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Abstract: A reliable multi-step predictor is very useful to a wide array of applications to forecast the 
behavior of dynamic systems. The objective of this paper is to develop a more robust data-driven 
predictor for time series forecasting. Based on simulation analysis, it is found that multi-step-ahead 
forecasting schemes based on step inputs perform better than those based on sequential inputs. It is 
also realized that recurrent neural fuzzy predictor is superior to both recurrent neural networks and 
feedforward networks. In order to enhance the forecasting convergence, a hybrid training technique is 
proposed base on the real-time recurrent training and weighted least squares estimate. The developed 
predictor is also implemented for real-time applications in material property testing. The investigation 
results show that the developed adaptive predictor is a reliable forecasting tool. It can capture the 
system’s dynamic behavior quickly and track the system’s characteristics accurately. Its performance 
is superior to other classical data-driven forecasting schemes. 
   
Key words: Recurrent neural fuzzy paradigm, multi-step prediction, hybrid learning, material property 
testing 

 
INTRODUCTION 

 
 A reliable multi-step forecasting tool is very useful 
to a wide array of real-world applications to predict the 
future states of a dynamic system. In industrial 
applications, for example, forecast information can be 
used to schedule repairs and maintenance for important 
fabrication facilities so as to prevent production 
performance degradation, malfunction, or even 
catastrophic failures. A robust predictor is also critically 
needed in applications such as time consuming 
operations (e.g., material property testing), structure 
remaining life estimation, and earthquake forecasting. 
System state forecasting utilizes some available 
observations to predict the future states of a dynamic 
system. The representative observations can be derived 
from different information carriers, such as vibration, 
temperature, and acoustic measurement data, by using 
appropriate signal processing techniques.  
 Several techniques have been proposed in the 
literature for time series prediction [1]. The classical 
approaches are the use of stochastic (or the extended) 
models [2, 3]; However, an accurate analytical model is 
usually difficult to derive for a complex dynamic 
system, especially under noisy and uncertain 
environment such as in real-world industrial 
applications. Since the last decade, more interests in 
time series forecasting have focused on the use of 

knowledge-based data-driven paradigms, such as 
various neural networks (NNs) [4-6] and neural fuzzy 
(NF) paradigms [7-9]. Even though the data-driven 
predictors have demonstrated their superior potential in 
many applications over the classical numerical models, 
as a matter of fact, these currently available predictors 
are mainly for one-step-ahead prediction in real 
applications. Advanced research needs to be done in 
several aspects before a multi-step-ahead predictor can 
be effectively applied to real-time industrial 
applications. Correspondingly, the objectives of this 
work are to 1) evaluate the input patterns on the 
performance of multi-step prediction paradigms, 2) 
improve convergence for a recurrent NF predictor by 
adopting a hybrid training technique, and 3) implement 
the proposed recurrent NF predictor for real-world 
applications.  
 

MATERIALS AND METHODS 
  
 The knowledge-based data-driven forecasting tools 
interested in this work include feedforward NN, 
recurrent NN, as well as a weighted recurrent NF 
scheme that is an extension to that as proposed in [8]. A 
brief description is given in this section for these related 
predictors, as well as the suggested hybrid training 
technique. 
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Recurrent NN Predictor:  System state forecasting is 
to predict the future states of a dynamic system based 
on its current and some previous states. Since the 
performance of a knowledge-based data drive 
forecasting scheme is directly related to its reasoning 
structure (or the number of network parameters), to 
facilitate the comparison study among different 
predictors, the number of the network parameters will 
be kept comparable.  
 The network architecture of the recurrent NN 
predictor is as shown in Fig. 1. Consider (n+1) input 
state variables }{ 0 nss x    x  x −− � , which represent the 
current ( 0x ) and the previous states of a dynamic 
system with a time step s. If ten inputs are employed in 
the input layer, that is, n = 9, ten nodes will be used in 
the recurrent context layer. The s-step-ahead state, sx+ , 
will be given from the output node. In total, there are 
151 parameters to be updated in this predictor: 100 
input weights ( 1

ijw ), 10 output weights ( 2
ijw ), 10 

recurrent weights ( 3
ijw ), and 31 biases.   

