexibility for the other type of applications. This paper proposes a dynamically reconfigurable 
embedded architecture which bridges the gap between the embedded system and ASICs. This 
architecture combines a reconfigurable hardware processing unit with a software programmable 
processor. The main goal is to take advantage of the capabilities of both resources. While the processor 
takes care of all sequential computations the reconfigurable hardware takes specialized vector 
operations. With such integrated system architecture, specific properties of applications, such as 
parallelism, regularity of computation and data granularity can be exploited by creating custom 
operators, pipelines and interconnection pathways. To handle the conflicting requirements of being a 
flexible architecture and implement some application-specific algorithms, a dynamically 
reconfigurable embedded architecture is proposed. The proposed architecture consists of arithmetic 
operation-level configurable modules interconnected through multiple data buses that can be logically 
configured to form one or more pipelines before a specific application is initiated and remains 
unchanged till the completion of the application. This architecture is targeted at high throughput and 
real time signal processing applications. The idea of dynamic reconfiguration - changing a circuit 
while it is operating - is exploited. In particular, we illustrate how dynamic reconfiguration can achieve 
significant performance improvement. 
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INTRODUCTION 
 
 The increase in circuit density and switching speed 
has dramatically reduced the size of computing 
systems. This has contributed directly to the design of 
high-speed computing systems, which in turn has made 
real-time computing feasible. Today, a lot of research is 
focused on establishing an Integrated System[1], rather 
than Integrated Circuits, for the rapid design of all 
levels of electronic systems. However, current trends 
indicate that for designing signal processing 
architectures, it is becoming economically infeasible to 
build highly customized, application-specific systems, 
due    to    increasing    costs    associated  with  design, 

verification, manufacture and test of deep                              
sub-micron chips[2]. 
 The above trends are the driving factor towards the 
research and development of new embedded 
architectures, consisting of largely pre-designed and 
verified hardware and software that can be targeted to a 
class of application domain, in order to reduce the high 
development cost. The abstraction level at which the 
embedded architecture can be customized to the needs 
and requirements imposed by the application, while 
meeting desired design goals is the key factor on which 
success of embedded architecture depends. This leads 
to the classification of architectures into various types, 
covering a trade-off between the flexibility  of  general- 
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purpose processing and high performance and low 
power consumption of customized processing. In this 
paper, we propose a new type of architecture, called the 
dynamically reconfigurable embedded architecture, as a 
means of combining the features of both                      
general-purpose and customized approaches. The 
performance benefits are illustrated through the case 
study of digital image processing system. 
 The organization of the paper is as follows: In 
Section II, the background information on embedded 
architectures is presented, and the limitations of 
existing techniques are discussed. In Section III, the 
need for dynamically reconfigurable embedded 
architecture is motivated, and the proposed architecture 
is described in Section IV. In Section V, a case study of 
digital image processing system is presented to 
illustrate the performance benefits of proposed 
architecture. Finally in Section VI, conclusion with 
suggestions for future work is provided. 
 

MATERIALS AND METHODS 
 
 This section materializes the major computing 
architectures currently available. Figure 1 shows a 
review of embedded architectures by comparing their 
trade off between performance, flexibility and power 
consumption. Flexibility refers to ease with which the 
architecture can be targeted towards a particular 
application domain for varying functional requirements. 
 General-purpose computing systems have served as 
well over the past couple of decades. They provide 
maximum flexibility, allowing the same hardware 
architecture to be used across a variety of applications. 
While such solutions provide the advantage of 
shortened time to market and low engineering costs, 
they suffer from drawbacks due to high power 
consumption, and fail to satisfy performance 
requirements for many applications. Despite the fact 
that computational capability of Processors steadily 
increases, often it is necessary to support them with 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Review of embedded architectures 

