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Abstract: The concept of support is central to data mining. While the definition of support in 
transaction databases is intuitive and simple, that is not the case in graph datasets and databases. Most 
mining algorithms require the support of a pattern to be no grater than that of its subpatterns, a property 
called anti-monotonicity or admissibility. This study examines the requirements for admissibility of a 
support measure. Support measure for mining graphs are usually based on the notion of an instance 
graph-a graph representing all the instances of the pattern in a database and their intersection 
properties. Necessary and sufficient conditions for support measure admissibility, based on operations 
on instance graphs, are developed and proved. The sufficient conditions are used to prove ad 
admissibility of one support measure-the size of the independent set in the instance graph. Conversely, 
the necessary conditions are used to quickly show that some other support measures, such as weighted 
count of instances, are not admissible. 
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INTRODUCTION 
 
 The primary goal of data mining is to discover 
interesting patterns in data. Since patterns that appear 
frequently may interesting or important, a primitive 
sub-task in achieving this goal is answering the 
question: how frequently does pattern P appear in a 
dataset D? (we use the term dataset through the paper, 
to cover all sorts of data, including data in relational 
database, semistructured databases, web data, etc.). The 
answer of this question is then used to decide whether a 
pattern is interesting, either individually or in relation to 
other patterns. Usually the frequency of a patterns P is 
called support of P (in D). An early appearance of this 
was in the classical paper by Agrawal et. all on mining 
association rules[1] . 
 Thus, a count of the number of pattern appearances 
in the dataset is a method commonly used to define the 
support measure. In the simplest case, a pattern is a set 
of items, and the dataset D is a set of transaction.  The 
standard measure support for itemsets in the literature is 
as   follows.   Let    D    be   a   set  of   transactions,                                                                                                                        
and  
I = <i1,.., ik> be an item set.  The support S of the 
itemset in the dataset is defined as  
 

1 k| t | t D, i , ,i t |
S(I)

| D |
∈ < >∈= � . 

 Usually in data mining tasks, a  number 10 ≤≤ σ , 
called the minimum support threshold is provided to the 
system. An itemset I that has S(I) ≥ σ is called frequent. 
Defined in this manner, the support of an itemset I is 
always not greater than the support of any of the subsets 
of I. This  fundamental property of the support measure 
is important, because it is intuitively appealing, but also 
because of the following obvious corollary: an itemset I 
can be frequent, only if all of the subsets of I are 
frequent. The latter property (alternately called the 
Apriori principle, anti-monotonicity, or downward 
closure, in varied related work (Ng et al.,[21]) has been 
of major importance in numerous data mining 
algorithms , used to prune candidate patterns and 
greatly improve performance. This property is the de-
facto standard assumption for algorithms, which relay 
heavily on anti-monotonicity. These algorithms range 
from the apriori algorithm for structured data[1] to 
algorithms to mining paths[4], trees[27] and graphs[15]. 
 Since data sets in many applications are not 
limited to transaction database, and patterns are mot 
limited to itemsets, a more general notion of support is 
required.  
 A simple generalization of the scheme used in 
transaction databases is the following:  The support of a 
pattern P in a dataset D is a measure of frequency of the 
instances   of   P  in D. A support measure is a function  
S:D x P → }0{∪ℜ+ that for each pattern P in dataset 
D provides its support, a non-negative real number. A 
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pattern P is called frequent if its support measure S(P) 
is greater than or equal to a support threshold TS. 
Definitions of support in many types of datasets also 
usually observe the above fundamental property of 
support measures. The importance of the fundamental 
property of support measure (i.e. anti-monoticity or 
downward closure) for itemsets indicates its general 
applicability, leading to the following definitions. 
 