 
Fig. 1: Network architecture of the recurrent NN 

predictor 
 
NN-based Predictor:  Different from the recurrent 
NNs, the feedforward NN has no feedback links, or 
without context layer as illustrated in Fig. 1. To make 
the networks comparable, the feedforward NN predictor 
also has 10 input nodes, which has a 10-12-1 three layer 
network architecture. The total number of parameters to 
be updated is 155, that is, 120 input weights, 12 output 
weights, and 23 biases. 
 
Weighted Recurrent NF Predictor:  An NF reasoning 
scheme applies a set of fuzzy IF-THEN rules to 
describe the input/output data mapping and forecast the 
future states of a dynamic system. The fuzzy system 
parameters are optimized by an adaptive training 

algorithm. According to some advanced investigation, it 
is found that the first order TS fuzzy paradigm is more 
flexible in modeling higher order nonlinear systems [8], 
and will be adopted in this work. To simplify 
forecasting reasoning, two membership functions 
(MFs), small and large, are assigned to each input state 
variable. The s-step-ahead state of the dynamic system 

sx+  can be formulated by:  

jℜ : IF ( 0x  is jA1 ) and ( sx−  is jA2 ) �  ( nsx−  is j
mA ) 

then ( j
nns

j
ns

jj
s cxcxcxcx 1100 +−−+ ++++= � )     (1) 

where jℜ  denotes the jth fuzzy rule, j  = 1, 2, � , M, 

M is the total number of fuzzy rules; j
kA  is the jth 

fuzzy set for isx− , i = 0, 1, � , n, k = 1, 2, � , m, 
where m = 2n in this case. To make the network 
comparable with the aforementioned NN predictors, 
four input state variables are applied in this case, that is, 
i  = 0, 1, � , 3, 16=M , and 82 == nm , and the 
number of parameters to be updated is 104.  
 The network architecture of this weighted recurrent 
NF predictor is schematically shown in Fig. 2. It is a 5-
layer network in which each node performs a particular 
activation function on the incoming signals. The links 
have unity weights unless specified. Layer 1 is the input 
layer. Each node in layer 2 acts as an MF. Different 
from the general NF schemes [7] and the predictor as 
proposed in [8], this recurrent NF system has a 
weighted feedback link to each node in layer 2. The 
recurrent context units copy the activations of output 
nodes from the previous time steps, and allow the 
network to remember cues from the past.  

 
Fig. 2: Network architecture of the weighted recurrent 

NF predictor 
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Given an MF, the node actual input at the tth time 
instant is  

( ))1()()( −
−−− += t

is
j

kik
t
is

t
is xAwxX              (2) 

where )(t
isx−  and )1( −

−
t
isx  are, respectively, the input isx−  

at the tth and (t-1)th time instants, respectively; 
( ))1( −

−
t
is

j
k xA  is the node output (membership grade) in the 

last time step, and ikw  is the weight of the feedback 
link; i = 0, 1, . . ., n; k = 1, 2, . . ., m; and t = 0, 1, . . ., P-
1, where P is the total number of time instants (or 
training data sets) of interest.  
 Each node in layer 3 performs a fuzzy T-norm 
operation. If a max-product operator is applied in this 
case, the rule firing strength is 

( ))(

0

t
is

j
k

n

i
j XA −

=
∏=µ              (3) 

where ,   j = 1, 2, . . ., M; i = 0, 1, . . ., n.  
 All the rule firing strengths are normalized in layer 
4. After a linear combination of the input variables in 
layer 5, the predicted output sx+ , after s steps, is 
computed by using the centroid defuzzification: 

�
=

+−−+ ++++=
M

j

j
nns

j
ns

jj
js cxcxcxcx

1
1100 )( �µ           (4) 

where 

�
=

=
M

j
j

j
j

1

µ

µ
µ  is the normalized firing strength of 

the jth rule. The fuzzy system parameters ikw and j
ic  

and j
kA  are optimized by the related training algorithms 

as discussed as follows.  
 
A Hybrid Training Technique:  Once the NF 
predictor structure is created, a forecasting paradigm 
should be properly trained to optimize the input/output 
mapping [10-12]. Since the suggested recurrent NF 
scheme in (1) contains both linear consequent weights 
and nonlinear premise parameters, to improve the 
training convergence, a hybrid training technique is 
suggested in this paper: the nonlinear fuzzy parameters 
in the recurrent context layer are optimized by using a 
real-time recurrent learning (RTRL), whereas the 
consequent linear parameters are fine-tuned by 
employing a weighted least squares estimate (LSE). A 
hybrid training technique is superior to classical single 
training algorithms, because it possesses randomness 
that may help to escape from local minima and it is also 
necessary to accommodate different characteristics in 
time-varying systems. 

