
Journal of Computer Science 3 (8): 658-665, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Steven Chamberland, Department of Computer Engineering Ecole Polytechnique de Montreal
 P.O. Box 6079, Station Centre-Ville, Montreal (Quebec), Canada H3C 3A7

658

An Improved Resource Reservation Protocol

Desire Oulai, Steven Chamberland and Samuel Pierre

Department of Computer Engineering Ecole Polytechnique de Montreal
P.O. Box 6079, Station Centre-Ville, Montreal (Quebec), Canada H3C 3A7

Abstract: The classical resource reservation protocol (RSVP) is a flow-based signaling protocol used
for reserving resources in the network for a given session. RSVP maintains state information for each
reservation at every router along the path. Even though this protocol is very popular, he has some
weaknesses. Indeed, RSVP does not include a bidirectional reservation process and it requires refresh
messages to maintain the soft states in the routers for each session. In this paper, we propose a sender-
oriented version of RSVP that can reserve the resources in both directions with only one message, thus
reducing the delay for establishing the reservations. We also suggest a refreshment mechanism without
any refresh message which could be applied to any soft states protocol. Simulation results show that
the proposed protocol is approximately twice faster than RSVPv2 for establishing bidirectional
reservations with almost no control overhead during the session.

Key words: Internet protocol (IP), quality of service (QoS), resource reservation protocol (RSVP),

setup time, signaling load, soft state refreshment, failure scenarios.

INTRODUCTION

Nowadays, many applications such as voice and
video applications have stringent quality of service
(QoS) requirements. However, the Internet protocol
(IP), which is the most used protocol at the network
layer, lacks of QoS mechanisms. That is why many
QoS architectures and protocols have been proposed,
for instance, integrated services (IntServ), differentiated
services (DiffServ) and multiprotocol label switching
(MPLS) (see Ni and Xiao[9] for details concerning QoS
in IP networks).

The classical resource reservation protocol
(RSVP), such as defined in RFC 2205[5], is a flow-based
resource reservation protocol. It has been originally
created to work with the IntServ [4] architecture.
Basically, IntServ implements three classes of services:
guaranteed service (GS), controlled load (CL) and best
effort (BE). GS guarantees maximal delay and
bandwidth. Controlled load offers a QoS similar to
what can be offered in a network without congestion
and BE does not offer any guarantee.

RSVP allows signaling for multicast and unicast
sessions. For instance, when Router A wants to
establish a session with Router B, it sends a PATH
message to Router B. The PATH message collects
information about the resources on the routers on the
path used from Router A to Router B and it also

establishes a PATH state in each router. The PATH
states also acts as a passive reservation with no physical
reservation. When Router B receives the PATH
message, it responds with a RESV message that is
routed along the reverse path taken by the PATH
message. The RESV message reserves the resources by
creating a RESV state in each router. Such a protocol is
called a receiver-oriented protocol. The RESV message
physically reserves the resources that are available
firstly by the flow for which the reservation has been
requested. The PATH and RESV states are soft states,
i.e., they will be deleted after a certain timeout if there
is no refreshment. Refresh messages are scheduled each
I ∈

[0.5R, 1.5R] in order to avoid synchronization

between routers (where R is a common predefined value
for all the routers within the RSVP domain).

Refresh messages are also useful for path
restoration in failure scenarios. When a failure occurs,
the PATH refresh message will be sent through the
network to pass around the failed network elements and
reach the destination. For a faster restoration, RSVP
implements the local repair process[6]. With this
process, if a failure occurs on a link adjacent to a router,
its RSVP module sends a PATH refresh message to
restore the segment of the path passing through the
failed link. As a result, the overall path may not be
optimal.

RSVP has two main drawbacks. First, RSVP does
not support bidirectional reservations.

J. Computer Sci., 3 (8): 658-665, 2007

 659

 In fact, two unidirectional reservations can be used
for bidirectional reservations. However, this implies
more delays and if we have to recover from a failure or
to signal new resources after a handover in a mobile
network, these delays could be a problem. The second
drawback is that refresh messages should be sent
periodically.

In this paper, we propose RSVP+, an improved
RSVP with bidirectional signaling and states refresh
mechanisms without refresh messages.
 The paper is organized as follows. Section 2
presents related works followed by the presentation of
the protocol RSVP+ in Section 3. In Section 4, we
present and analyze the simulation results and, finally,
conclusions and further works are presented in Section
5.