Definition 1 (Admissible support measure): A 
support measure S is admissible if for every dataset D 
and pattern P we have S(P) ≥ 0,  and f or  every  pattern  
P’ ∋  P’⊆P (meaning that P’ is  a subpattern of P) we 
have S(P’) ≥ S(P). 
 Whereas in the past, data mining was mainly 
applied to structured data and flat files, there is growing 
interest in mining and discovering frequent patterns in 
semi-structured data[26] such as web data[12, 27, 3], 
chemical compounds data[28] or biological data[24]. 
Although for itemset and transaction databases, the 
obvious definition of support is admissible, it is not 
obvious that this is the case for other types of patterns. 
 Specifically, realizing that in data on the world-
wide and in object databases, topology is meaningful, a 
data mining task that has been increasing interest in the 
community is to find frequent patterns (subgraphs) in a 
dataset (a large graph). In this case, there are several 
different intuitive ways to define support, but not all of 
them are admissible, as show in Section 2. In this paper, 
our goal is analysis of formal properties of the support 
measure rather than graph mining algorithms. After 
formally defining the notion of an instance of a pattern 
in the dataset, we find necessary and sufficient 
conditions for admissibility (in the sense of the above 
definition) of a support measure. Our results are 
applicable to both directed and undirected graphs, and 
to both labeled and unlabeled graphs. 
 Finding an admissible support measure for graphs 
is not so easy. The naïve support measure which counts 
the number of instances of a pattern in a graph is shown 
in Section 2 to be non-admissible. An intuitive support 
measure-size of maximum independent set of the 
instance graph (MIS)-is proposed and shown to be 
admissible. The use of MIS as support measure was 
first suggested in[28]  and was show to be useful as a 
major component of an apriori-based algorithm for 
graph mining. The major contribution of the present 
paper is the formal definition and proofs for sufficient 
and necessary conditions for any admissible support 
measure. 
 The rest of the paper is organized as follows. 
Section 2 defines the notions of a graph pattern 

instances and instance graph, examines the intuitive 
definitions of support for graphs, and defines the useful 
admissible MIS support measure. Section 3 defines 
operations on instance graphs, and use them to show 
our main result, the necessary and sufficient conditions 
for admissibility. Section 4, shows that the MIS 
measure is admissible, examines other support schemes 
and discuss generalizations of our results. Finally, the 
related work is examined and compared to ours. 
 

INSTANCE GRAPHS AND BASIC SUPPORT 
MEASURES 

 
 We begin with assumption about patterns and 
datasets, used in most of this paper. Henceforth, a 
pattern is assumed to be a labeled graph, either directed 
or undirected. A dataset is another (usually much 
larger) graph of the same type as the pattern. Although 
we assume in our derivation that labels, if they exist, 
are attached to nodes, all of our results apply for edge-
labeled graphs as well. Labels are from some finite 
alphabet Σ. We also allow (and use in our proofs) 
unlabelled graphs, as these are equivalent to a special 
case where |Σ| = 1. 
 
Instances and instance graphs: Let D be a (not 
necessarily connected) labeled dataset graph, and P be 
the pattern for which we are searching – a connected 
labeled graph. 
 
Definition 2:. Subgraph G of D is an instance of P in D 
just when there exists a label-preserving isomorphism 
between P and G. 
Note that according to definition 2, instances of P in D 
are allowed to overlap, but two instances that have 
exactly the same set of edges and same set of vertices 
are considered to be the same instance. Let M be the set 
of all instances of P in D (i.e. subgraphs of D that are 
label isomorphic to G). Two instances G1, G2 ∈ M are 
said to be intersecting denoted by G1 ∧ G2, if they have 
at least one edge in common. If the instances do not 
have an edge intersection in D, this is denoted by 
G1||DG2. 
 
Definition 3: (Instance Graph) For a pattern P its 
instance graph in D, denoted IP(D) is an undirected 
graph (VP, EP), with exactly one node standing for each  
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Notation used in this paper 
D Dataset 

P, p Pattern and subpattern, respectively 
G1 ∧ G2 Graphs G1, G2 have a common edge. 
G1||DG2 Graphs G1, G2 have no common edge 

IP, IP Instance graphs of P and p, respectively. 
µ Mapping from nodes of an instance to a 

subpgrahs of D. 
f(IP) Induced support function 

SubInstances (u) Subgraphs of µ (u) isomorphic to p 
SuperInstances (u) Subgraphs of µ (u) isomorphic to P 

IpP IP modified by series of clique 
contractions, additions, and edge 
removals. 

