
Journal of Computer Science 3 (9): 747-753, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Wilson Wang, Dept. of Mechanical Engineering, Lakehead University, Thunder Bay, Ontario,
Canada, P7B 5E1

747

Data-Driven Forecasting Schemes: Evaluation and Applications

Josip Vrbanek Jr. and Wilson Wang

Mechanical Engineering, Lakehead University, Thunder Bay, Ontario, P7B 5E1, Canada

Abstract: A reliable multi-step predictor is very useful to a wide array of applications to forecast the
behavior of dynamic systems. The objective of this paper is to develop a more robust data-driven
predictor for time series forecasting. Based on simulation analysis, it is found that multi-step-ahead
forecasting schemes based on step inputs perform better than those based on sequential inputs. It is
also realized that recurrent neural fuzzy predictor is superior to both recurrent neural networks and
feedforward networks. In order to enhance the forecasting convergence, a hybrid training technique is
proposed base on the real-time recurrent training and weighted least squares estimate. The developed
predictor is also implemented for real-time applications in material property testing. The investigation
results show that the developed adaptive predictor is a reliable forecasting tool. It can capture the
system’s dynamic behavior quickly and track the system’s characteristics accurately. Its performance
is superior to other classical data-driven forecasting schemes.

Key words: Recurrent neural fuzzy paradigm, multi-step prediction, hybrid learning, material property
testing

INTRODUCTION

 A reliable multi-step forecasting tool is very useful
to a wide array of real-world applications to predict the
future states of a dynamic system. In industrial
applications, for example, forecast information can be
used to schedule repairs and maintenance for important
fabrication facilities so as to prevent production
performance degradation, malfunction, or even
catastrophic failures. A robust predictor is also critically
needed in applications such as time consuming
operations (e.g., material property testing), structure
remaining life estimation, and earthquake forecasting.
System state forecasting utilizes some available
observations to predict the future states of a dynamic
system. The representative observations can be derived
from different information carriers, such as vibration,
temperature, and acoustic measurement data, by using
appropriate signal processing techniques.
 Several techniques have been proposed in the
literature for time series prediction [1]. The classical
approaches are the use of stochastic (or the extended)
models [2, 3]; However, an accurate analytical model is
usually difficult to derive for a complex dynamic
system, especially under noisy and uncertain
environment such as in real-world industrial
applications. Since the last decade, more interests in
time series forecasting have focused on the use of

knowledge-based data-driven paradigms, such as
various neural networks (NNs) [4-6] and neural fuzzy
(NF) paradigms [7-9]. Even though the data-driven
predictors have demonstrated their superior potential in
many applications over the classical numerical models,
as a matter of fact, these currently available predictors
are mainly for one-step-ahead prediction in real
applications. Advanced research needs to be done in
several aspects before a multi-step-ahead predictor can
be effectively applied to real-time industrial
applications. Correspondingly, the objectives of this
work are to 1) evaluate the input patterns on the
performance of multi-step prediction paradigms, 2)
improve convergence for a recurrent NF predictor by
adopting a hybrid training technique, and 3) implement
the proposed recurrent NF predictor for real-world
applications.

MATERIALS AND METHODS

 The knowledge-based data-driven forecasting tools
interested in this work include feedforward NN,
recurrent NN, as well as a weighted recurrent NF
scheme that is an extension to that as proposed in [8]. A
brief description is given in this section for these related
predictors, as well as the suggested hybrid training
technique.

J. Computer Sci., 3 (9): 747-753, 2007

 748

Recurrent NN Predictor: System state forecasting is
to predict the future states of a dynamic system based
on its current and some previous states. Since the
performance of a knowledge-based data drive
forecasting scheme is directly related to its reasoning
structure (or the number of network parameters), to
facilitate the comparison study among different
predictors, the number of the network parameters will
be kept comparable.
 The network architecture of the recurrent NN
predictor is as shown in Fig. 1. Consider (n+1) input
state variables }{ 0 nss x x x −− � , which represent the
current (0x) and the previous states of a dynamic
system with a time step s. If ten inputs are employed in
the input layer, that is, n = 9, ten nodes will be used in
the recurrent context layer. The s-step-ahead state, sx+ ,
will be given from the output node. In total, there are
151 parameters to be updated in this predictor: 100
input weights (1

ijw), 10 output weights (2
ijw), 10

recurrent weights (3
ijw), and 31 biases.

