
Journal of Computer Science 3 (9): 708-716, 2007
ISSN 1549-3636
© 2007 Science Publications

708

Support Measure Admissibility Based on Operations on Instance Graphs

Ford Lumban Gaol

Faculty of Computer Science, University of Indonesia, Indonesia

Abstract: The concept of support is central to data mining. While the definition of support in
transaction databases is intuitive and simple, that is not the case in graph datasets and databases. Most
mining algorithms require the support of a pattern to be no grater than that of its subpatterns, a property
called anti-monotonicity or admissibility. This study examines the requirements for admissibility of a
support measure. Support measure for mining graphs are usually based on the notion of an instance
graph-a graph representing all the instances of the pattern in a database and their intersection
properties. Necessary and sufficient conditions for support measure admissibility, based on operations
on instance graphs, are developed and proved. The sufficient conditions are used to prove ad
admissibility of one support measure-the size of the independent set in the instance graph. Conversely,
the necessary conditions are used to quickly show that some other support measures, such as weighted
count of instances, are not admissible.

Key words: Data mining, frequent patterns, graphs, support measure

INTRODUCTION

 The primary goal of data mining is to discover
interesting patterns in data. Since patterns that appear
frequently may interesting or important, a primitive
sub-task in achieving this goal is answering the
question: how frequently does pattern P appear in a
dataset D? (we use the term dataset through the paper,
to cover all sorts of data, including data in relational
database, semistructured databases, web data, etc.). The
answer of this question is then used to decide whether a
pattern is interesting, either individually or in relation to
other patterns. Usually the frequency of a patterns P is
called support of P (in D). An early appearance of this
was in the classical paper by Agrawal et. all on mining
association rules[1] .
 Thus, a count of the number of pattern appearances
in the dataset is a method commonly used to define the
support measure. In the simplest case, a pattern is a set
of items, and the dataset D is a set of transaction. The
standard measure support for itemsets in the literature is
as follows. Let D be a set of transactions,
and
I = <i1,.., ik> be an item set. The support S of the
itemset in the dataset is defined as

1 k| t | t D, i , ,i t |
S(I)

| D |
∈ < >∈= � .

 Usually in data mining tasks, a number 10 ≤≤ σ ,
called the minimum support threshold is provided to the
system. An itemset I that has S(I) ≥ σ is called frequent.
Defined in this manner, the support of an itemset I is
always not greater than the support of any of the subsets
of I. This fundamental property of the support measure
is important, because it is intuitively appealing, but also
because of the following obvious corollary: an itemset I
can be frequent, only if all of the subsets of I are
frequent. The latter property (alternately called the
Apriori principle, anti-monotonicity, or downward
closure, in varied related work (Ng et al.,[21]) has been
of major importance in numerous data mining
algorithms , used to prune candidate patterns and
greatly improve performance. This property is the de-
facto standard assumption for algorithms, which relay
heavily on anti-monotonicity. These algorithms range
from the apriori algorithm for structured data[1] to
algorithms to mining paths[4], trees[27] and graphs[15].
 Since data sets in many applications are not
limited to transaction database, and patterns are mot
limited to itemsets, a more general notion of support is
required.
 A simple generalization of the scheme used in
transaction databases is the following: The support of a
pattern P in a dataset D is a measure of frequency of the
instances of P in D. A support measure is a function
S:D x P → }0{∪ℜ+ that for each pattern P in dataset
D provides its support, a non-negative real number. A

J. Computer Sci., 3 (9): 708-716, 2007

 709

pattern P is called frequent if its support measure S(P)
is greater than or equal to a support threshold TS.
Definitions of support in many types of datasets also
usually observe the above fundamental property of
support measures. The importance of the fundamental
property of support measure (i.e. anti-monoticity or
downward closure) for itemsets indicates its general
applicability, leading to the following definitions.