λ Partial mapping from nodes of IpP  to the 
nodes of IP 

π Induced mapping from nodes of IpP into 
the instances of p in D 

δ Maximum degree of IP nodes 
MIS Maximum independent set measure 

 

 
 

Fig. 1: Graph pattern support 
 
instance of P in D. denoted by µ the mapping from 
nodes in VP to instances (subgraphs of D). The edges in 
the instance graph are EP = {{u, v}| µ (u) ∧ µ (v)}. That 
is, an edge in the instance graph exists just when the 
respective instances intersect. When the dataset D is 
unambiguously understood, we sometimes omit D for 
brevity and use IP to denote IP(D).  
 
Definition 4: (subpattern) Let D be a labeled graph, P a 
graph pattern, and p a subgraph of P, denoted by p ⊂ P. 
We call p a subpattern of P. Likewise, we refer to P as a 
superpattern of p. 
 In the rest of the paper, P and p denote 
respectively a pattern and its subpattern in D. By 
definition, there exits a mapping µ are implicitly 
understood, we denote the subgraph relation µ(v) ⊂ µ 
(u) between instances in D, by v ⊂ u.  

Intuitive support measures for graphs: When 
considering graph patterns, we interpret set inclusion 
(as used in Definition 1) as the subgraph relationship. 
Therefore a support measure for graph patterns is 
admissible if the support for a graph pattern P is never 
strictly greater than the support of any of its subgraphs. 
The most intuitive support measure is the number of 
instances of the pattern in a dataset. This measure, 
however, is not admissible.  
 

CONDITIONS FOR ADMISSIBILITY 
 
Our conditions for admissibility are based on the 
instance graphs. Essentially, our main result (formally 
stated later on) is paraphrased as follows: an (instance 
graph based) support measure is admissible if and only 
if it is non-decreasing under operations on the instance 
graph (clique contraction, node addition, and edge 
removal, defined below). 
The motivation for these operations is that it is often 
easier to show that a support measure fulfils the 
conditions of the theorem, than to show admissibility of 
a measure by definition of admissibility. We begin by 
defining the operations used in our conditions for 
admisitability. 
 
1. Operations on instance graphs: We define the 
following three operations on graphs: clique contraction 
(clique is defined as fully connected subgraphs), node 
addition, and edge removal. Refer to Fig. 2 for 
examples of these operations. All of the operations are 
assumed to be on an undirected, unlabelled, graph G = 
(V,E), as we only use them on instance graphs. 
 
Definition 4: (Clique contraction) Clique contraction 
operates on a subgrpah of G forming a clique  = (VK, 
EK) in G, resulting in a graph G’ = (V’, E’) as follows. 
Let k be an arbitrary node in VK representing the 
contracted clique. The graph G’ resulting from clique 
contraction has nodes V’ = V\VK ∪ {k}, and the edges: 
E’ = (E ∩ {{u, v}|u, v ∈ V’}) ∪ {{v, k}|v ∈ V’ – {k} ∧ 
∀u ∈ VK {v, u} ∈ E}. 
Intuitively, clique K is contracted into a single node k, 
which remains adjacent only to those vertices of V that 
were adjacent to every node K in G. This definition 
applies to any clique, not necessarily a maximum 
clique.    For    the    sake of    uniformity,    a  subgraph  

 
Fig. 2: Examples of Operations on Instances Graphs 
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consisting of a single node is considered to be a clique, 
and in this case clique contraction does not change the 
graph. 
 
Definition 5: (Node Addition) Node addition operates 
on G and a new node u that is not in G, resulting in a 
new graph G’ = (V’, E’) whose node and edge sets are 
V’ = V ∪ {u}, u ∉ V and E’ = E ∪ {{u, v}| v ∈ V}. 
 Intuitively, node addition adds a new node to the 
graph, that has an edge with all other nodes in he graph. 
 