specialized Coprocessors[3]. But in tightly-coupled 
embedded systems, these Coprocessors restrict the 
flexibility of the system. 
 Advances in field programmable hardware have 
started to make them a viable alternative to custom 
ASIC approach in certain application areas[4]. In many 
small to mid-volume markets, where the costs of  
ASIC-based designs are not justifiable, variants of 
programmable hardware have started gaining 
importance. The advantages are that such pre-fabricated 
architectures reduce NRE costs, time to market, and 
provide significant flexibility. However, limitations 
with respect to logic density, performance, power 
consumption, and per unit cost impose large barriers for 
their introduction in larger volume markets.  
 These designs are tailor-made to the requirements 
of a specific application[5]. They are developed using 
the traditional IC development flows following custom 
physical design rules. Such approaches result in highly 
customized, hard-wired solutions, which enable high 
application performance and low power consumption. 
However, it is apparent that the larger NRE costs 
associated with such approaches may make them 
infeasible except in markets that command extremely 
high volumes. 
 In recent times, several alternatives have started to 
appear that attempt to bridge the gap between                   
full-custom and general-purpose architectures. Among 
them are emerging architectures based on structured 
ASICs. In these architectures, more than 50% of the 
metal layers are pre-fabricated, while a limited number 
of higher metal layers (about 3-12 layers) are available 
for application-specific customization[5]. These 
approaches are expected to significantly reduce 
development and mask costs associated with traditional 
ASICs, by paying a penalty in terms of reduced 
performance, larger device size and higher power 
consumption. 
 All the above architectures have limitations that 
can be addressed by an emerging approach to system 
design, namely the use of dynamically reconfigurable 
embedded architectures. In the next section, such a 
system is discussed in detail. 
 
Dynamically reconfigurable embedded architecture 
methodology: A reconfigurable system changes its 
form in order to alter its function. For this, it must be 
possible to change its function either while it is in use, 
or by taking it out of use for a short time. They are a 
combination of reconfigurable hardware processing unit 
with a software-programmable processor. The 
reconfigurable processing unit can be customized in 
order to meet the  specific  computational  requirements 
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of different applications. Reconfigurable computing 
represents an intermediate approach between the 
extremes of ASICs and general-purpose processors. A 
reconfigurable system generally has wider applicability 
than an ASIC.  
 Reconfigurable architectures consist of a 
programmable processor interfaced to reconfigurable 
computational units. These systems have been designed 
to perform operations in sequence. With the availability 
of cheap computing elements, such as microprocessors 
and microcontrollers, or more generically 
microcomputers, it has become feasible to design a 
computing system that contains a number of small 
computing elements, each having a capability of 
performing operations in sequence. There are also 
systems designed to perform concurrent operations, that 
is, many operations simultaneously. Such parallel 
computing systems are potentially more powerful and 
much faster than sequential computing. Hence there is a 
requirement for a high-speed bit-parallel architecture 
for all signal processing applications. 
 This real-time computing system architecture is 
suitable for the class of real-time high-speed signal 
processing applications. On-chip integration of 
reconfigurable logic reduces the memory access costs 
and the reconfiguration costs. The embedded 
architecture consists of arithmetic-operation-level 
configurable modules interconnected through multiple 
data buses that can be logically configured to form one 
or more computation pipelines before a specific 
application is initiated and remains unchanged till the 
completion of the application.  
 The significance of reconfigurable systems can be 
illustrated through the following example. A 
multimedia application may include a data-parallel task, 
a bit-level task, irregular computations, high-precision 
word operations and a real-time component. For such 
complex applications with wide-ranging sub-tasks, the 
ASIC approach would lead to an uneconomical die size 
or a large number of separate chips. Also, most  
general-purpose processors would very likely not 
satisfy the performance constraints for the entire 
application. However, a reconfigurable system may be 
optimally reconfigured for each sub-task, meeting the 
application constraints within the same chip.  
 The set of criteria that are frequently used to 
characterize the design of a reconfigurable computing 
system are granularity, depth of programmability, 
reconfigurability, type of interface and computation 
model[6]. 
 
