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Abstract: The classical resource reservation protocol (RSVP) is a flow-based signaling protocol used 
for reserving resources in the network for a given session. RSVP maintains state information for each 
reservation at every router along the path. Even though this protocol is very popular, he has some 
weaknesses. Indeed, RSVP does not include a bidirectional reservation process and it requires refresh 
messages to maintain the soft states in the routers for each session. In this paper, we propose a sender-
oriented version of RSVP that can reserve the resources in both directions with only one message, thus 
reducing the delay for establishing the reservations. We also suggest a refreshment mechanism without 
any refresh message which could be applied to any soft states protocol. Simulation results show that 
the proposed protocol is approximately twice faster than RSVPv2 for establishing bidirectional 
reservations with almost no control overhead during the session. 
 
Key words: Internet protocol (IP), quality of service (QoS), resource reservation protocol (RSVP), 

setup time, signaling load, soft state refreshment, failure scenarios.  
 

INTRODUCTION 
 

Nowadays, many applications such as voice and 
video applications have stringent quality of service 
(QoS) requirements. However, the Internet protocol 
(IP), which is the most used protocol at the network 
layer, lacks of QoS mechanisms. That is why many 
QoS architectures and protocols have been proposed, 
for instance, integrated services (IntServ), differentiated 
services (DiffServ) and multiprotocol label switching 
(MPLS) (see Ni and Xiao[9] for details concerning QoS 
in IP networks).  

The classical resource reservation protocol 
(RSVP), such as defined in RFC 2205[5], is a flow-based 
resource reservation protocol. It has been originally 
created to work with the IntServ [4] architecture. 
Basically, IntServ implements three classes of services: 
guaranteed service (GS), controlled load (CL) and best 
effort (BE). GS guarantees maximal delay and 
bandwidth. Controlled load offers a QoS similar to 
what can be offered in a network without congestion 
and BE does not offer any guarantee.  

RSVP allows signaling for multicast and unicast 
sessions. For instance, when Router A wants to 
establish a session with Router B, it sends a PATH 
message to Router B. The PATH message collects 
information about the resources on the routers on the 
path used from Router A to Router B and it also 

establishes a PATH state in each router. The PATH 
states also acts as a passive reservation with no physical 
reservation. When Router B receives the PATH 
message, it responds with a RESV message that is 
routed along the reverse path taken by the PATH 
message. The RESV message reserves the resources by 
creating a RESV state in each router. Such a protocol is 
called a receiver-oriented protocol. The RESV message 
physically reserves the resources that are available 
firstly by the flow for which the reservation has been 
requested. The PATH and RESV states are soft states, 
i.e., they will be deleted after a certain timeout if there 
is no refreshment. Refresh messages are scheduled each 
I ∈

 
[0.5R, 1.5R] in order to avoid synchronization 

between routers (where R is a common predefined value 
for all the routers within the RSVP domain).  

Refresh messages are also useful for path 
restoration in failure scenarios. When a failure occurs, 
the PATH refresh message will be sent through the 
network to pass around the failed network elements and 
reach the destination. For a faster restoration, RSVP 
implements the local repair process[6]. With this 
process, if a failure occurs on a link adjacent to a router, 
its RSVP module sends a PATH refresh message to 
restore the segment of the path passing through the 
failed link. As a result, the overall path may not be 
optimal.  

RSVP has two main drawbacks. First, RSVP does 
not support bidirectional reservations.  
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       In fact, two unidirectional reservations can be used 
for bidirectional reservations. However, this implies 
more delays and if we have to recover from a failure or 
to signal new resources after a handover in a mobile 
network, these delays could be a problem. The second 
drawback is that refresh messages should be sent 
periodically.  

In this paper, we propose RSVP+, an improved 
RSVP with bidirectional signaling and states refresh 
mechanisms without refresh messages.  
 The paper is organized as follows. Section 2 
presents related works followed by the presentation of 
the protocol RSVP+ in Section 3. In Section 4, we 
present and analyze the simulation results and, finally, 
conclusions and further works are presented in Section 
5. 