Definition 1 (Admissible support measure): A
support measure S is admissible if for every dataset D
and pattern P we have S(P) ≥ 0, and f or every pattern
P’ ∋ P’⊆P (meaning that P’ is a subpattern of P) we
have S(P’) ≥ S(P).
 Whereas in the past, data mining was mainly
applied to structured data and flat files, there is growing
interest in mining and discovering frequent patterns in
semi-structured data[26] such as web data[12, 27, 3],
chemical compounds data[28] or biological data[24].
Although for itemset and transaction databases, the
obvious definition of support is admissible, it is not
obvious that this is the case for other types of patterns.
 Specifically, realizing that in data on the world-
wide and in object databases, topology is meaningful, a
data mining task that has been increasing interest in the
community is to find frequent patterns (subgraphs) in a
dataset (a large graph). In this case, there are several
different intuitive ways to define support, but not all of
them are admissible, as show in Section 2. In this paper,
our goal is analysis of formal properties of the support
measure rather than graph mining algorithms. After
formally defining the notion of an instance of a pattern
in the dataset, we find necessary and sufficient
conditions for admissibility (in the sense of the above
definition) of a support measure. Our results are
applicable to both directed and undirected graphs, and
to both labeled and unlabeled graphs.
 Finding an admissible support measure for graphs
is not so easy. The naïve support measure which counts
the number of instances of a pattern in a graph is shown
in Section 2 to be non-admissible. An intuitive support
measure-size of maximum independent set of the
instance graph (MIS)-is proposed and shown to be
admissible. The use of MIS as support measure was
first suggested in[28] and was show to be useful as a
major component of an apriori-based algorithm for
graph mining. The major contribution of the present
paper is the formal definition and proofs for sufficient
and necessary conditions for any admissible support
measure.
 The rest of the paper is organized as follows.
Section 2 defines the notions of a graph pattern

instances and instance graph, examines the intuitive
definitions of support for graphs, and defines the useful
admissible MIS support measure. Section 3 defines
operations on instance graphs, and use them to show
our main result, the necessary and sufficient conditions
for admissibility. Section 4, shows that the MIS
measure is admissible, examines other support schemes
and discuss generalizations of our results. Finally, the
related work is examined and compared to ours.

INSTANCE GRAPHS AND BASIC SUPPORT
MEASURES

 We begin with assumption about patterns and
datasets, used in most of this paper. Henceforth, a
pattern is assumed to be a labeled graph, either directed
or undirected. A dataset is another (usually much
larger) graph of the same type as the pattern. Although
we assume in our derivation that labels, if they exist,
are attached to nodes, all of our results apply for edge-
labeled graphs as well. Labels are from some finite
alphabet Σ. We also allow (and use in our proofs)
unlabelled graphs, as these are equivalent to a special
case where |Σ| = 1.

Instances and instance graphs: Let D be a (not
necessarily connected) labeled dataset graph, and P be
the pattern for which we are searching – a connected
labeled graph.

Definition 2:. Subgraph G of D is an instance of P in D
just when there exists a label-preserving isomorphism
between P and G.
Note that according to definition 2, instances of P in D
are allowed to overlap, but two instances that have
exactly the same set of edges and same set of vertices
are considered to be the same instance. Let M be the set
of all instances of P in D (i.e. subgraphs of D that are
label isomorphic to G). Two instances G1, G2 ∈ M are
said to be intersecting denoted by G1 ∧ G2, if they have
at least one edge in common. If the instances do not
have an edge intersection in D, this is denoted by
G1||DG2.

Definition 3: (Instance Graph) For a pattern P its
instance graph in D, denoted IP(D) is an undirected
graph (VP, EP), with exactly one node standing for each

J. Computer Sci., 3 (9): 708-716, 2007

 710

Notation used in this paper
D Dataset

P, p Pattern and subpattern, respectively
G1 ∧ G2 Graphs G1, G2 have a common edge.
G1||DG2 Graphs G1, G2 have no common edge

IP, IP Instance graphs of P and p, respectively.
µ Mapping from nodes of an instance to a

subpgrahs of D.
f(IP) Induced support function

SubInstances (u) Subgraphs of µ (u) isomorphic to p
SuperInstances (u) Subgraphs of µ (u) isomorphic to P

IpP IP modified by series of clique
contractions, additions, and edge
removals.

λ Partial mapping from nodes of IpP to the
nodes of IP

π Induced mapping from nodes of IpP into
the instances of p in D

δ Maximum degree of IP nodes
MIS Maximum independent set measure

Fig. 1: Graph pattern support

instance of P in D. denoted by µ the mapping from
nodes in VP to instances (subgraphs of D). The edges in
the instance graph are EP = {{u, v}| µ (u) ∧ µ (v)}. That
is, an edge in the instance graph exists just when the
respective instances intersect. When the dataset D is
unambiguously understood, we sometimes omit D for
brevity and use IP to denote IP(D).