RTRL Algorithm for Recurrent Parameters:  The 
RTRL is an approach to training a recurrent network by 
adjusting weights along the error gradient while the 
network continues to perform its signal processing 
function, rather than at the end of the presented 
sequences. Details of this algorithm can be found in [13, 
14].  
 At time instant t, the output to the activation 
function of each node in the recurrent context layer of 
the NF scheme is described by  

( ))()( t
is

j
kk XAty −=               (5) 

where )(�j
kA  is the activation function, which is an MF 

in the recurrent layer; )(t
isX − is the net input to node k in 

the context layer at time instant t, as determined by (2). 
If there is no such input for that node at that time 

instant, then )(t
isx−  is set to 0. The total error function to 

be minimized is  

���
−

=
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==

1

0

2
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P
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where 1 ( ) ( ) ( )k k kE t b t y t= − if node k has a desired 
output ( )kb t at time t; otherwise 1 ( ) 0kE t = .  
 Equation (6) is the error measure for node k at 
time instant t. Since the gradient of E1 separates in time, 
by taking the full change in the )(twik as the time 
summation of )(twik∆ , the gradient decent method can 
be performed by defining 

ik

k
t k

ik
ik w

ty
tE

w
tE

tw
∂

∂η
∂

∂η )(
)(

)(
)( 1

1 �=−=∆             (7) 

where η  is the learning rate.  

 The derivative 
ik

k

w
ty

∂
∂ )(

 in (7) can now be found by 

differentiating the dynamical rule (5), based on the 
assumption that the initial state of the network has no 
functional dependence on the weights, that is, 

0
)0(

=
ik

k

w
y
∂

∂
. 

ik

k

w
ty

∂
∂ )(

 needs to be calculated recursively 

at each time instant. In general, for the error 

propagation at time instant t, 
ik

k

w
ty

∂
∂ )1( −

is already 

available from the calculation at the previous time 
instant t-1. Therefore, by trying to minimize each 
individual kE1 , we can recurrently find the gradient 

j
k

k

A

E

∂
∂ 1  at each time instant. There is no need to wait 

until the end of the presented sequence. Since it is an 
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approximation of the gradient method, the learning rate 
should be kept small (as a result, the learning may be a 
little slower than a pure gradient decent algorithm). 
 
LSE for Consequent Linear Parameters:  Consider 

the tth input data pair }{ )()()(
0   x   xx t

ns
t
s

t
−− � , t = 0, 1, …, 

P-1, P is the total number of training data pairs. The 
forecast state after s steps, )(t

sx+ , is computed by (4). If 
)(td  denotes the desired output state, which represents 

the actually observed output value for the (t+1)th data 
set, that is, )1(

0
)( += tt xd , the forecasting error is defined 

as 

2)()(
1

0

1

0
22 )(

2
1 tt

s

P

t

P

t
t dxEE −== +

−

=

−

=
�� λ              (8) 

where ]1  95.0[∈λ is a weight factor to highlight the 
contribution of the recent data sets from a time-variant 
system.   
 Given the values of the MF parameters and P 
training data pairs to the adaptive predictor, 

} { )()()()(
0

tt
ns

t
s

t  d x   xx −− � , k = 0, 1, 2, . . ., P-1, P linear 
equations in terms of the consequent parameters � can 
be formed as: 

dR� = ,               (9) 
where R is the resulting matrix from the inference 
operation of the NF predictor:  
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�  is the consequent parameter set whose elements are 
to be updated:  

[ ]TM
n

M
n ccccc            1

1
2

1
1

1
0 += �� ;            (11) 

d represents the vector of the desired system states: 

[ ]TPddd )()2()1(       �=d .              (12) 
 Because the row vectors in R and the associated 
elements in d are obtained sequentially, � in (9) can be 
computed recursively. For the objective function with 
respect to the adjustable parameters t�  at the current 
time instant t,  

[ ]�
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=
+ −=
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2)(
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tst dxE �� λ             (13) 

where )( tsx �+ is determined by (4); tR  in (10) is the 
resulting matrix from the corresponding fuzzy inference 
operation at time t. The LSE is computed by 

)(11 t
T
tttttt d �RRS�� −+= ++   (14) 
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where t  = 0, 1, . . ., P-1. ]1  95.0[∈λ  is the weight 
factor. The optimal estimate of � is P� , whereas 

=0� 0. The initial conditions for the covariance matrix 

tS  is IS α=0 , ∈α 210[  ]106 , and I is an identity 
matrix.   
 