Definition 6: (Edge removal) Edge removal removes 
an edge e from G. The resulting graph is G’ = (V, 
E\{e}). 
 
2. Sufficient conditions for admissibility: We 
formulate a sufficient condition for support measure 
admissibility in terms of operations on the instance 
graph we restrict the discussion to support functions 
defined on the instance graph topology and 
combinatorics, as in the following remark (that is, the 
function can take into account anything that is based on 
node counts, edges between nodes, etc. but is not 
allowed treat two node differently based on any node 
labels or identity, such as the identity of the instances 
the node represent in the dataset). 
 
Remark: For every dataset D and pattern P, a support 
function f(P, D) evaluates to a number in R+. 
Whenever, for every pair (P, D), the instance graph IP 
of P in D is defined unambigusly ( as we have done for 
graph patterns and datasets), we define the induced 
support function f(IP ) = f(P, D). We henceforth refer to 
the induced function, which we denote by f(IP ), instead 
of referring to f(P, D). 
 
Theorem 1: A positive valued function f(IP ) is an 
admissible support measure over graph patterns IF it is 
non-decreasing under all of the following operations on 
IP: 
(A1) Clique contraction: k = Contract(K), where K is a 
clique , and k is the node representing the clique after 
the contraction operator. 
(A2) Node addition: v = Add(), where v is the new node 

added by the operator. 
(A3) Edge removal: Removal(e), where e is an edge to 

be removed. 
 
Proof: We prove that Ip can be obtained from IP by 
applying only the operations A1, A2, A3. thus any 
function on instance graphs that does not decrease 
under these operations is admissible, since its value on 
Ip is greater than or equal to its value on IP. The proof is 

constructive: given any arbitrary instance graphs of 
pattern and subpattern (as well as an arbitrary instance 
mapping function µ) we construct the sequence of 
operation leading from IP to Ip such that the mapping µ 
is not violated. 
 Let IP =  (VP, EP) and Ip = (Vp, Ep) and let µ be the 
mapping from node of the instance graphs to the actual 
instances (subgraphs of the dataset D). We define the 
mapping SubInstances: VP → 2Vp as follows: 
SubInstances(u) = {v ∈ Vp | µ(v) ⊂ µ(u) )} 
In other words, SubInstances(u) is a set of all the 
subInstances of the instance u (actually, the above 
refers to the nodes in the respective instance graphs 
representing these instances).  Similarly let us define 
SuperInstance:  VP → 2VP as follows:  
SuperInstances(v) = {u ∈ VP | µ(v) ⊂ µ(u) )} 
Intuitively, SuperInstance(v) is the set of all 
Superinstances that contain a Subinstance v. 
In general, the sequence of operations will be to: 
start from IP, 
perform clique contractions and node additions in order 
to get the nodes Vp of graph Ip, and 
perform edge deletions as necessary. 
 In the construction process, we will use the graph 
IpP = (VpP, EpP), initially equal to IP, and modify it, as 
well as construct a partial mapping λ will be an 
isomorphism. We also construct a new instance 
mapping function π and show that it is consistent with 
µ under the constructed isomorphism. (For conciseness, 
we do not index these mappings by the step number, 
because the mapping of a node never changes after it is 
first defined. For every instance graph node v we use π 
(v) = ⊥, and λ(v) = ⊥ to indicate that the respective 
mapping is currently undefined for v). Intuitively, π is a 
mapping from nodes of  IpP to the instances of the 
subpattern p in the database. Its “job” is to show that at 
the edn of the process IpP  is indeed isomorphism to Ip 
 As stated above, the sequence of operations begins 
with a sequence of clique contractions. During clique  
contraction steps we will also use a list of “marked” 
nodes (from IP) at each step, denoted marked, and a list 
of “covered” nodes from Ip denoted covered. 
Construction proceeds as follows: 
 
• Let IpP = IP, marked = φ and covered = φ, and for 

every node v ∈ VP set π(v) = λ(v) = ⊥. 
• Let u be a node in Ip \ covered, such that V = 

SuperInstances(u) \ marked is non-empty. If there 
is no such node u, go to step 4. 