Definition 4: (subpattern) Let D be a labeled graph, P a
graph pattern, and p a subgraph of P, denoted by p ⊂ P.
We call p a subpattern of P. Likewise, we refer to P as a
superpattern of p.
 In the rest of the paper, P and p denote
respectively a pattern and its subpattern in D. By
definition, there exits a mapping µ are implicitly
understood, we denote the subgraph relation µ(v) ⊂ µ
(u) between instances in D, by v ⊂ u.

Intuitive support measures for graphs: When
considering graph patterns, we interpret set inclusion
(as used in Definition 1) as the subgraph relationship.
Therefore a support measure for graph patterns is
admissible if the support for a graph pattern P is never
strictly greater than the support of any of its subgraphs.
The most intuitive support measure is the number of
instances of the pattern in a dataset. This measure,
however, is not admissible.

CONDITIONS FOR ADMISSIBILITY

Our conditions for admissibility are based on the
instance graphs. Essentially, our main result (formally
stated later on) is paraphrased as follows: an (instance
graph based) support measure is admissible if and only
if it is non-decreasing under operations on the instance
graph (clique contraction, node addition, and edge
removal, defined below).
The motivation for these operations is that it is often
easier to show that a support measure fulfils the
conditions of the theorem, than to show admissibility of
a measure by definition of admissibility. We begin by
defining the operations used in our conditions for
admisitability.

1. Operations on instance graphs: We define the
following three operations on graphs: clique contraction
(clique is defined as fully connected subgraphs), node
addition, and edge removal. Refer to Fig. 2 for
examples of these operations. All of the operations are
assumed to be on an undirected, unlabelled, graph G =
(V,E), as we only use them on instance graphs.

Definition 4: (Clique contraction) Clique contraction
operates on a subgrpah of G forming a clique = (VK,
EK) in G, resulting in a graph G’ = (V’, E’) as follows.
Let k be an arbitrary node in VK representing the
contracted clique. The graph G’ resulting from clique
contraction has nodes V’ = V\VK ∪ {k}, and the edges:
E’ = (E ∩ {{u, v}|u, v ∈ V’}) ∪ {{v, k}|v ∈ V’ – {k} ∧
∀u ∈ VK {v, u} ∈ E}.
Intuitively, clique K is contracted into a single node k,
which remains adjacent only to those vertices of V that
were adjacent to every node K in G. This definition
applies to any clique, not necessarily a maximum
clique. For the sake of uniformity, a subgraph

Fig. 2: Examples of Operations on Instances Graphs

J. Computer Sci., 3 (9): 708-716, 2007

 711

consisting of a single node is considered to be a clique,
and in this case clique contraction does not change the
graph.

Definition 5: (Node Addition) Node addition operates
on G and a new node u that is not in G, resulting in a
new graph G’ = (V’, E’) whose node and edge sets are
V’ = V ∪ {u}, u ∉ V and E’ = E ∪ {{u, v}| v ∈ V}.
 Intuitively, node addition adds a new node to the
graph, that has an edge with all other nodes in he graph.

Definition 6: (Edge removal) Edge removal removes
an edge e from G. The resulting graph is G’ = (V,
E\{e}).

2. Sufficient conditions for admissibility: We
formulate a sufficient condition for support measure
admissibility in terms of operations on the instance
graph we restrict the discussion to support functions
defined on the instance graph topology and
combinatorics, as in the following remark (that is, the
function can take into account anything that is based on
node counts, edges between nodes, etc. but is not
allowed treat two node differently based on any node
labels or identity, such as the identity of the instances
the node represent in the dataset).

Remark: For every dataset D and pattern P, a support
function f(P, D) evaluates to a number in R+.
Whenever, for every pair (P, D), the instance graph IP
of P in D is defined unambigusly (as we have done for
graph patterns and datasets), we define the induced
support function f(IP) = f(P, D). We henceforth refer to
the induced function, which we denote by f(IP), instead
of referring to f(P, D).

Theorem 1: A positive valued function f(IP) is an
admissible support measure over graph patterns IF it is
non-decreasing under all of the following operations on
IP:
(A1) Clique contraction: k = Contract(K), where K is a
clique , and k is the node representing the clique after
the contraction operator.
(A2) Node addition: v = Add(), where v is the new node

added by the operator.
(A3) Edge removal: Removal(e), where e is an edge to

be removed.