RELATED WORKS

 Over recent years, many improvements have been
proposed for RSVP. RSVP-TE (Traffic Engineering),
typically used with MPLS [3], distributes the labels to
the routers and allows the sender to explicitly choose
the path for a given session. With RSVP-TE, when
Router A wants to initiate a bidirectional reservation to
Router B, it sends a PATH message which distributes
labels in downstream direction and other labels are
distributed by the RESV in the reverse direction.
RSVPv2[10] used almost the same principle but does not
work with MPLS. Abondo and Pierre[1] introduced a
sender-oriented RSVP for fast signaling. The
reservation is done by the PATH messages. RFC 2961
[2] proposes to bundle the refresh messages between two
adjacent routers. The bundles many refresh messages
and sends them in one packet, thus reducing the amount
of overhead needed for the refresh messages. There is a
gain on the IP overhead but the RSVP messages are
unchanged. Moreover, RFC 2961[2] introduces a
Summary Refresh message (SRefresh). In the SRefresh
message, there is an object MESSAGE ID containing
an identifier, called MESSAGE IDENTIFIER, used to
identify the PATH messages. As a result, the routers do
not need all the content of the refresh messages because
they are able to identify the session and update the
timers. These identifiers can be aggregated in one
packet. These proposals reduce the size of the refresh
messages, but one problem remains if one or more
refresh messages are lost on their ways. The RFC
2961[2] suggests a MESSAGE ID ACK to acknowledge
the messages, but with an increase in signaling load.

Presently, the next steps in signaling (NSIS)
working group of the IETF works on protocols for
signaling information about a data flow along its path in
the network. A framework for NSIS signaling has been
proposed in the RFC 4080[7]. The NSIS framework is

composed of two layers. The upper layer, called NSLP
(NSIS Signaling Layer Protocol), includes the signaling
applications and the lower layer, called NTLP (NSIS
Transport Layer Protocol), provides a generic transport
service for those applications. Due to its generic
framework, NSIS runs over many transport protocols.

NSIS introduces a session identifier which is
different from the flow identifier. One session can carry
information related to several signaling applications.
The session identifier allows NSIS to support mobility
easily. If a flow identifier changes along the path, the
flow can still be associated with the signaling session. It
is assumed that applications controlled by a single
session could perform bandwidth sharing[8]. IntServ and
DiffServ could be used with NSIS.
In the case of signaling for QoS, NSIS has many
features. First, NSIS QoS allows sender-initiated and
receiver-initiated reservations. For bidirectional
reservations, a common message can reserve resources
on both directions if the physical path is the same.
Otherwise, two unidirectional processes have to be
initiated. For scalability, NSIS QoS uses a soft state
mechanism and the refresh is done with a reduced
message containing a session ID as in RFC 2961[2].
However, the lost of refresh messages is still a problem.

THE NEW VERSION OF RSVP: RSVP+

 RSVP+ is an improved RSVP with new features.
First of all, because most of the Internet
communications are unicast, RSVP+ is defined for
unicast sessions although some ideas might work with
multicast sessions. By this way, RSVP+ is less complex
than RSVP. Furthermore, RSVP+ is a sender-oriented
reservation protocol, i.e., the reservation is done by the
PATH message. It is supposed that the sender is aware
of the requested QoS.

Resources Reservation: When Router A wants to
initiate a QoS session with Router B, it sends a PATH
message as in RSVP. The PATH message creates the
PATH and the RESV states on the router along the path
with the information contained in the session object.
The PATH message can reserve the resources on the
direction from Router A to Router B, Router B to
Router A, or both. The direction can be marked in the
first two bits of the Flags field in the RSVP Common
Header which is currently unused. For instance,

• 00: for the normal direction only (from Router A
to Router B);

• 01: for the reverse direction only (from Router B
to Router A);

• 10: for both directions.
 When Router B receives the PATH message, the

J. Computer Sci., 3 (8): 658-665, 2007

 660

QoS is already configured on the path and can be used.
Next, Router B sends a RESV message to Router A as a
confirmation.

Bidirectional Reservation:The bidirectional
reservation can be done in two ways: both directions
take the same physical path or not.

Same Path: The sender sends one PATH message that
reserves the resources on both directions. If we want to
have a receiver-oriented protocol, the PATH message
works as in RSVP but collects information for both
directions and the RESV message is used to reserve the
resources. With this approach, the number of signaling
messages for establishing the bidirectional reservation
is divided by two when using the same physical path.