Fig. 1: Network architecture of the recurrent NN

predictor

NN-based Predictor: Different from the recurrent
NNs, the feedforward NN has no feedback links, or
without context layer as illustrated in Fig. 1. To make
the networks comparable, the feedforward NN predictor
also has 10 input nodes, which has a 10-12-1 three layer
network architecture. The total number of parameters to
be updated is 155, that is, 120 input weights, 12 output
weights, and 23 biases.

Weighted Recurrent NF Predictor: An NF reasoning
scheme applies a set of fuzzy IF-THEN rules to
describe the input/output data mapping and forecast the
future states of a dynamic system. The fuzzy system
parameters are optimized by an adaptive training

algorithm. According to some advanced investigation, it
is found that the first order TS fuzzy paradigm is more
flexible in modeling higher order nonlinear systems [8],
and will be adopted in this work. To simplify
forecasting reasoning, two membership functions
(MFs), small and large, are assigned to each input state
variable. The s-step-ahead state of the dynamic system

sx+ can be formulated by:

jℜ : IF (0x is jA1) and (sx− is jA2) � (nsx− is j
mA)

then (j
nns

j
ns

jj
s cxcxcxcx 1100 +−−+ ++++= �) (1)

where jℜ denotes the jth fuzzy rule, j = 1, 2, � , M,

M is the total number of fuzzy rules; j
kA is the jth

fuzzy set for isx− , i = 0, 1, � , n, k = 1, 2, � , m,
where m = 2n in this case. To make the network
comparable with the aforementioned NN predictors,
four input state variables are applied in this case, that is,
i = 0, 1, � , 3, 16=M , and 82 == nm , and the
number of parameters to be updated is 104.
 The network architecture of this weighted recurrent
NF predictor is schematically shown in Fig. 2. It is a 5-
layer network in which each node performs a particular
activation function on the incoming signals. The links
have unity weights unless specified. Layer 1 is the input
layer. Each node in layer 2 acts as an MF. Different
from the general NF schemes [7] and the predictor as
proposed in [8], this recurrent NF system has a
weighted feedback link to each node in layer 2. The
recurrent context units copy the activations of output
nodes from the previous time steps, and allow the
network to remember cues from the past.

Fig. 2: Network architecture of the weighted recurrent

NF predictor

J. Computer Sci., 3 (9): 747-753, 2007

 749

Given an MF, the node actual input at the tth time
instant is

())1()()(−
−−− += t

is
j

kik
t
is

t
is xAwxX (2)

where)(t
isx− and)1(−

−
t
isx are, respectively, the input isx−

at the tth and (t-1)th time instants, respectively;
())1(−

−
t
is

j
k xA is the node output (membership grade) in the

last time step, and ikw is the weight of the feedback
link; i = 0, 1, . . ., n; k = 1, 2, . . ., m; and t = 0, 1, . . ., P-
1, where P is the total number of time instants (or
training data sets) of interest.
 Each node in layer 3 performs a fuzzy T-norm
operation. If a max-product operator is applied in this
case, the rule firing strength is

())(

0

t
is

j
k

n

i
j XA −

=
∏=µ (3)

where , j = 1, 2, . . ., M; i = 0, 1, . . ., n.
 All the rule firing strengths are normalized in layer
4. After a linear combination of the input variables in
layer 5, the predicted output sx+ , after s steps, is
computed by using the centroid defuzzification:

�
=

+−−+ ++++=
M

j

j
nns

j
ns

jj
js cxcxcxcx

1
1100)(�µ (4)

where

�
=

=
M

j
j

j
j

1

µ

µ
µ is the normalized firing strength of

the jth rule. The fuzzy system parameters ikw and j
ic

and j
kA are optimized by the related training algorithms

as discussed as follows.

A Hybrid Training Technique: Once the NF
predictor structure is created, a forecasting paradigm
should be properly trained to optimize the input/output
mapping [10-12]. Since the suggested recurrent NF
scheme in (1) contains both linear consequent weights
and nonlinear premise parameters, to improve the
training convergence, a hybrid training technique is
suggested in this paper: the nonlinear fuzzy parameters
in the recurrent context layer are optimized by using a
real-time recurrent learning (RTRL), whereas the
consequent linear parameters are fine-tuned by
employing a weighted least squares estimate (LSE). A
hybrid training technique is superior to classical single
training algorithms, because it possesses randomness
that may help to escape from local minima and it is also
necessary to accommodate different characteristics in
time-varying systems.