RELATED WORKS 
 
 Over recent years, many improvements have been 
proposed for RSVP. RSVP-TE (Traffic Engineering), 
typically used with MPLS [3], distributes the labels to 
the routers and allows the sender to explicitly choose 
the path for a given session. With RSVP-TE, when 
Router A wants to initiate a bidirectional reservation to 
Router B, it sends a PATH message which distributes 
labels in downstream direction and other labels are 
distributed by the RESV in the reverse direction. 
RSVPv2[10] used almost the same principle but does not 
work with MPLS. Abondo and Pierre[1] introduced a 
sender-oriented RSVP for fast signaling. The 
reservation is done by the PATH messages. RFC 2961 
[2] proposes to bundle the refresh messages between two 
adjacent routers. The bundles many refresh messages 
and sends them in one packet, thus reducing the amount 
of overhead needed for the refresh messages. There is a 
gain on the IP overhead but the RSVP messages are 
unchanged. Moreover, RFC 2961[2] introduces a 
Summary Refresh message (SRefresh). In the SRefresh 
message, there is an object MESSAGE ID containing 
an identifier, called MESSAGE IDENTIFIER, used to 
identify the PATH messages. As a result, the routers do 
not need all the content of the refresh messages because 
they are able to identify the session and update the 
timers. These identifiers can be aggregated in one 
packet. These proposals reduce the size of the refresh 
messages, but one problem remains if one or more 
refresh messages are lost on their ways. The RFC 
2961[2] suggests a MESSAGE ID ACK to acknowledge 
the messages, but with an increase in signaling load.  

Presently, the next steps in signaling (NSIS) 
working group of the IETF works on protocols for 
signaling information about a data flow along its path in 
the network. A framework for NSIS signaling has been 
proposed in the RFC 4080[7]. The NSIS framework is 

composed of two layers. The upper layer, called NSLP 
(NSIS Signaling Layer Protocol), includes the signaling 
applications and the lower layer, called NTLP (NSIS 
Transport Layer Protocol), provides a generic transport 
service for those applications. Due to its generic 
framework, NSIS runs over many transport protocols.  

NSIS introduces a session identifier which is 
different from the flow identifier. One session can carry 
information related to several signaling applications. 
The session identifier allows NSIS to support mobility 
easily. If a flow identifier changes along the path, the 
flow can still be associated with the signaling session. It 
is assumed that applications controlled by a single 
session could perform bandwidth sharing[8]. IntServ and 
DiffServ could be used with NSIS.  
In the case of signaling for QoS, NSIS has many 
features. First, NSIS QoS allows sender-initiated and 
receiver-initiated reservations. For bidirectional 
reservations, a common message can reserve resources 
on both directions if the physical path is the same. 
Otherwise, two unidirectional processes have to be 
initiated. For scalability, NSIS QoS uses a soft state 
mechanism and the refresh is done with a reduced 
message containing a session ID as in RFC 2961[2]. 
However, the lost of refresh messages is still a problem. 
 

THE NEW VERSION OF RSVP: RSVP+ 
 
 RSVP+ is an improved RSVP with new features. 
First of all, because most of the Internet 
communications are unicast, RSVP+ is defined for 
unicast sessions although some ideas might work with 
multicast sessions. By this way, RSVP+ is less complex 
than RSVP. Furthermore, RSVP+ is a sender-oriented 
reservation protocol, i.e., the reservation is done by the 
PATH message. It is supposed that the sender is aware 
of the requested QoS. 
  
Resources Reservation: When Router A wants to 
initiate a QoS session with Router B, it sends a PATH 
message as in RSVP. The PATH message creates the 
PATH and the RESV states on the router along the path 
with the information contained in the session object. 
The PATH message can reserve the resources on the 
direction from Router A to Router B, Router B to 
Router A, or both. The direction can be marked in the 
first two bits of the Flags field in the RSVP Common 
Header which is currently unused. For instance,  
 

• 00: for the normal direction only (from Router A    
to Router B);  

• 01: for the reverse direction only (from Router B    
to Router A);  

• 10: for both directions.  
  When Router B receives the PATH message, the 
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QoS is already configured on the path and can be used. 
Next, Router B sends a RESV message to Router A as a 
confirmation.  
 
Bidirectional Reservation:The bidirectional 
reservation can be done in two ways: both directions 
take the same physical path or not.  

Same Path: The sender sends one PATH message that 
reserves the resources on both directions. If we want to 
have a receiver-oriented protocol, the PATH message 
works as in RSVP but collects information for both 
directions and the RESV message is used to reserve the 
resources. With this approach, the number of signaling 
messages for establishing the bidirectional reservation 
is divided by two when using the same physical path.  

Different Paths: The sender sends simultaneously two 
PATH messages, one for each direction. When the 
receiver receives both PATH messages, it sends a 
RESV message to confirm that the reservations have 
been successful. If one or the two reservations have 
failed, the RESV message can initiate new reservations. 
The main difference between our process and NSIS 
QoS is that we allow the sender to reserve resources for 
the receiver without receiving a query request. As a 
result, the process is faster. We can also have a 
receiver-oriented protocol by utilizing the RESV to 
reserve the resources.  

In the sender-oriented case, the QoS is configured 
along the paths as soon as the PATH messages are 
received. Even if there are similarities with RSVP-TE 
and NSIS QoS, the main difference is that RSVP+ 
allows a PATH message to reserve resources in every 
direction. There is no need to wait for a query message 
before launching the reservation.  
 