• (Note that the nodes V from a clique K in IpP, since 
each stands for a Superinstances of the same u). 

 Let k = Contract(K) in IpP    (changing IpP as 
a side-effect), 

 marked = marked ∪ V, Covered = Covered ∪ {u}, 
λ(k) = u,  π(k) = µ(u), and go to step 2. 
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• For all u in Ip\Covered, do: 
(a). Add a unique new node v to IpP using the 
operator v = Add(). 

 (b). Let λ(v) = u, and π(v) = µ(u). 
• For every edge e = {v, v’} ∈ IpP such that 

)(||)( 'vv D ππ , do Remove(e) from IpP. 
 
Note that the algorithm has considerable non-
determinism in step 2, but any arbitrary selection of u at 
this step is sufficient. Clearly, IpP is constructed from IP 
using only the required operations. 
(Fig. 3)    illustrates   the   construction    algorithm.   In  
(Fig. 3), (a) shows a (labeled, undirected graph) dataset, 
with a pattern P shown in (b) and a subpattern p shown 
in (c). The pattern P has 4 instances, three of which 
share at leas one edge in common (hence the instance 
graph IP shown in (d) contains a 3-clique), and one edge 
–disjoint instance. The subpattern p also has 4 instances  
with an instance graph shown in (e). One instance 
mapping function consistent with the graphs is as 
follows (see 3(a) and (d)): µ(u1) is the pattern including  
the node B at the bottom. µ(u3) and µ(u4) are the 
patterns consisting of the topmost triangle (T4) and of 
the B nodes at the top, respectively. µ(u2) is T3, the 
second triangle for the top, plus the top-left B node. A 
consistent mapping for the subpattern would be (see 
3(a) and (e)): µ(u1) the bottom tringle (T1), and µ(u2) is 
T2, the second triangle from bottom, µ(u3) is T3, the 
third triangle from the bottom, and µ(u4) the top 
triangle, T4. Note how each instance has an edge in 
common with other instances just as required by Ip.  
(Fig. 3) (f), (g), and (h) shows the instance graph 
transformation, as follows. 
 In step 2 of the algorithm, suppose that u = u4 is 
chosen. Its superinstances are those represented by V = 
{v3, v4}. This clique is contracted in step 3, {with, the  
 

 
Fig. 3: Illustration of construction azgorithm 

node representing the clique being k = v3) resulting in 
the graph shown in Fig. 3(f).  At this step, u4 is covered 
and {v3, v4} are marked. At the next iteration, we might 
choose u3 (which is then added to covered), with a 
superintance v2, which is marked. Contracting a 
singleton clique does not change the graph. At the final 
iteration, u1 is selected (and added to covered), and its 
superintance v1 is marked and contracted (again, no 
change in the graph). There is no further iteration 
because u2, the only uncovered node has no 
superinstance, so we go to step 4. 
 In step 4, the only uncovered  node  is  u2,  and  the  
v = Add() operation is done, resulting in the graph 
depicted in Fig. 3(g). Finally, in step 5, the edge at the 
bottom is removed, resulting in the instance graph of 
Fig. 3(h). Following the mapping generated in the 
construction will show consistency of the mappings, as 
well as the topology, to the instance graph Ip of Fig. 
3(e). 
 
Necessary conditions for admissibility: In this 
section, we show that the above sufficient conditions 
for admissibility are also necessary, in the following 
sense. 
 