Proof: We prove that Ip can be obtained from IP by
applying only the operations A1, A2, A3. thus any
function on instance graphs that does not decrease
under these operations is admissible, since its value on
Ip is greater than or equal to its value on IP. The proof is

constructive: given any arbitrary instance graphs of
pattern and subpattern (as well as an arbitrary instance
mapping function µ) we construct the sequence of
operation leading from IP to Ip such that the mapping µ
is not violated.
 Let IP = (VP, EP) and Ip = (Vp, Ep) and let µ be the
mapping from node of the instance graphs to the actual
instances (subgraphs of the dataset D). We define the
mapping SubInstances: VP → 2Vp as follows:
SubInstances(u) = {v ∈ Vp | µ(v) ⊂ µ(u))}
In other words, SubInstances(u) is a set of all the
subInstances of the instance u (actually, the above
refers to the nodes in the respective instance graphs
representing these instances). Similarly let us define
SuperInstance: VP → 2VP as follows:
SuperInstances(v) = {u ∈ VP | µ(v) ⊂ µ(u))}
Intuitively, SuperInstance(v) is the set of all
Superinstances that contain a Subinstance v.
In general, the sequence of operations will be to:
start from IP,
perform clique contractions and node additions in order
to get the nodes Vp of graph Ip, and
perform edge deletions as necessary.
 In the construction process, we will use the graph
IpP = (VpP, EpP), initially equal to IP, and modify it, as
well as construct a partial mapping λ will be an
isomorphism. We also construct a new instance
mapping function π and show that it is consistent with
µ under the constructed isomorphism. (For conciseness,
we do not index these mappings by the step number,
because the mapping of a node never changes after it is
first defined. For every instance graph node v we use π
(v) = ⊥, and λ(v) = ⊥ to indicate that the respective
mapping is currently undefined for v). Intuitively, π is a
mapping from nodes of IpP to the instances of the
subpattern p in the database. Its “job” is to show that at
the edn of the process IpP is indeed isomorphism to Ip
 As stated above, the sequence of operations begins
with a sequence of clique contractions. During clique
contraction steps we will also use a list of “marked”
nodes (from IP) at each step, denoted marked, and a list
of “covered” nodes from Ip denoted covered.
Construction proceeds as follows:

• Let IpP = IP, marked = φ and covered = φ, and for

every node v ∈ VP set π(v) = λ(v) = ⊥.
• Let u be a node in Ip \ covered, such that V =

SuperInstances(u) \ marked is non-empty. If there
is no such node u, go to step 4.

• (Note that the nodes V from a clique K in IpP, since
each stands for a Superinstances of the same u).

 Let k = Contract(K) in IpP (changing IpP as
a side-effect),

 marked = marked ∪ V, Covered = Covered ∪ {u},
λ(k) = u, π(k) = µ(u), and go to step 2.

J. Computer Sci., 3 (9): 708-716, 2007

 712

• For all u in Ip\Covered, do:
(a). Add a unique new node v to IpP using the
operator v = Add().

 (b). Let λ(v) = u, and π(v) = µ(u).
• For every edge e = {v, v’} ∈ IpP such that

)(||)('vv D ππ , do Remove(e) from IpP.

Note that the algorithm has considerable non-
determinism in step 2, but any arbitrary selection of u at
this step is sufficient. Clearly, IpP is constructed from IP
using only the required operations.
(Fig. 3) illustrates the construction algorithm. In
(Fig. 3), (a) shows a (labeled, undirected graph) dataset,
with a pattern P shown in (b) and a subpattern p shown
in (c). The pattern P has 4 instances, three of which
share at leas one edge in common (hence the instance
graph IP shown in (d) contains a 3-clique), and one edge
–disjoint instance. The subpattern p also has 4 instances
with an instance graph shown in (e). One instance
mapping function consistent with the graphs is as
follows (see 3(a) and (d)): µ(u1) is the pattern including
the node B at the bottom. µ(u3) and µ(u4) are the
patterns consisting of the topmost triangle (T4) and of
the B nodes at the top, respectively. µ(u2) is T3, the
second triangle for the top, plus the top-left B node. A
consistent mapping for the subpattern would be (see
3(a) and (e)): µ(u1) the bottom tringle (T1), and µ(u2) is
T2, the second triangle from bottom, µ(u3) is T3, the
third triangle from the bottom, and µ(u4) the top
triangle, T4. Note how each instance has an edge in
common with other instances just as required by Ip.
(Fig. 3) (f), (g), and (h) shows the instance graph
transformation, as follows.
 In step 2 of the algorithm, suppose that u = u4 is
chosen. Its superinstances are those represented by V =
{v3, v4}. This clique is contracted in step 3, {with, the