Granularity:Granularity refers to the data size for 
operations of the reconfigurable processing unit of a 
system. A reconfigurable processing unit is logic blocks 

of configurable functionality, having a framework of a 
reconfigurable interconnect. Based on granularity, 
reconfigurable systems can be classified as fine-grain 
systems, coarse-grain systems and mixed-grain 
systems. In fine-grain systems, processing elements in 
the reconfigurable processing unit are typically logic 
gates, flip-flops and look-up tables. They operate at  
bit-level, implementing a Boolean function of a             
finite-state machine. On the other hand, in coarse-grain 
systems, the processing elements in the reconfigurable 
processing unit may contain complete functional units, 
like ALUs and/or multipliers that operate upon               
multi-bit words. A system that combines both the above 
types has mixed-grain granularity. 
 
Depth of programmability: This pertains to the 
number of configuration parameters (or contexts) stored 
within the reconfigurable processing unit. Based on 
depth of programmability, reconfigurable systems can 
be classified as single-context systems and                
multiple-context systems. For single-context systems, 
only one context is resident in the reconfigurable 
processing unit. Therefore, the functionality of 
reconfigurable processing unit is limited to the context 
currently loaded. On the other hand, a multiple-context 
reconfigurable processing unit has several contexts 
concurrently residing in the system. This enables the 
execution of different tasks simply by changing the 
operating context without having to reload the 
configuration program. 
 
Reconfigurability: A reconfigurable processing unit 
may need to be frequently reconfigured for executing 
different applications. Reconfiguration is the process of 
reloading configuration programs (context). Based on 
reconfigurability, reconfigurable systems can be 
classified as being static or dynamic. In static 
reconfigurable systems, the reconfiguration process is 
static that is execution is interrupted during 
reconfiguration. In cases of dynamic reconfigurable 
systems, reconfiguration process is done in parallel with 
execution. A single-context reconfigurable processing 
unit typically has static reconfiguration. Dynamic 
reconfiguration is more relevant for a multi-context 
reconfigurable processing unit. It implies that such a 
reconfigurable processing unit can execute some part of 
its configuration program, while the other part is being 
changed. This feature significantly reduces the 
overhead for reconfiguration. 
 
Type of interface: Interface or coupling refers to the 
level of integration of the core processor and the 
reconfigurable  hardware. Based  on  type  of  interface, 
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reconfigurable systems can be classified as having 
remote or local interface. A reconfigurable system has a 
remote interface if the system’s host processor is not on 
the same chip as the reconfigurable processing unit. A 
local interface implies that the host processor and the 
co-processor reconfigurable processing unit reside on 
the same chip, or that the reconfigurable processing unit 
is unified into the datapath of the host processor. 
 
Computation model: Many reconfigurable systems 
follow the uniprocessor computation model. However, 
there are several others that follow SIMD or MIMD 
computation models. Some systems may also follow the 
VLIW model. 
 Compared to traditional design approaches, 
designing systems based on dynamically reconfigurable 
embedded architecture offers following advantages: 
 
• Functional modification requires introducing new 

application software instead of incurring an 
expensive redesign. 

• The same hardware architecture can be targeted to 
wide range of applications. 

• Design using dynamically reconfigurable 
embedded architectures results in shorter time to 
market, productivity gains and reduced 
development costs. 

 
Proposed architecture-Drespa: The major 
components of a dynamically reconfigurable embedded 
architecture are configurable processor, memory unit, 
cache unit and reconfigurable cell array. Real-time 
signal processing applications require the systems to 
have some form of pipeline processing. The idea of 
pipelining is to divide the execution of one instruction 
into steps, which are called pipeline stages. Each stage 
makes some contribution to the instruction and can 
operate in parallel with other stages. Pipelining 
improves performance by increasing instruction 
throughput. It does not decrease the time to execute 
individual instructions, but it will execute more 
instructions per time unit, resulting in speed up. 
 All the pipeline stages must be built around 
memory. At one of the system-level pipeline stages, 
vector operations are performed on the input data in an 
execution unit. Computational resources must be shared 
among all the computational aspects of the application 
to make the amount of hardware reasonable. The 
interconnections of the computational resources need to 
be changed dynamically for different vector operations. 
All the interconnections of computational resources 
should form pipelines to support the pipelined vector 
operations; each computational resource  also  needs  to 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: DRESPA general system architecture 
 