Different Paths: The sender sends simultaneously two
PATH messages, one for each direction. When the
receiver receives both PATH messages, it sends a
RESV message to confirm that the reservations have
been successful. If one or the two reservations have
failed, the RESV message can initiate new reservations.
The main difference between our process and NSIS
QoS is that we allow the sender to reserve resources for
the receiver without receiving a query request. As a
result, the process is faster. We can also have a
receiver-oriented protocol by utilizing the RESV to
reserve the resources.

In the sender-oriented case, the QoS is configured
along the paths as soon as the PATH messages are
received. Even if there are similarities with RSVP-TE
and NSIS QoS, the main difference is that RSVP+
allows a PATH message to reserve resources in every
direction. There is no need to wait for a query message
before launching the reservation.

States Refresh: We propose a new and simple way to
refresh the states in a router. Our proposal is based on
the fact that the refresh messages are most of the time
copies of the original messages. They are useful when a
new path has to be signaled due to a network failure or
when the specifications of the reservation have
changed. In the former case, the local repair process in
RSVP is enough to signal the new path[5]. For the latter
case, we can notice that the modification of a
reservation does not happen frequently.

Based on these observations, we can say that the
best way to know if a session is still working is to
receive packets associated to this session. Data traffic is
most of the time enough to refresh the sessions. Our
proposal is as follows. When a router receives a data
packet of a given flow, the router can update the
expiration time associated to the states of the flow. The
router can update the expiration time for each packet or
after a certain amount of time since the last update. In
this case, the states will not expire while packets are
flowing. If there is no traffic but the sender wants to
keep the reservation, it sends a classical PATH refresh

message along the path. This message is forwarded
with high priority along the path to maintain the states.
If a state expires in a router, it sends a PathTear
message to delete the reservations along the path.

With this solution, the need for explicitly refresh
messages may be reduced to nothing, improving the
bandwidth usage. Furthermore, a refresh message could
be lost while the session is still active. With
refreshment done by the data packets, each packet acts
as a refresh message so the probability to lose refresh
information is consequently reduced. Our refresh
process is more robust and the idea can be used to any
soft state protocol.

Session Blocking Reduction:In sender-oriented
reservation protocols, a potential problem is that an
uncompleted session blocks another one. For instance,
suppose that Sender #1 sends a PATH message to
Receiver #1 and, after a few seconds, Sender #2 wants
to reserve resources to Receiver #2 but the request is
refused due to the first reservation (see Fig. 1).
 We propose a solution to reduce this kind of
blocking. First, the following notation is used. Let C be
the capacity of the interface (port), Cc, the reserved
capacity that has been confirmed and cannot be used by
a new request, Cu, the unconfirmed but reserved
capacity and cannot be used by a new request, Cr, the
residual capacity that is not reserved and, finally, A, the
capacity requested on the interface. First note that C =
Cc + Cu + Cr.

Fig. 1: Session blocking example

When a request reaches an interface, there are three

cases.
Case 1: A < Cr

In that case, the request is accepted. The router
reserves the capacity and forwards the request to
the next router.

Case 2: A > C −

Cc

The request is rejected due to insufficient
capacity.

J. Computer Sci., 3 (8): 658-665, 2007

 661

Case 3: Cr < A < Cr + Cu
In that case, our proposition follows. First, the
router puts the request on hold for a timeout. The
router can keep a waiting list ordered by priority
class or arrival time. If during this timeout,
enough unconfirmed resources are freed, the
ongoing reservation will be accepted and
forwarded to the next hop. Otherwise, the
request is rejected. With this process, the setup
time may increase but the blocking due to
uncompleted reservation is reduced.

PERFORMANCE ANALYSIS

 In this section, we assess the performance of
RSVP+. The metrics chosen are the time to establish a
reservation, the restoration time when a failure occurs
and the amount of signaling messages. We compare
RSVP+ to the classical RSVP for unidirectional
reservations because RSVP and RSVP-TE have the
same procedure for such reservations. For bidirectional
reservations, we compare RSVP to RSVPv2 because
RSVPv2 has better performance than classical RSVP
for such reservations [10]. It is important to mention
that we choose RSVPv2 instead of RSVP-TE because
the latter works with MPLS and involves label
distribution. However, RSVPv2 and RSVP-TE have the
same procedure for bidirectional reservations except

Fig. 2: Test network used to analyze the setup time

that in RSVPv2, the downstream router could not
transmit after receiving the PATH messages even if
resources are reserved. As we are concerned with the
time for establishing the reservation, this detail is not
important for us. We did not choose NSIS because
some processes are similar to RSVPv2 and is still in
development.