Fig. 3: Illustration of construction azgorithm

node representing the clique being k = v3) resulting in
the graph shown in Fig. 3(f). At this step, u4 is covered
and {v3, v4} are marked. At the next iteration, we might
choose u3 (which is then added to covered), with a
superintance v2, which is marked. Contracting a
singleton clique does not change the graph. At the final
iteration, u1 is selected (and added to covered), and its
superintance v1 is marked and contracted (again, no
change in the graph). There is no further iteration
because u2, the only uncovered node has no
superinstance, so we go to step 4.
 In step 4, the only uncovered node is u2, and the
v = Add() operation is done, resulting in the graph
depicted in Fig. 3(g). Finally, in step 5, the edge at the
bottom is removed, resulting in the instance graph of
Fig. 3(h). Following the mapping generated in the
construction will show consistency of the mappings, as
well as the topology, to the instance graph Ip of Fig.
3(e).

Necessary conditions for admissibility: In this
section, we show that the above sufficient conditions
for admissibility are also necessary, in the following
sense.

Theorem 2: Let f be positive real-valued function
defined on pattern instance graphs. Then f(IP) is an
admissible support measure only if it is non-decreasing
under all of the operations: clique contraction, node
addition, and edge removal on IP

Proof: (outline): It is sufficient to show that there exist
an instance graph, a required operation, a pattern and
subpattern, and a dataset confirming to the instance
graph and operation, to show that a support measure
violating the conditions is inadmissible. However, we
prove the theorem in a stronger sense. Given an
arbitrary instance graph IP = (VP, EP), and an arbitrary
required operation (clique operation, node addition, or
edge removal) on IP, (which results in a valid “sub-
instance” graph Ip), we construct a pattern P, a
subpattern p, and a dataset D, such that IP is the instance
graph for P in D, and Ip is the instance graph for the
subpattern p in D. Thus, if a support measure f ever
decrease over any such operation (and for any instance
graph), there will always be a dataset, pattern, and
subpattern, for which the support of the subpattern is
smaller than that of the superpattern, thus violating the
admissibility of f.

3.1. Auxiliary graphs an their intersections: We
construct the required dataset from labeled graph
patterns that have the following structure.

J. Computer Sci., 3 (9): 708-716, 2007

 713

Let δ = max {d(v)| v ∈ VP}. We define P to be the
labeled graph pattern as in Fig. 4(a) with |VP| edges
labeled {a, a} (the labels are actually on the vertices,
but we refer to edges labeled by pairs pf labels as a
shorthand for referring to edges with incident nodes
labeled by their indicated pair of labels) and δ edges
labeled {d, d}. Let p be a subpattern of P, the subgraph
induced by its {a,a}-edges and {a,b}-edges see
 (Fig. 4(b)). For convenience , we call each {a, a}edge a
leg, and each {d, d} edge an arm. The subgraph
consisting of all edges {a, a}and edges {a, b} of pattern
is called a bottom (part of the pattern). We use the
notation Bottom(P) to denote the bottom subgraph of P.
Likewise, the subgraph consisting of all the edge {d, d}
and edges {c, d} of pattern is called a toP (part of the
pattern). The corresponding function Top(P) is used to
denote the top of subgraph P. The edge {d, c} in P is
denoted by Torso(P). Thus, P has a top (which in turn
has δ arms), a torso, and a bottom (which in turn has
|V(IP)| legs). The subpattern p has just the bottom part.
he same terms will also be sued to refer to such
subgraphs of instances n the dataset D.
 We define several ways which instances will be
allowed to overlap in the dataset D (these nodes will
also be called intersection modes). It is sufficient to
explain these overlap types for two instances of P
and/or p, denoted by G1, G2, and g1 (see Fig. 5).
I1: (Full) Bottom overlap: Bottom(G1) = Bottom(G2).

This type of intersection is used to indicate that G1
and G2 are adjacent in IP, but (since p is all
bottom) the respective instances of p are all the
same instances, thus correspond to a single node in
Ip.

Fig. 4: Pattern and subpattern

Fig. 5: Intersections

I2: (Partial) Leg overlap: Bottom(G1) and Bottom(G2)
overlap at exactly one leg (i.e. have a single common
edge). This type of intersection indicates

that G1 and G2 are adjacent in IP, and the
respective subpattern instances are distinct and
adjacent in Ip.