be pipelined so that the interconnected resources can be 
pipelined. Therefore, to cater to the requirements of the 
real-time high-speed signal processing applications, the 
embedded architecture should be composed of 
arithmetic-operation-level configurable modules. 
 Dynamically Reconfigurable Embedded               
Signal-Processing Architecture (DRESPA) is a novel 
architecture for reconfigurable embedded systems, 
targeted at applications with inherent data-parallelism, 
high regularity, and high throughput requirements. 
Given the nature of target applications, the 
reconfigurable component is organized as an array or 
reconfigurable cells (RCs). Since most of the target 
applications possess word-level granularity, the RCs are 
also coarse-grain. The embedded processor is an 
autonomous processing unit. It performs scalar 
operations and controls the operations of RC array. The 
reconfigurable unit performs vector operations under 
the control of the embedded processor. A specialized 
memory unit handles data transfers between external 
memory and the RC array, and stores input, 
intermediate and output data. Also, there is a separate 
memory for storing context data. It has a multi-level 
interconnection network that integrates the 
reconfigurable SIMD component within embedded 
processor to perform both parallel as well as sequential 
parts of an application. A dedicated I/O unit handles 
real-time data input and output. The general system 
architecture, shown in Fig. 2, comprises an embedded 
processor, a reconfigurable unit, a high bandwidth 
memory unit and input/output (I/O) unit, all 
implemented as a single chip. 
 These system components are interconnected via 
four system buses consisting of two I/O buses and two 
memory buses. Two I/O buses are used to transfer data 
between Data Buffer and I/O unit; the two memory 
buses are used to transfer data between Data Buffer and 
reconfigurable unit. These four system  buses  allow the 
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Fig. 3: System-wide pipeline 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Fast eight-point 1-D DCT algorithm 
 
system to perform I/O operations and vector operations 
at the same time. Each bus can be used for any type of 
data transfer operation. In one of the typical system 
activities, the following data transfer operations might 
be performed in parallel:  
 
• I/O unit to data buffer: real-time data input. 
• Data buffer to I/O unit: result data output. 
• Data Buffer to Reconfigurable unit: Input for 

vector operations. 
• Reconfigurable unit to data buffer: Output of 

vector operations. 
 
 The capability of these four parallel data transfer 
operations enables the system to operate globally in 
pipeline. The system-wide pipeline consists of five 
stages: the first stage for real-time data input, the 
second for reconfigurable unit data input, the third for 
vector operations, the fourth for reconfigurable unit 
data output, the fifth stage for result data output, as 
shown in Fig. 3. 
 

RESULTS AND DISCUSSION 
 
 The implementation of 2-Dimensional Discrete 
Cosine Transforms (2-D DCT) on DRESPA is 
discussed in this section. 2-D DCT is most widely used 
in video and image compression. The algorithm used 
for this implementation is a fast DCT algorithm[6] 
which is based on Discrete Fourier Transforms (DFT). 
The algorithm for fast eight-point 1-D DCT is shown in 

Fig. 4. The 1-D DCT algorithm is first applied to rows 
of an input 8×8 image pixel block. To the resulting 
matrix, 1-D DCT algorithm is applied to the columns to 
get 2-D DCT. 
 The computation of 1-D DCT for 1 row requires 
thirteen multipliers and twenty nine adders. So, for 8 
rows, 104 multipliers and 232 adders are required. 
Hence for 2-D DCT, 208 multipliers and 464 adders are 
required. In this architecture, two 8×8 blocks can be 
processed in parallel. Two 8×8 blocks are loaded from 
data buffer into RC array, with each pixel stored in one 
RC. The data bus between data buffer and RC array 
allows concurrent loading of sixteen pixels. So, eight 
clock cycles are required for loading two blocks. The 
same number of clock cycles is required to write out the 
processed data to the data buffer. 
 Using properties of separable transforms, 1-D DCT 
along rows is computed. Then, 1-D DCT is computed 
along columns of resultant matrix. For one stage of 
butterfly computation, two clock cycles are required. 
So, for five stages, ten clock cycles are needed. Two 
clock cycles are required for buffering of data. This 
same twelve clock cycles is required for other 1-D 
DCT. Thus, for 2-D DCT computation of two 8×8 
blocks, twenty four clock cycles are required. 
Additionally, eight clock cycles are required for loading 
of pixel values and eight clock cycles for writing out 
the processed data, totaling forty clock cycles. For a 
256 x 256 grayscale image, there are 1024 blocks. In 
forty clock cycles two 8 x 8 blocks are processed. To 
process 1024 blocks, 20480 clock cycles are required. 
 With 16-bit data, the throughput of 2-D DCT 
algorithm is given by: 
 