Setup Time Reduction: Let Te be the establishment
time of a given reservation, Tt , the transfer time from
the sender to the receiver and Tc , the configuration time
of every router along the path. The following equations

can be written down for unidirectional and bidirectional
reservations.

Unidirectional Reservation
RSVP : Te = Tc +2 Tt
RSVP+: Te = Tc + Tt.

Bidirectional Reservation
RSVPv2: Te =2 Tc +2 Tt
RSVP+ : Te =2 Tc + Tt (for one PATH message),
 Te = Tc + Tt (for two PATH messages).

The simulator OPNET 11.0 is used to run our
simulations. The first test is to compare the setup time
between RSVP and RSVP+. Fig. 2 shows the test
network that is composed of two senders and two
receivers who are communicating through a
bidirectional service of 96 kbps. Sender #1 is
communicating with Receiver #1 and Sender #2 with
Receiver #2. We used three types of links: 256, 512 and
1024 kbps.

Fig. 3 shows that RSVP+ has a better setup time
than RSVP for unidirectional reservations. For
bidirectional reservations, we considered the case
where both sessions use the same physical path. If both
sessions are not required to use the same path, the
results for RSVP+ for bidirectional and unidirectional
reservations should be the same since both reservations
are launched simultaneously. Fig. 4 shows that RSVP+
has a better setup time than RSVP for bidirectional
reservations. It can also be observed that RSVP+ is
approximately twice faster than RSVPv2 for
establishing bidirectional reservations. This can be
explained by the fact that the router configuration time,
Tc, is very small. As a result, Te ≈

2 Tt for RSVPv2, Te ≈

 Tt for RSVP+ and Te (RSVP+) ≈

0.5 Te (RSVPv2).

Fig. 3: Setup time as a function of the link capacity for

unidirectional reservation

J. Computer Sci., 3 (8): 658-665, 2007

 662

Fig. 4: Setup time as a function of the link capacity for

bidirectional reservation

Restoration Time in Failure Scenarios: Failure
recovery is an important issue in networks. The
recovery time has to be short in order to quickly restore
the QoS for the affected flows. In our experiment, we
use two senders and two receivers with the same 96
kbps application. The test network is presented in Fig.
5.
 Sender #1 is communicating with Receiver #1
using RSVP and Sender #2 is communicating with
Receiver #2 without RSVP. In the no failure scenario,
the flows use the path A-C-B. After 100 seconds, we
simulate the failure of Router C. Thus, the flows are
rerouted through the path A-D-B. We use 128 kbps
links to put emphasis on congestion. Our objective is to
determine if our algorithm is able to quickly restore the
QoS on the alternate path. We use RSVP, RSVPv2 and
RSVP+ for the simulation. The results are illustrated in
Fig. 6.
 Fig. 6 shows that the QoS restoration time is
smaller for RSVP+. This can be explained by the fact
that when a failure occurs, the traffics are forwarded
through the alternate path in best effort until the QoS is
restored. Since RSVP+ configures the QoS with the
PATH message, the QoS is restored faster. So when the
path message joins the receiver, the entire alternate path
can provide the QoS end-to-end.

Fig. 5: Test network used to analyze the restoration

time in failure scenarios

Fig. 6: QoS (end-to-end delay) restoration time in a failure

scenario for RSVP, RSVPv2 and RSVP+

Refresh Reduction: In this section, we want to assess
the proposed refresh procedure. The test network,
presented in Fig. 7, has seven senders and seven
receivers who are communicating through a
bidirectional service of 96 kbps. The link capacity used
is 1500 kbps and the simulation time is 600 seconds.

Fig. 8 shows that the states are being refreshed
when using RSVP+. For each RSVP packet sent or
received, we checked the number of active RESV states
in the router. (Note that the results for PATH states are
similar.)

As mentioned before, the protocol RSVP+ is
implemented such that the states are refreshed for every
packet associated to a flow. This approach does not
have a measurable impact on the CPU utilization of the
routers (see Fig. 9).

Fig. 7: Test network used to analyze the refresh load

reduction

Fig. 8: Number of active RESV in Router B for RSVP+

J. Computer Sci., 3 (8): 658-665, 2007

 663

 Fig. 10 illustrates the number of refresh messages
(PATH and RESV) sent by Router B for RSVP,
RSVPv2 and RSVP+. The refresh interval used I is
32.92 seconds and the simulation time is 600 seconds
(i.e., 18 refresh cycles).