Theorem 2: Let f be positive real-valued function 
defined on pattern instance graphs. Then f(IP) is an 
admissible support measure only if it is non-decreasing 
under all of the operations: clique contraction, node 
addition, and edge removal on  IP 
 
Proof: (outline): It is sufficient to show that there exist 
an instance graph, a required operation, a pattern and 
subpattern, and a dataset confirming to the instance 
graph and operation, to show that a support measure 
violating the conditions is inadmissible. However, we 
prove the theorem in a stronger sense. Given an 
arbitrary instance graph IP = (VP, EP), and an arbitrary 
required operation (clique operation, node addition, or 
edge removal) on IP, (which results in a valid “sub-
instance” graph Ip), we construct a pattern P, a 
subpattern p, and a dataset D, such that IP is the instance 
graph for P in D, and Ip is the instance graph for the 
subpattern p in D. Thus, if a support measure f ever 
decrease over any such operation (and for any instance 
graph), there will always be a dataset, pattern, and 
subpattern, for which the support of the subpattern is 
smaller than that of the superpattern, thus violating the 
admissibility of f. 
 
3.1. Auxiliary graphs an their intersections: We 
construct  the required dataset from labeled graph 
patterns that have the following structure. 



J. Computer Sci., 3 (9): 708-716, 2007 
 

 713 

Let δ = max {d(v)| v ∈ VP}. We define P to be the 
labeled graph pattern as in Fig. 4(a) with |VP| edges 
labeled {a, a} (the labels are actually on the vertices, 
but we refer to edges labeled by pairs pf labels as a 
shorthand for referring to edges with incident nodes 
labeled by their indicated pair of labels) and δ edges 
labeled {d, d}. Let p be a subpattern of P, the subgraph 
induced  by   its    {a,a}-edges    and    {a,b}-edges   see 
 (Fig. 4(b)). For convenience , we call each {a, a}edge a 
leg, and each {d, d} edge an arm. The subgraph 
consisting of all edges {a, a}and edges {a, b} of pattern 
is called a bottom (part of the pattern). We use the 
notation Bottom(P) to denote the bottom subgraph of P. 
Likewise, the subgraph consisting of all the edge {d, d} 
and edges {c, d} of pattern is called a toP (part of the 
pattern). The corresponding function Top(P) is used to 
denote the top of subgraph P. The edge {d, c} in P is 
denoted by Torso(P). Thus, P has a top (which in turn 
has δ arms), a torso, and a bottom (which in turn has 
|V(IP)| legs). The subpattern p has just the bottom part. 
he same terms will also be sued to refer to such 
subgraphs of instances n the dataset D. 
 We define several ways which instances will be 
allowed to overlap in the dataset D (these nodes will 
also be called intersection modes). It is sufficient to 
explain these overlap types for two instances of P 
and/or p, denoted by G1, G2, and g1 (see Fig. 5). 
I1: (Full) Bottom overlap: Bottom(G1) = Bottom(G2). 

This type of intersection is used to indicate that G1 
and G2 are adjacent in IP, but (since p is all 
bottom) the respective instances of p are all the 
same instances, thus correspond to a single node in 
Ip. 

 
Fig. 4: Pattern and subpattern 
 

 
 
Fig. 5: Intersections 
 
I2: (Partial) Leg overlap: Bottom(G1) and Bottom(G2) 
overlap at exactly one leg (i.e. have a single common 
edge). This type of intersection indicates  

that G1 and G2 are adjacent in IP, and the 
respective subpattern instances are distinct and 
adjacent in Ip.  

I3: (Partial) Arm overlap: Top(G1) and Top(G2) 
overlap at exactly one arm (i.e. have a single 
common edge). This type of intersection indicates 
that G1 and G2 are adjacent in IP, and that 
respective subpattern instances are not adjacent in 
Ip. Such overlaps will be used to represent instance 
graph edges deleted by an operation. 

I4: Truncated (Partial) Leg Overlap: g1 and 
Bottom(G1) overlap at exactly one leg (i.e. have a 
single common edge). This type of intersection 
indicates that g1 is not a part of any superinstances, 
but its representation in Ip is adjacent to a node in 
Ip representing a subinstance that is part of some 
superintance G1. 