RESULTS AND DISCUSSION 
 
Performance Comparison in terms of Step 
Properties: The first objective of this comparison study 
is to investigate the effects of the input patterns on the 
forecasting performance, that is, with the sequential 
inputs and the step inputs, as long as the same number 
of inputs is used. The comparison is performed by a 
series of simulation tests based on data sets from the 
Mackey-Glass equation [15], 

)(1.0
)(1

)(2.0)(
10

tx
tx

tx
dt

tdx −
−+

−=
τ

τ
          (16) 

 The data sets from (16) have specific natures such 
as chaotic, non-periodic, and non-convergence, and 
have been used as benchmark data in forecasting 
research to evaluate the performance of predictors. 
Many simulation tests have been conducted based on 
data from (16) corresponding to different initial 
conditions. Each test is repeated over 10 times to 
mitigate random effects related to initial values of 
network weights. Fig. 3 summarizes the compassion 
results for predictors based on feedforward NNs and 
recurrent NNs over ten steps, in terms of the root mean 
squares errors (RMSE). Both predictors are trained by 
the use of the Levenberge-Marquet algorithm [14]. 
Comparing the curves 1 vs. 2, and curves 3 vs. 4, it is 
clear that both the NN and the recurrent NN predictors 
based on step inputs perform better than those based on 
the sequential inputs. The main reason is that, if the 
same number of inputs is employed, the step input 
pattern can cover a wider information horizon. On the 
other hand, it is seen that the performance of the 
feedward NN predictor based on step inputs (curve 2) is 
a little better than that from the recurrent NNs (curve 
4). However, the recurrent NN predictor takes much 
longer time in training operations, or the average time 
of 174 seconds compared with 18 seconds for the 
feedforwar NNs over 100 epochs; that is mainly due to 
its recurrent network characteristics. Furthermore, the 
forecasting performance of the feedforward NN 
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predictor does not vary dramatically over a wide range 
of horizon.  
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Fig. 3: Performance comparison: 1-feedforward NNs 

with sequential inputs, 2-feedforward NNs 
with step inputs, 3-recurrent NNs with 
sequential inputs, 4-recurrent NNs with step 
inputs 
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Fig. 4: Performance comparison between the 

recurrent NF predictor (curve 1) and the 
feedforward NN predictor (curve 2) 

 
 Fig. 4 shows the comparison between the 
feedforward NN predictor and the recurrent NF 
predictor, both with step inputs. The recurrent NF is 
trained by using a general hybrid algorithm [9], that is, 
premise and consequent fuzzy parameters in (1) are 
trained by the gradient decent algorithm and LSE [14], 
respectively. As shown in Fig. 4, it is clear that the 
recurrent NF predictor performs better than the 
feedforward NNs, due to its effective reasoning and 
appropriate training. Furthermore, recurrent context 
nodes can store cues from previous time steps. This 
function of recurrent networks is especially valuable for 
predictors with limited and step inputs (i.e., 1>s ) to 
provide more information to the network so as to 

improve forecasting accuracy. On the other hand, the 
training speed in both predictors is comparable, that is, 
the average time is 17 and 18 seconds over 100 epochs, 
respectively, for the recurrent NF and feedforward NN 
predictors.  
 
Performance Comparison in terms of Training 
Algorithms:  The suggested hybrid adaptive training 
method adopts two algorithms: the RTRL and the LES. 
In each training epoch, the fuzzy system parameters in 
the recurrent context are adaptively optimized by 
applying the RTRL (7) in the back pass, whereas the 
linear consequent parameters are updated by using the 
weighted LSE (14) in the forward pass. The RTRL 
trains the recurrent network while the network 
continues to perform its signal processing function, 
rather than at the end of the presented sequences. In 
initialization, the synaptic weights of the algorithm are 
set to small values (0.025 in this case) from a uniform 
distribution, while both the state vector and its partial 
derivative (with respect to the weight vector) are set to 
zero.  
 As an example, consider a Mickey-Glass data set 
from (16) with initial conditions of 30=τ , x(0) = 1.2, 

1=dt , and 0)( =tx  for 0<t . If 1600 data pairs are 
selected, the first 800 samples are used for training and 
the remaining 800 samples for testing the identified 
model. Fig. 5 shows the forecasting performance of the 
NF predictor based on the hybrid training of the 
gradient-LSE over 100 epochs. Fig. 6 demonstrates the 
corresponding results by using the hybrid learning with 
the RTRL-LSE. Apparently, the latter is superior to the 
former (with the root mean squares error of 0.0258 vs. 
0.0472). 
 