RTRL Algorithm for Recurrent Parameters: The
RTRL is an approach to training a recurrent network by
adjusting weights along the error gradient while the
network continues to perform its signal processing
function, rather than at the end of the presented
sequences. Details of this algorithm can be found in [13,
14].
 At time instant t, the output to the activation
function of each node in the recurrent context layer of
the NF scheme is described by

())()(t
is

j
kk XAty −= (5)

where)(�j
kA is the activation function, which is an MF

in the recurrent layer;)(t
isX − is the net input to node k in

the context layer at time instant t, as determined by (2).
If there is no such input for that node at that time

instant, then)(t
isx− is set to 0. The total error function to

be minimized is

���
−

=

−

=
==

1

0

2
1

1

0
11)(

2
1

)(
P

t
k k

P

t

tEtEE (6)

where 1 () () ()k k kE t b t y t= − if node k has a desired
output ()kb t at time t; otherwise 1 () 0kE t = .
 Equation (6) is the error measure for node k at
time instant t. Since the gradient of E1 separates in time,
by taking the full change in the)(twik as the time
summation of)(twik∆ , the gradient decent method can
be performed by defining

ik

k
t k

ik
ik w

ty
tE

w
tE

tw
∂

∂η
∂

∂η)(
)(

)(
)(1

1 �=−=∆ (7)

where η is the learning rate.

 The derivative
ik

k

w
ty

∂
∂)(

 in (7) can now be found by

differentiating the dynamical rule (5), based on the
assumption that the initial state of the network has no
functional dependence on the weights, that is,

0
)0(

=
ik

k

w
y
∂

∂
.

ik

k

w
ty

∂
∂)(

 needs to be calculated recursively

at each time instant. In general, for the error

propagation at time instant t,
ik

k

w
ty

∂
∂)1(−

is already

available from the calculation at the previous time
instant t-1. Therefore, by trying to minimize each
individual kE1 , we can recurrently find the gradient

j
k

k

A

E

∂
∂ 1 at each time instant. There is no need to wait

until the end of the presented sequence. Since it is an

J. Computer Sci., 3 (9): 747-753, 2007

 750

approximation of the gradient method, the learning rate
should be kept small (as a result, the learning may be a
little slower than a pure gradient decent algorithm).

LSE for Consequent Linear Parameters: Consider

the tth input data pair }{)()()(
0 x xx t

ns
t
s

t
−− � , t = 0, 1, …,

P-1, P is the total number of training data pairs. The
forecast state after s steps,)(t

sx+ , is computed by (4). If
)(td denotes the desired output state, which represents

the actually observed output value for the (t+1)th data
set, that is,)1(

0
)(+= tt xd , the forecasting error is defined

as

2)()(
1

0

1

0
22)(

2
1 tt

s

P

t

P

t
t dxEE −== +

−

=

−

=
�� λ (8)

where]1 95.0[∈λ is a weight factor to highlight the
contribution of the recent data sets from a time-variant
system.
 Given the values of the MF parameters and P
training data pairs to the adaptive predictor,

} {)()()()(
0

tt
ns

t
s

t d x xx −− � , k = 0, 1, 2, . . ., P-1, P linear
equations in terms of the consequent parameters � can
be formed as:

dR� = , (9)
where R is the resulting matrix from the inference
operation of the NF predictor:

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

−−

−−

−−

)()()()()(
1

)(
0

)(
1

)2()2()2()2()2(
1

)2(
0

)2(
1

)1()1()1()1()1(
1

)1(
0

)1(
1

P
M

P
ns

P
M

P
s

PPP

MnsMs

MnsMs

xxx

xxx

xxx

µµµµ

µµµµ

µµµµ

�

�

�

�

R ; (10)

� is the consequent parameter set whose elements are
to be updated:

[]TM
n

M
n ccccc 1

1
2

1
1

1
0 += �� ; (11)

d represents the vector of the desired system states:

[]TPddd)()2()1(�=d . (12)
 Because the row vectors in R and the associated
elements in d are obtained sequentially, � in (9) can be
computed recursively. For the objective function with
respect to the adjustable parameters t� at the current
time instant t,

[]�
−

=
+ −=

1

0

2)(
2)(

2
1

)(
P

t

t
tst dxE �� λ (13)

where)(tsx �+ is determined by (4); tR in (10) is the
resulting matrix from the corresponding fuzzy inference
operation at time t. The LSE is computed by

)(11 t
T
tttttt d �RRS�� −+= ++ (14)

�
�
�

�

�
�
�

�

+
−=+

tt
T
t

t
T
ttt

tt RSR
SRRS

SS
λλ

1
1 . (15)

where t = 0, 1, . . ., P-1.]1 95.0[∈λ is the weight
factor. The optimal estimate of � is P� , whereas

=0� 0. The initial conditions for the covariance matrix

tS is IS α=0 , ∈α 210[]106 , and I is an identity
matrix.

RESULTS AND DISCUSSION

Performance Comparison in terms of Step
Properties: The first objective of this comparison study
is to investigate the effects of the input patterns on the
forecasting performance, that is, with the sequential
inputs and the step inputs, as long as the same number
of inputs is used. The comparison is performed by a
series of simulation tests based on data sets from the
Mackey-Glass equation [15],

)(1.0
)(1

)(2.0)(
10

tx
tx

tx
dt

tdx −
−+

−=
τ

τ
 (16)

 The data sets from (16) have specific natures such
as chaotic, non-periodic, and non-convergence, and
have been used as benchmark data in forecasting
research to evaluate the performance of predictors.
Many simulation tests have been conducted based on
data from (16) corresponding to different initial
conditions. Each test is repeated over 10 times to
mitigate random effects related to initial values of
network weights. Fig. 3 summarizes the compassion
results for predictors based on feedforward NNs and
recurrent NNs over ten steps, in terms of the root mean
squares errors (RMSE). Both predictors are trained by
the use of the Levenberge-Marquet algorithm [14].
Comparing the curves 1 vs. 2, and curves 3 vs. 4, it is
clear that both the NN and the recurrent NN predictors
based on step inputs perform better than those based on
the sequential inputs. The main reason is that, if the
same number of inputs is employed, the step input
pattern can cover a wider information horizon. On the
other hand, it is seen that the performance of the
feedward NN predictor based on step inputs (curve 2) is
a little better than that from the recurrent NNs (curve
4). However, the recurrent NN predictor takes much
longer time in training operations, or the average time
of 174 seconds compared with 18 seconds for the
feedforwar NNs over 100 epochs; that is mainly due to
its recurrent network characteristics. Furthermore, the
forecasting performance of the feedforward NN

J. Computer Sci., 3 (9): 747-753, 2007

 751

predictor does not vary dramatically over a wide range
of horizon.

1 2 3 4 5 6 7 8 9 10

0

0.05

0.1

0.15

0.2

0.25

Time Steps

R
M

S
E

2
3

4

1

Fig. 3: Performance comparison: 1-feedforward NNs

with sequential inputs, 2-feedforward NNs
with step inputs, 3-recurrent NNs with
sequential inputs, 4-recurrent NNs with step
inputs

1 2 3 4 5 6 7 8 9 10

0

3

6

9

12
x 10

-3

Time Steps

R
M

S
E

1
2

Fig. 4: Performance comparison between the

recurrent NF predictor (curve 1) and the
feedforward NN predictor (curve 2)

 Fig. 4 shows the comparison between the
feedforward NN predictor and the recurrent NF
predictor, both with step inputs. The recurrent NF is
trained by using a general hybrid algorithm [9], that is,
premise and consequent fuzzy parameters in (1) are
trained by the gradient decent algorithm and LSE [14],
respectively. As shown in Fig. 4, it is clear that the
recurrent NF predictor performs better than the
feedforward NNs, due to its effective reasoning and
appropriate training. Furthermore, recurrent context
nodes can store cues from previous time steps. This
function of recurrent networks is especially valuable for
predictors with limited and step inputs (i.e., 1>s) to
provide more information to the network so as to

improve forecasting accuracy. On the other hand, the
training speed in both predictors is comparable, that is,
the average time is 17 and 18 seconds over 100 epochs,
respectively, for the recurrent NF and feedforward NN
predictors.