Fig. 9: CPU utilization of Router B for RSVP and

RSVP+

Fig. 10: Number of refresh messages sent by Router B

for RSVP, RSVPv2 and RSVP+

It can be observed that for RSVP, the number of

refresh messages at each cycle is 28 (i.e., 14 PATH
messages and 14 RESV messages). The total number of
messages for the simulation is then 546 (i.e., 18 cycles
of refresh messages, 28 setup messages and 14
ResvConf messages). For RSVPv2, the number of
refresh messages at each cycle is 14 (i.e., 7 PATH
messages and 7 RESV messages). The total number of
messages for the simulation is then 266 (i.e., 18 cycles
of refresh and 14 setup messages). Finally, RSVP+
performs a total of 14 messages for the setup of the 7
bidirectional sessions. The teardown messages are not
considered in the simulations.

Note that RSVP and RSVPv2 signaling messages
grow linearly with the simulation time where RSVP+
signaling messages stay constant at 14 messages during
the simulation time. This is an advantage for scalability
assuming a large number of simultaneous sessions flow
through the network.

The following notation is used to evaluate the
average signaling load generate by a single router:

• N, the number of routers in the network;
• B, the bundle header length in RFC 2961 (in bits);
• C, the average number of bidirectional connections

flowing through a router;
• D, the average session duration (in sec);
• F, the average number of connected interfaces on a

router;
• HIP , the length of an IP packet header (in bits);
• Ir , the refresh interval for a given router (in sec);
• MID, the length of message ID object in RFC 2961

(in bits);
• P, the length of the PATH message (in bits);
• R, the length of the RESV message (in bits);
• S, the header length of the message that contains the

messages ID (in bits);
• L, the average refresh signaling load generated by a

single router when using classical refresh procedure
(in bps);

• LB, the average refresh signaling load generated by a
single router when using bundle described in RFC
2961 (in bps);

• LS, the average refresh signaling load generated by a
single router when using SRefresh described in RFC
2961 (in bps).

First note that for RSVP+, the signaling load is

zero since there are no refresh messages. Moreover, for
RFC 2961 solutions, there is only one IP header per
bundle of RSVP messages and we consider the
acknowledgement messages. The equation of the
signaling load for each protocol follows.

 RSVP

 L

=

=)(

2

)(
1

)(
1

2

IP
r

IP
r

IP
r

HRP
I
C

HR
I

HP
I

C

++

�
�

�
�
�

�
+++

(1)

LB

=

= [])()(2

1

)2

222(
1

IPID
r

ID

IDIP
r

HSBFMRPC
I

FSCM

CMFHFBCRCP
I

+++++

++

++++

(2)

LS

=

= [])(8

1

)

2222(
1

IPID
r

IP

IDIDIDID
r

HSFCM
I

FHFS

CMCMCMCM
I

++

++

+++

(3)

J. Computer Sci., 3 (8): 658-665, 2007

 664

RSVPv2

L

=

=)2(

)(
1

)(
1

IP
r

IP
r

IP
r

HRP
I
C

HR
I

HP
I

C

++

�
�

�
�
�

�
+++

(4)

LB

=

= [])()2(

1

)

(
1

IPID
r

ID

IDIP
r

HSBFMRPC
I

FSCM

CMFHFBCRCP
I

+++++

++

++++

(5)

LS

=

= [])(4

1

)

(
1

IPID
r

IP

IDIDIDID
r

HSFCM
I

FHFS

CMCMCMCM
I

++

++

+++

(6)

Based on RFC 2205, Ir is supposed to be between

15 and 45 seconds. Let us calculate the bandwidth (in
bps) for the extreme values when B is set to 64 bits, F
to 3, HIP to 160 bits, MID to 64 bits, P to 896 bits, R to
736 bits, and S to 64 bits. The results are presented in
tables 1 and 2. The results are described for classical
refresh, bundle extensions and SRefresh extensions. For
all scenarios, RSVPv2 gives better performances than
RSVP.