 
 During the construction of the dataset, all 
intersections of types I2, I3, 4 are subject to the 
intersection condition: for instances G1, G2, G3 of P or p 
if G1 intersects G2 at edge e, and G2 intersects G3 at 
edge f, the e ≠ f. Note that the number of arms and legs 
of the patterns is specified as sufficiently large such that 
this condition can always be met in the construction.   
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3.2. Construction of the dataset: In this section, we 
construct the dataset for any given instance graph IP and 
any given required operation of type A1, A2, or A3. In 
all cases, the dataset D consist of |VP| instances of P, 
and the requisite number if instances of p. The 
constructive differs mostly in the way the pattern 
instances are made to intersect. When constructing 
overlaps, the actual construction is arbitrary as long as 
the intersection condition is obeyed. For each of the 
three operation types, we construct the dataset D such 
that IP is the instances graph of P in D, and that the Ip is 
obtained by the operation is the instance graph of the 
subpattern p in D. Intuitively, it is clear why the 
construction below should work. 
 
Construction for A1-clique contraction : Let IP be an 
arbitrary undirected graph. Let K be the contracted 
clique, V be the set of the nodes in contracted clique, 
and k be the node representing the clique (and 
remaining after contraction). 
Let Ip be the undirected graph resulting from the 
operation k = contract (K) in IP. The dataset DA1 
consists of |VP| instances of P, such that |V| of them (the 
ones corresponding to the contracted clique) intersect 
by (full) bottom overlap (this creates kind of a “star 
Fig.). The Intersections among the other instances are 
determined by IP as follows. Let v, w ∈ VP\V. The 
instances represented by v and w have a leg overlap just 
when {v, w}∈ EP. Now, partition the set of nodes VP\V 
into VA, the set of nodes adjacent to k after the 
contraction (in IP, these nodes are adjacent to all nodes 
in V), and VO, the set of nodes not adjacent to k after 
the contraction. For every v ∈ VA, let the instance 
represented by v have a leg overlap with the instance 
represented by k. For every v ∈ VO, and w ∈ V such 
that {v, w} ∈ EP, let the respective instances have an 
arm overlap. (Intuition: consider an edge {v, w} ∈ EP. 
Clearly, if v ∈ VO, the {v, w} does not appear in Ep 
since arm overlap does not affect p, while if v ∈ VA the 
edge remains in Ep because a leg overlap indicates 
intersection in Ip as well). 
 
Construction for A2-node addition: Let IP be an 
arbitrary undirected graph, u = Add(), and Ip be the 
graph resulting from this node-addition operation. The 
dataset DA2 consists of |VP| instances of P (each also 
containing one instance of p), and one additional 
instance p that corresponds to u, with the intersections 
among instances determined by IP as follows. For all v, 
w ∈VP, the respective instances have a leg overlap just 

when {v, w} ∈ EP. The instance of p corresponding to u 
has a truncated (partial) leg overlap with all other 
instances. (Clearly the leg overlaps will result in the 
required edges in Ep, but the edges do not appear in EP 
because there is no instance of P containing this 
instance of p).  
 
Construction for A3-edge removal:  Let IP be an 
arbitrary undirected graph, and Ip the graph resulting 
from Remove(e), with e = {v, v’} the removed edge. 
The dataset DA3 consists just of |VP| instances of P (each 
also containing one instance of p), with the intersection 
among instances determined by IP as follows. For all u, 
w ∈VP, the respective instances µ(u) have a leg overlap 
just when {u, w} ∈ EP – {e}, and an arm overlap just 
for the instances represented by v and v’. (clearly an 
edge resulting from an arm overlap does not exist in 
Ep). 
The construction for the three cases completes the proof 
of Theorem 2, which also immediately implies the 
following potential useful corollary: 
 
Corollary 1: Every graph is an instance graph, i.e. for 
every graph G one can construct a dataset graph D and 
a pattern P such that G is the instance graph of P in D. 
 