Performance Comparison in terms of Training
Algorithms: The suggested hybrid adaptive training
method adopts two algorithms: the RTRL and the LES.
In each training epoch, the fuzzy system parameters in
the recurrent context are adaptively optimized by
applying the RTRL (7) in the back pass, whereas the
linear consequent parameters are updated by using the
weighted LSE (14) in the forward pass. The RTRL
trains the recurrent network while the network
continues to perform its signal processing function,
rather than at the end of the presented sequences. In
initialization, the synaptic weights of the algorithm are
set to small values (0.025 in this case) from a uniform
distribution, while both the state vector and its partial
derivative (with respect to the weight vector) are set to
zero.
 As an example, consider a Mickey-Glass data set
from (16) with initial conditions of 30=τ , x(0) = 1.2,

1=dt , and 0)(=tx for 0<t . If 1600 data pairs are
selected, the first 800 samples are used for training and
the remaining 800 samples for testing the identified
model. Fig. 5 shows the forecasting performance of the
NF predictor based on the hybrid training of the
gradient-LSE over 100 epochs. Fig. 6 demonstrates the
corresponding results by using the hybrid learning with
the RTRL-LSE. Apparently, the latter is superior to the
former (with the root mean squares error of 0.0258 vs.
0.0472).

Fig. 5: Upper graph: The forecasting result (ten-steps-

ahead) of a Mackey-Glass data set (solid
curve) by using the gradient-LSE algorithm
(dotted curve). Lower graph: the forecasting
errors

1019 1219 1419 1619 1819
-0.15

0

0.15

801 1000 1200 1400 1600
-0.151019 1219 1419 1619 1819

0

0.5

1

1.5

M
G

 D
at

a
E

rro
rs

801 1000 1200 1400 1600
-0.15

Time Sample Span

J. Computer Sci., 3 (9): 747-753, 2007

 752

Fig. 6: Upper graph: The forecasting result (ten-steps-

ahead) of a Mackey-Glass data set (solid
curve) by using the RTRL-LSE algorithm
(dotted curve). Lower graph: the forecasting
errors

 From comparison it is seen that the suggested
adaptive hybrid method is an effective training method.
It integrates the benefits of both the RTRL and
weighted LSE, and possesses the randomness that is
helpful to escape from local minima. The RTRL-LSE
algorithm is fast in training, compared with other
commonly used training algorithms, such as the
Levenberge-Marquet method [14], due to its simple
gradient-related operations. In fact, it is a little slower
than the gradient-LSE training (17 seconds vs. 21
seconds per 100 epochs), because of its reliance on
instantaneous estimates of gradients and relatively
smaller learning rate. But this hybrid training algorithm
can provide high training performance in terms of rate
of convergence and quality of solution.

Material Fatigue Property Forecasting: Another
objective of this work is to implement the proposed
recurrent NF predictor for real-world applications.
Material fatigue property testing is used as an example.
Material fatigue testing is usually a very time-
consuming process. A reliable forecasting tool is
critically needed quickly estimate the material’s
dynamic characteristics so as to effectively shorten the
experimental time. This test is conducted on the
experimental setup similar to Fig. 7. An aluminum
specimen has a thickness of 3 mm, and its both ends are
clamped to the test rig. The monitoring time-step is set
at s = 3,000 cycles. Fig. 8 shows the 6-steps-ahead
forecasting results of the crack propagation trend, based
on the feedforward NN predictor (Fig. 8a) and the
recurrent NF scheme (Fig. 8b), respectively. It is seen
that feedforward NN predictor (Fig. 8a) generates larger
forecasting errors due to its slow convergence, and has

a relatively poor robustness especially to the high
frequency variations. The recurrent NF predictor (Fig.
8a), however, can overcome this problem by an
adaptive training process. It can catch system’s
dynamic behavior quickly and track the propagation
trend accurately.