 Table 1: Refresh signaling load (in bps) for Ir = 15 seconds

 RSVP RSVPv2

Classical 260.27 C 130.14 C

Bundle 234.67 C + 57.6 117.33 C + 57.6

SRefresh 34.13 C + 44.8 17.07 C + 44.8

 Table 2: Refresh signaling load (in bps) for Ir = 45 seconds

 RSVP RSVPv2

Classical 86.75 C 43.38 C

Bundle 78.22 C + 19.2 39.11 C + 19.2

SRefresh 11.37 C + 14.93 5.67 C + 14.93

The results in those tables also present the gap
between RSVP+ and RSVP and the gap between
RSVP+ and RSVPv2 since the signaling load of
RSVP+ due to refresh message is zero.

These results are only the average signaling load
for one router. Now consider a network with N = 30
nodes and C = 1000. Let us calculate the overall
network signaling load NLS, for some cases.

RSVP and classical Refresh, Ir = 15 seconds:
 NLS = 30[260.27(1000)] = 7.808 Mbps

RSVP and classical Refresh, Ir = 45 seconds:
 NLS = 30[86.75(1000)] = 2.602 Mbps

RSVPv2 and SRefresh, Ir = 15 seconds:
 NLS = 30[17.07(1000)+44.8] = 513.444 kbps

RSVPv2 and SRefresh, Ir = 45 seconds:
 NLS = 30[5.67(1000)+14.93] = 170.548 kbps.

As a result, RSVP with classical refresh is the

worst case and RSVPv2 with SRefresh is the best case.

Best Field of Applications: RSVP+ is a protocol that
can be used instead of RSVP. However, RSVP+ works
better in unreliable networks because its restoration
time is better.

Another important area is mobile networks where
the network needs to quickly restore QoS in a new path
when it switches from an access router to another.
RSVP+ reduces the delay to restore the QoS in the new
segment.

CONCLUSIONS AND FURTHER WORKS

 In this paper, we proposed RSVP+, an improved
resource reservation protocol. Our protocol is sender-
oriented. With one PATH message, we can signal
bidirectional reservations or unidirectional reservations
in every direction without the need of a query message
like in NSIS QoS. RSVP+ sets up the reservations more
quickly than the other protocols and the restoration time
is faster. Moreover, we have proposed a new refresh
procedure with a minimum number of refresh
messages. RSVP+ is also more robust because every
data packet acts like a refresh packet. Many features of
RSVP+ could be included in other resource reservation
protocols like NSIS QoS.

There are several avenues of research that are open
at this point. Indeed, it would be interesting to
implement the refresh mechanism in a way that each
router will update the state only after a certain interval
of time and to see the performance of RSVP+ in a
mobility context and to implement the solution for
reducing the blocking due to uncompleted reservation.

REFERENCES

1. Abondo, C., and S. Pierre, 2004. Hierarchical Proxy

Mobile Resource Reservation Protocol, IETF
Internet Draft, draft-abondo-hmprsvp-00.txt.

2. Berger, L., D. Gan, G. Swallow, P. Pan, F.
Tommasi and S. Molendini, 2001. RSVP Refresh
Overhead Reduction Extensions, IETF RFC 2961.

J. Computer Sci., 3 (8): 658-665, 2007

 665

3. Berger, L., 2003. Generalized Multi-Protocol Label
Switching (GMPLS) Signaling Resource
ReserVation Protocol-Traffic Engineering (RSVP-
TE) Extensions, IETF RFC 3473.

4. Braden, R. and D. Clark, 1994. Integrated Services
in the Internet Architecture: an Overview, IETF
RFC 1633.

5. Braden, L., S. Zhang, S. Berson, S. Herzog and S.
Jamin, 1997. Resource ReSerVation Protocol
(RSVP) – Version 1 Functional Specification, IETF
RFC 2205.

6. Braden, R. and L. Zhang, 1997. Resource
ReSerVation Protocol (RSVP) – Version 1 Message
Processing Rules, IETF RFC 2209.

7. Hancock, R., G. Karagiannis, J. Loughney and S.
Van den Bosch, 2005. Next Steps in Signaling
(NSIS): Framework, IETF RFC 4080.

8. Manner, J., G. Karagiannis, A. McDonald and S.
Van den Bosch, 2005. NSLP for Quality-of-Service
signaling, IETF Internet Draft, draft-ietf-nsis-qos-
nslp-08.txt.

9. Ni, N. and X. Xiao, 1999. Internet QoS: A Big
Picture, IEEE Networks, 13:2, 8-18.

10. Westberg, L., A. Bader, D. Partain and V. Rexhepi,
2003. A Proposal for RSVPv2-NSLP, IETF Internet
Draft, draft-westberg-proposal-for-rsvpv2-nslp-
00.txt.