DISCUSSION 
 
 In this section, we examine non-trivial admissible 
support measure, compare related work, and discuss 
additional types of datasets (other than graphs) where 
our results apply. First, consider the support measure. 
As shown in Section 2.2, simply counting instances is 
not admissible. This is due to the fact that instances can 
share edges: since superpattern have more edges than 
the subpattern, this potentially creates additional 
partially overlap instances for the superpattern. 
 
1. Independent set: The above observation on edge 
sharing between instances leads to the following 
intuition: count instances, but do not allow instances 
which overlap into the count. There are numerous ways 
to do this, but one obvious method is to find the set of 
non-overlapping instances, and count its size. Since the 
instances graph contains all information about the 
instances and their overlaps, it is sufficient to define 
this type of support function over the instance graph. A 
set of non-overlapping instances maps uniquely to an 
independent set in the instance graph i.e. a set of 
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vertices in the instance graph, none of which are 
connected by an edge in the instance graph. 
 One particular such measure is the size of the large 
independent set in the instance graph, i.e. the MIS 
measure. Our results justify using the maximum 
independent set size as a support measure. 
 
Corollary 2: Maximum independent set size of IP is an 
admissible support measure. 
 
Proof: Clearly, edge removal does not decrease the size 
of the maximum independent set of a graph, and neither 
does node addition, since no edges between existing 
nodes in the graph are added. Thus, it suffices to show 
that clique contraction can not decrease this size. Let s 
be an independent set of maximum size in IP, and let K 
be a clique in IP. Observe that clique contraction adds 
no edges to nodes outside of K (other than to k, the 
“contracted clique” new node). Thus, if K contains no 
nodes from s, then s is still an independent set after the 
operation. Alternately, K contains exactly one node v 
from s (there can not be more than one node of K from 
s). None of the neighbors of v are in s, and thus, by 
contraction of the clique contraction operator, none of 
the neighbors of k after the operation are in s. Since no 
edges except some incident on k are added by the 
operator, then (s\{v})∪ k} is an independent set after 
the operation,  and its is size is not less than |s| as 
required. 
 It is unfortunate that the problem of determining 
the maximum independent set size in graph is NP-hard, 
and hence independent set size is not very efficient as a 
support measure. 
 Although the support measure is a central issue in 
data mining, there are few attempts to define properties 
of support generally. As mentioned before, the common 
support measure is defined for transaction databases as 
the ratio of the number of transactions containing an 
itemset to the total number of transaction in the 
database[1]. Obviously, this measure is admissible. In[4] 
Chen et al. define a support measure for mining web 
transversal in a form of trees. Each transaction is a tree, 
and the support of a subtree is defined as the number of 
transactions containing the subtree, but with the 
restriction that only transaction with trees which are not 
included in other transaction are counted (this is a very 
special restriction which is quite difficult to generalize). 
it is easy to show that because of the special structure of 
trees, this measure is admissible. 

 The mining of frequent.[27]  structures of 
documents in another form of trees. They are interested 
only in rooted tree patterns and define suppot as the 
number if occurrences of such (maximal) trees in a set 
of documents. Again, this measure is obviously 
admissible. 
 The most related papers on graph mining are 
Kuramochi[15] and Han[11]. In both papers, the support is 
defined as in transaction databases. Each transaction a 
graph and the support is defined as the number of 
transactions containing the pattern graph (no matter 
how many times). Again, it is obvious that this support 
measure is admissible. It is also obvious that this 
measure is not appropriate for a dataset defined as a 
single graph, because such a support measure can only 
result in values of either 0 or 1 in this case, no matter 
how many times the simple pattern occurs in the large 
graph. Earlier papers in graph mining and their 
applications are[4, 16, 27, 15, 11]. 
 

CONCLUSION 
 
 In this paper we discus a general notion of support 
especially useful for mining of graph dataset and 
database. We defined the concept of admissible support 
measure and proved sufficient and necessary conditions 
for admissibility. An intuitive measure (size of 
maximum independent set) was presented and show to 
be admissible. Future work includes finding other 
instances of admissible support measure which are of 
interest for different classes of graphs.  
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