I3: (Partial) Arm overlap: Top(G1) and Top(G2)
overlap at exactly one arm (i.e. have a single
common edge). This type of intersection indicates
that G1 and G2 are adjacent in IP, and that
respective subpattern instances are not adjacent in
Ip. Such overlaps will be used to represent instance
graph edges deleted by an operation.

I4: Truncated (Partial) Leg Overlap: g1 and
Bottom(G1) overlap at exactly one leg (i.e. have a
single common edge). This type of intersection
indicates that g1 is not a part of any superinstances,
but its representation in Ip is adjacent to a node in
Ip representing a subinstance that is part of some
superintance G1.

 During the construction of the dataset, all
intersections of types I2, I3, 4 are subject to the
intersection condition: for instances G1, G2, G3 of P or p
if G1 intersects G2 at edge e, and G2 intersects G3 at
edge f, the e ≠ f. Note that the number of arms and legs
of the patterns is specified as sufficiently large such that
this condition can always be met in the construction.

J. Computer Sci., 3 (9): 708-716, 2007

 714

3.2. Construction of the dataset: In this section, we
construct the dataset for any given instance graph IP and
any given required operation of type A1, A2, or A3. In
all cases, the dataset D consist of |VP| instances of P,
and the requisite number if instances of p. The
constructive differs mostly in the way the pattern
instances are made to intersect. When constructing
overlaps, the actual construction is arbitrary as long as
the intersection condition is obeyed. For each of the
three operation types, we construct the dataset D such
that IP is the instances graph of P in D, and that the Ip is
obtained by the operation is the instance graph of the
subpattern p in D. Intuitively, it is clear why the
construction below should work.

Construction for A1-clique contraction : Let IP be an
arbitrary undirected graph. Let K be the contracted
clique, V be the set of the nodes in contracted clique,
and k be the node representing the clique (and
remaining after contraction).
Let Ip be the undirected graph resulting from the
operation k = contract (K) in IP. The dataset DA1
consists of |VP| instances of P, such that |V| of them (the
ones corresponding to the contracted clique) intersect
by (full) bottom overlap (this creates kind of a “star
Fig.). The Intersections among the other instances are
determined by IP as follows. Let v, w ∈ VP\V. The
instances represented by v and w have a leg overlap just
when {v, w}∈ EP. Now, partition the set of nodes VP\V
into VA, the set of nodes adjacent to k after the
contraction (in IP, these nodes are adjacent to all nodes
in V), and VO, the set of nodes not adjacent to k after
the contraction. For every v ∈ VA, let the instance
represented by v have a leg overlap with the instance
represented by k. For every v ∈ VO, and w ∈ V such
that {v, w} ∈ EP, let the respective instances have an
arm overlap. (Intuition: consider an edge {v, w} ∈ EP.
Clearly, if v ∈ VO, the {v, w} does not appear in Ep
since arm overlap does not affect p, while if v ∈ VA the
edge remains in Ep because a leg overlap indicates
intersection in Ip as well).

Construction for A2-node addition: Let IP be an
arbitrary undirected graph, u = Add(), and Ip be the
graph resulting from this node-addition operation. The
dataset DA2 consists of |VP| instances of P (each also
containing one instance of p), and one additional
instance p that corresponds to u, with the intersections
among instances determined by IP as follows. For all v,
w ∈VP, the respective instances have a leg overlap just

when {v, w} ∈ EP. The instance of p corresponding to u
has a truncated (partial) leg overlap with all other
instances. (Clearly the leg overlaps will result in the
required edges in Ep, but the edges do not appear in EP
because there is no instance of P containing this
instance of p).

Construction for A3-edge removal: Let IP be an
arbitrary undirected graph, and Ip the graph resulting
from Remove(e), with e = {v, v’} the removed edge.
The dataset DA3 consists just of |VP| instances of P (each
also containing one instance of p), with the intersection
among instances determined by IP as follows. For all u,
w ∈VP, the respective instances µ(u) have a leg overlap
just when {u, w} ∈ EP – {e}, and an arm overlap just
for the instances represented by v and v’. (clearly an
edge resulting from an arm overlap does not exist in
Ep).
The construction for the three cases completes the proof
of Theorem 2, which also immediately implies the
following potential useful corollary:

Corollary 1: Every graph is an instance graph, i.e. for
every graph G one can construct a dataset graph D and
a pattern P such that G is the instance graph of P in D.