 
 
 
 
          
 
 
 
 
 
 
 
 
Fig. 5:  Upper graph: The forecasting result (ten-steps-

ahead) of a Mackey-Glass data set (solid 
curve) by using the gradient-LSE algorithm 
(dotted curve). Lower graph: the forecasting 
errors 
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Fig. 6: Upper graph: The forecasting result (ten-steps-

ahead) of a Mackey-Glass data set (solid 
curve) by using the RTRL-LSE algorithm 
(dotted curve). Lower graph: the forecasting 
errors 

  
 From comparison it is seen that the suggested 
adaptive hybrid method is an effective training method. 
It integrates the benefits of both the RTRL and 
weighted LSE, and possesses the randomness that is 
helpful to escape from local minima. The RTRL-LSE 
algorithm is fast in training, compared with other 
commonly used training algorithms, such as the 
Levenberge-Marquet method [14], due to its simple 
gradient-related operations. In fact, it is a little slower 
than the gradient-LSE training (17 seconds vs. 21 
seconds per 100 epochs), because of its reliance on 
instantaneous estimates of gradients and relatively 
smaller learning rate. But this hybrid training algorithm 
can provide high training performance in terms of rate 
of convergence and quality of solution.  
 
Material Fatigue Property Forecasting:  Another 
objective of this work is to implement the proposed 
recurrent NF predictor for real-world applications. 
Material fatigue property testing is used as an example. 
Material fatigue testing is usually a very time-
consuming process. A reliable forecasting tool is 
critically needed quickly estimate the material’s 
dynamic characteristics so as to effectively shorten the 
experimental time. This test is conducted on the 
experimental setup similar to Fig. 7. An aluminum 
specimen has a thickness of 3 mm, and its both ends are 
clamped to the test rig. The monitoring time-step is set 
at s = 3,000 cycles. Fig. 8 shows the 6-steps-ahead 
forecasting results of the crack propagation trend, based 
on the feedforward NN predictor (Fig. 8a) and the 
recurrent NF scheme (Fig. 8b), respectively. It is seen 
that feedforward NN predictor (Fig. 8a) generates larger 
forecasting errors due to its slow convergence, and has 

a relatively poor robustness especially to the high 
frequency variations. The recurrent NF predictor (Fig. 
8a), however, can overcome this problem by an 
adaptive training process. It can catch system’s 
dynamic behavior quickly and track the propagation 
trend accurately.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: The experimental setup for material property 

testing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8:  Forecasting results (three-steps-ahead) for a 

crack propagation (solid curves): (a) by using the 
feedforward NN scheme (dotted curve); (b) by 
using the recurrent NF predictor (dotted curve) 
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CONCLUSIONS 

 
 In this paper, the knowledge-based data-driven 
multi-step-ahead forecasting schemes are evaluated in 
terms of performance and efficiency. Of the 
feedforward NNs, recurrent NNs, and recurrent NF 
systems, analysis results have shown that predictors 
based on step inputs perform better than those based on 
sequential inputs, as long as the same number inputs are 
employed. On the other hand, the recurrent NF 
predictors perform better than those based on 
feedforward and recurrent NNs, in multi-step-ahead 
forecasting operations. A hybrid training algorithm is 
adopted to improve the robustness and reliability of the 
recurrent NF predictor, by which the fuzzy parameters 
in the recurrent context layer are trained by using the 
real-time recurrent learning, whereas the fuzzy 
consequent parameters are updated by applying a 
weighted least squares estimate. Simulation results have 
shown that this suggested algorithm has a better 
convergence and higher forecasting accuracy than a 
generally used gradient-LSE algorithm. In addition, the 
proposed recurrent NF predictor is implemented for 
material property testing. Online test results have 
shown that the developed NF predictor is a reliable 
forecasting tool. It can capture the system’s dynamic 
behavior quickly and track the system’s characteristics 
accurately.  
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