Fig. 7: The experimental setup for material property

testing

Fig.8: Forecasting results (three-steps-ahead) for a

crack propagation (solid curves): (a) by using the
feedforward NN scheme (dotted curve); (b) by
using the recurrent NF predictor (dotted curve)

5
0 10 20 30 40

-20

0

20

40

60

Time Duration in Cycles (10)

R
el

at
iv

e
 V

ol
ta

ge

(b)

0 10 20 30 40
-20

0

20

40

60

R
el

at
iv

e
 V

ol
ta

ge

(a)

1 201 401 601 801
0

0.5

1

1.5

M
G

 D
at

a

1 201 401 601 801
-0.15

0

0.15

801 1000 1200 1400 1600
-0.15

E
rro

rs

801 1000 1200 1400 1600
-0.15

Time Sample Span

J. Computer Sci., 3 (9): 747-753, 2007

 753

CONCLUSIONS

 In this paper, the knowledge-based data-driven
multi-step-ahead forecasting schemes are evaluated in
terms of performance and efficiency. Of the
feedforward NNs, recurrent NNs, and recurrent NF
systems, analysis results have shown that predictors
based on step inputs perform better than those based on
sequential inputs, as long as the same number inputs are
employed. On the other hand, the recurrent NF
predictors perform better than those based on
feedforward and recurrent NNs, in multi-step-ahead
forecasting operations. A hybrid training algorithm is
adopted to improve the robustness and reliability of the
recurrent NF predictor, by which the fuzzy parameters
in the recurrent context layer are trained by using the
real-time recurrent learning, whereas the fuzzy
consequent parameters are updated by applying a
weighted least squares estimate. Simulation results have
shown that this suggested algorithm has a better
convergence and higher forecasting accuracy than a
generally used gradient-LSE algorithm. In addition, the
proposed recurrent NF predictor is implemented for
material property testing. Online test results have
shown that the developed NF predictor is a reliable
forecasting tool. It can capture the system’s dynamic
behavior quickly and track the system’s characteristics
accurately.

ACKNOWLEDGEMENT

This project was partly supported by MC Technologies
Inc.

REFERENCES

1. M. Pourahmadi, 2001. Foundations of Time Series

Analysis and Prediction Theory, John Wiley &
Sons Inc.

2. D. Chelidze and J. Cusumano, 2004. A dynamical
systems approach to failure prognosis. J. Vib.
Acous. 126: 1-7.

3. C. Li and H. Lee, 2005. Gear fatigue crack
prognosis using embedded model, gear dynamic
model and fracture mechanics. Mech. Syst. Signal
Process. 9: 836-846.

4. J. Connor, R. Martin, and L. Atlas, 1994. Recurrent

neural networks and robust time series prediction.
IEEE Trans. Neural Net. 5: 240-254.

5. Y. Liang and X. Liang, 2006. Improving signal
prediction performance of neural networks through
multiresoltion learning approach. IEEE Trans.
Syst. Man Cyber. - Part B, 36: 341-352.

6. D. Husmeier, 1999. Neural Networks for
Conditional Probability Estimation: Forecasting
beyond Point Prediction, Springer-Verlag London
Ltd.

7. J. Jang, 1993. ANFIS: adaptive-network-based
fuzzy inference system. IEEE Trans. Syst. Man
Cyber. 23: 665-685.

8. W. Wang, 2007. An adaptive predictor for dynamic
system forecasting. Mech. Syst. Signal Process. 21:
809-823.

9. W. Wang, F. Ismail, and F. Golnaraghi, 2004. A
neuro-fuzzy approach for gear system monitoring.
IEEE Trans. Fuzzy Syst. 12: 710-723.

10. M. Figueiredo, R. Ballini, S. Soares, M. Andrade,
and F. Gomide, 2004. Learning algorithms for a
class of neurofuzzy network and applications.
IEEE Trans. Syst. Man Cyber. - Part C, 34: 293-
301.

11. H. Ishibuchi and T. Yamamoto, 2005. Rule weight
specification in fuzzy rule-based classification
systems. IEEE Trans. Fuzzy Syst. 13: 428-435.

12. D. Nauck, 2000. Adaptive rule weights in neuro-
fuzzy systems. J Neural Comput. Appli. 9: 60-70.

13. R. Williams and D. Zisper, 1989. A learning
algorithm for continually running fully recurrent
neural networks. Neural Comput. 1: 270-280.

14. S. Haykin, 1998. Neural Networks: A
Comprehensive Foundation, 2nd edition, Prentice
Hall.

15. M. Mackey and L. Glass, 1977. Oscillation and
chaos in physiological control systems. Science,
197: 287-289.