DISCUSSION

 In this section, we examine non-trivial admissible
support measure, compare related work, and discuss
additional types of datasets (other than graphs) where
our results apply. First, consider the support measure.
As shown in Section 2.2, simply counting instances is
not admissible. This is due to the fact that instances can
share edges: since superpattern have more edges than
the subpattern, this potentially creates additional
partially overlap instances for the superpattern.

1. Independent set: The above observation on edge
sharing between instances leads to the following
intuition: count instances, but do not allow instances
which overlap into the count. There are numerous ways
to do this, but one obvious method is to find the set of
non-overlapping instances, and count its size. Since the
instances graph contains all information about the
instances and their overlaps, it is sufficient to define
this type of support function over the instance graph. A
set of non-overlapping instances maps uniquely to an
independent set in the instance graph i.e. a set of

J. Computer Sci., 3 (9): 708-716, 2007

 715

vertices in the instance graph, none of which are
connected by an edge in the instance graph.
 One particular such measure is the size of the large
independent set in the instance graph, i.e. the MIS
measure. Our results justify using the maximum
independent set size as a support measure.

Corollary 2: Maximum independent set size of IP is an
admissible support measure.

Proof: Clearly, edge removal does not decrease the size
of the maximum independent set of a graph, and neither
does node addition, since no edges between existing
nodes in the graph are added. Thus, it suffices to show
that clique contraction can not decrease this size. Let s
be an independent set of maximum size in IP, and let K
be a clique in IP. Observe that clique contraction adds
no edges to nodes outside of K (other than to k, the
“contracted clique” new node). Thus, if K contains no
nodes from s, then s is still an independent set after the
operation. Alternately, K contains exactly one node v
from s (there can not be more than one node of K from
s). None of the neighbors of v are in s, and thus, by
contraction of the clique contraction operator, none of
the neighbors of k after the operation are in s. Since no
edges except some incident on k are added by the
operator, then (s\{v})∪ k} is an independent set after
the operation, and its is size is not less than |s| as
required.
 It is unfortunate that the problem of determining
the maximum independent set size in graph is NP-hard,
and hence independent set size is not very efficient as a
support measure.
 Although the support measure is a central issue in
data mining, there are few attempts to define properties
of support generally. As mentioned before, the common
support measure is defined for transaction databases as
the ratio of the number of transactions containing an
itemset to the total number of transaction in the
database[1]. Obviously, this measure is admissible. In[4]
Chen et al. define a support measure for mining web
transversal in a form of trees. Each transaction is a tree,
and the support of a subtree is defined as the number of
transactions containing the subtree, but with the
restriction that only transaction with trees which are not
included in other transaction are counted (this is a very
special restriction which is quite difficult to generalize).
it is easy to show that because of the special structure of
trees, this measure is admissible.

 The mining of frequent.[27] structures of
documents in another form of trees. They are interested
only in rooted tree patterns and define suppot as the
number if occurrences of such (maximal) trees in a set
of documents. Again, this measure is obviously
admissible.
 The most related papers on graph mining are
Kuramochi[15] and Han[11]. In both papers, the support is
defined as in transaction databases. Each transaction a
graph and the support is defined as the number of
transactions containing the pattern graph (no matter
how many times). Again, it is obvious that this support
measure is admissible. It is also obvious that this
measure is not appropriate for a dataset defined as a
single graph, because such a support measure can only
result in values of either 0 or 1 in this case, no matter
how many times the simple pattern occurs in the large
graph. Earlier papers in graph mining and their
applications are[4, 16, 27, 15, 11].

CONCLUSION

 In this paper we discus a general notion of support
especially useful for mining of graph dataset and
database. We defined the concept of admissible support
measure and proved sufficient and necessary conditions
for admissibility. An intuitive measure (size of
maximum independent set) was presented and show to
be admissible. Future work includes finding other
instances of admissible support measure which are of
interest for different classes of graphs.

REFERENCES

1. Agrawal R. and R. Srikant. Fast Algorithms for

Mining Association Rules. Proc of 20th Int’l Conf.
on VLDB. Santiago, Chile September 1994.