 
 
 
 In this algorithm, 192 (= ((2+1)×4)×8×2) 
operations are performed as vector computation and 
seventeen operations (eight input, eight output and one 
context switches) are performed by the processor. So, 
speedup is given by  
 
 
 
  or  S  �  12.3 
 
The implementation results are summarized in Table 1. 
The context loading time is 512 clock cycles, and since 
there are a large number of computation cycles before 
the configuration is changed, this time is negligible. 
The performance is compared with a similar 
reconfigurable   system,    a  superscalar  processor  and 

8 x 256 x 256
Throughput  bits/cycle

20480
=

17
S 1

209
× ≤
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Table 1. DRESPA Implementation of 2-D DCT Algorithm. 
Parameter Value 
Clock Period  13 nS 
Word length  16 bits 
Number of RCs 192 
Throughput   1.9 G bits per sec 
Number of Clock cycles  20480 
Number of operations for RC 192 
Number of operations for Input 8 
Number of operations for Output 8 
Number of Context Switches 1 
Maximum Speedup 12.30 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Performance comparisons for 2-D DCT 

algorithm 
 
commercial processors. Figure 5 shows the 
performance comparison in terms of number of clock 
cycles required for computation of 2-D DCT for one 
8×8 block. 
 REMARC[7] is another reconfigurable system 
targeting multimedia applications. It requires 54 clock 
cycles for computing 2-D DCT on one 8×8 block. V830 
R/AV[8] is a superscalar multimedia processor requiring 
201 clock cycles. sDCT[9] is a software implementation 
written in optimized Pentium assembly code using 
special MMX instructions, which requires 246 clock 
cycles. TMS320C80[10] is a commercial digital signal 
processor requiring 320 clock cycles. DRESPA requires 
24 clock cycles to compute 2-D DCT on two 8×8 
blocks. 
 The existing major embedded architectures used 
for system design were reviewed and the increasingly 
important role that the dynamically reconfigurable 
embedded architecture will play in the future was 
discussed. The proposed architecture, DRESPA was 
described and multiple opportunities for run-time 
customization were discussed. Many of these 
technologies have reached relative maturity. 
 Based on the applications in this work, it appears 
that the number of contexts does not need to be large to 
achieve good performance improvement with a 
Reconfigurable Unit. In  these  applications,  more  than 

one context was used for each application and a 
considerable speedup was obtained. The question of 
how many contexts is an optimal number is still 
unanswered. In case an application used more than two, 
a configuration allocation algorithm implemented in the 
compiler could be used to reduce the number of context 
reconfigurations.  
 There is still a big gap between the hardware and 
the software. To close this gap, further investigation is 
necessary in the area of compilers for reconfigurable 
embedded systems. Specifically, a compiler is to be 
designed for the DRESPA system to fully exploit it. 
With such a compiler, a wider range of applications can 
be tested and the architecture’s features further 
explored.  
 It is also desirable to study the behavior of the 
architecture in presence of operating system. As a final 
note, investigating the previously mentioned topics will 
lead to the development of a high performance 
reconfigurable system. After a complete study of the 
interactions between architecture, compiler and 
operating systems for reconfigurable systems, one 
would be able to determine the best track to follow in 
the reconfigurable world. 
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