2. Bay, T., J. Paoli, and C. Sperberg-McQuen.
Extensible Markup Langauge (XML) 1.0.
February 1998. http://www3.prg/XML .

3. Chamberlin, D., Xquery: A Query Language for
XML. Proceedings of SIGMOD Conference 2003.

4. Chen, M.S., J.S. Park, P.S. Yu. Efficient Data
Mining for Path Transversal Patterns. IEEE
Transactions on Knowledge and Data Engineering.
10(2). 1998: 209-221.

5. Dehaspe, L., H. Toivonen and R.D. King. Finding
Frequent Substructure in Chemical Compounds.
Proceedings of the 4th International Conference on
Knowledge Discovery and Data Mining

 (KDD-98) pages 30-36. New York.

J. Computer Sci., 3 (9): 708-716, 2007

 716

6. Deutsch, A. et. al. Querying XML data., IEEE
Data Engineering Bulletin 22(3). 1999.

7. Deutsch, A. et. al. Storing Semistrucred Data
With STORED. Proceedings of SIGMOD
Conference 1999: 431-442.

8. Domshalk, C. et al. Preference-based
Configuration of web Page Content. Proceedings
of IJCAI, August 2001.

9. Goldman, R. et al. DataGuides: enabling Query
Formulation and Optimization in Semistrcured
Databases. Proc. of 23rd VLDB Conf., Athens
Greece 1987.

10. Graph Matching Library,
http://amalfi.dis.unima.it/graph/db/vflib-
2.0/doc/vflib.html

11. X.Yan and J.Han, gSpan: Graph Based
substracture pattern mining. Proceedings of ICDM
2002, pp 721-724.

12. S.B. Huffman, C. Baudin, Toward Structure
Retrieval in Semistructured Information Spaces, in
Proceedings of IJCAI-97, Nagaya, Japan: 751 –
756

13. A. Inokuchi, T. Washio, H. Motoda. An Apriori
based algorithm for mining frequent substructure
from graph data. Proceedings OF PKDD00. 2000.

14. M. Kuramochi & G. Karypis. Finding Frequent
Patterns in a Large Sparse Graph. Proceedings
2004 SIAM Data Mining Conference, Orlando,
Florida, 2004.

15. M. Kuramochi and G. Karypis. Frequent Subgraph
Discovery. Proceedings of IEEE ICDM 2001.

16. X. Lin, Ch. Liu, Y.Zhang and X.Zhou. Efficiently
Computing Frequent Tree-Like Topology Patterns
in a Web Environment.. Proceedings Of 31st Int.
Conf. on Tech. of Object Oriented Language and
System, 1998.

17. Maximum Weight Clique Program
http://www.tcs.hut.fi/~pat/wclique.html.

18. B.D. Mackay. Isomorph-free exhaustive
generation. Journal of Algorithms, Vol 26,
1998:306-324.

19. A. Meisels, M.Orlov, T. Maor. Discovering
Associations in XML data. BGU Technical
Report.. 2001.

20. R. Milner. Calculi for synchrony and asynchrony.
Proceedings of TCS 25, 1983:2677-310.

21. R.T. Ng. L.V.S. Laksmanan. J. Han, A. Pang:
Exploratory Mining Pruning Optimization of
Constrained Associations Rules. Proceedings of
SIGMIOD Conference 1998: 13-24.

22. Movie databse. http://us.imdb.com.
23. P.R.J. Ostergard. A new algorithm for the

maximum-weight clique problem. Helsinki
University of Technology. Internal report 2001.

24. X.Pennec, N. Ayache. A geometric algorithms to
find small but highly similar 3D substructures in
protein. Bioinformatics 14:(6): 516-522. 1998.

25. R. Srikant, R. Agrawal. Mining Generalized
Association Rules. Proceedings of the 21st Int’l
Conference on Very Large Database. Zurich
Switzerland. Sept 1995.

26. Ford Lumban Gaol, Belawati Widjaja. Mining
Frequent Semistructure Pattern Using Path Covers.
The 2nd Indonesia Japan Joint Scientific
Symposium, 2006. Accepted .

27. K. Wang , H. Liu. Discovering Typical Structures
of Documents: A Road map approach.
Proceedings of SIGIR 1998: 146 – 154.

28. X. Wang, J.T.Li et al. Finding patterns in Three-
dimensional Graphs Algorithms and applications
to scientific Data Mining. IEEE Trans on
Knowledge and Data Eng 14(4): 731-749. 2002.

29. T. Washio, H. Motoda. State of the art of graph-
based data mining. SIGKDD explorations. July
2003.