States Refresh: We propose a new and simple way to 
refresh the states in a router. Our proposal is based on 
the fact that the refresh messages are most of the time 
copies of the original messages. They are useful when a 
new path has to be signaled due to a network failure or 
when the specifications of the reservation have 
changed. In the former case, the local repair process in 
RSVP is enough to signal the new path[5]. For the latter 
case, we can notice that the modification of a 
reservation does not happen frequently.  

Based on these observations, we can say that the 
best way to know if a session is still working is to 
receive packets associated to this session. Data traffic is 
most of the time enough to refresh the sessions. Our 
proposal is as follows. When a router receives a data 
packet of a given flow, the router can update the 
expiration time associated to the states of the flow. The 
router can update the expiration time for each packet or 
after a certain amount of time since the last update. In 
this case, the states will not expire while packets are 
flowing. If there is no traffic but the sender wants to 
keep the reservation, it sends a classical PATH refresh 

message along the path. This message is forwarded 
with high priority along the path to maintain the states. 
If a state expires in a router, it sends a PathTear 
message to delete the reservations along the path.  

With this solution, the need for explicitly refresh 
messages may be reduced to nothing, improving the 
bandwidth usage. Furthermore, a refresh message could 
be lost while the session is still active. With 
refreshment done by the data packets, each packet acts 
as a refresh message so the probability to lose refresh 
information is consequently reduced. Our refresh 
process is more robust and the idea can be used to any 
soft state protocol.  
 
Session Blocking Reduction:In sender-oriented 
reservation protocols, a potential problem is that an 
uncompleted session blocks another one. For instance, 
suppose that Sender #1 sends a PATH message to 
Receiver #1 and, after a few seconds, Sender #2 wants 
to reserve resources to Receiver #2 but the request is 
refused due to the first reservation (see Fig. 1).  
        We propose a solution to reduce this kind of 
blocking. First, the following notation is used. Let C be 
the capacity of the interface (port), Cc, the reserved 
capacity that has been confirmed and cannot be used by 
a new request, Cu, the unconfirmed but reserved 
capacity and cannot be used by a new request, Cr, the 
residual capacity that is not reserved and, finally, A, the 
capacity requested on the interface. First note that C = 
Cc + Cu + Cr. 
 

 

Fig. 1: Session blocking example 
 
When a request reaches an interface, there are three 

cases.  
Case 1: A < Cr  

In that case, the request is accepted. The router 
reserves the capacity and forwards the request to 
the next router.  

Case 2: A > C − 
 
Cc  

The request is rejected due to insufficient 
capacity.   
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Case 3: Cr  < A < Cr + Cu  
In that case, our proposition follows. First, the 
router puts the request on hold for a timeout. The 
router can keep a waiting list ordered by priority 
class or arrival time. If during this timeout, 
enough unconfirmed resources are freed, the 
ongoing reservation will be accepted and 
forwarded to the next hop. Otherwise, the 
request is rejected. With this process, the setup 
time may increase but the blocking due to 
uncompleted reservation is reduced. 
 

PERFORMANCE ANALYSIS 
 
 In this section, we assess the performance of 
RSVP+. The metrics chosen are the time to establish a 
reservation, the restoration time when a failure occurs 
and the amount of signaling messages. We compare 
RSVP+ to the classical RSVP for unidirectional 
reservations because RSVP and RSVP-TE have the 
same procedure for such reservations. For bidirectional 
reservations, we compare RSVP to RSVPv2 because 
RSVPv2 has better performance than classical RSVP 
for such reservations [10]. It is important to mention 
that we choose RSVPv2 instead of RSVP-TE because 
the latter works with MPLS and involves label 
distribution. However, RSVPv2 and RSVP-TE have the 
same procedure for bidirectional reservations except  

 

Fig. 2: Test network used to analyze the setup time 
 
that in RSVPv2, the downstream router could not 
transmit after receiving the PATH messages even if 
resources are reserved. As we are concerned with the 
time for establishing the reservation, this detail is not 
important for us. We did not choose NSIS because 
some processes are similar to RSVPv2 and is still in 
development.  
 
Setup Time Reduction: Let Te be the establishment 
time of a given reservation, Tt , the transfer time from 
the sender to the receiver and Tc , the configuration time 
of every router along the path. The following equations 

can be written down for unidirectional and bidirectional 
reservations.  

Unidirectional Reservation  
RSVP  : Te = Tc +2 Tt 
RSVP+: Te = Tc + Tt. 
 

Bidirectional Reservation  
RSVPv2:  Te =2 Tc +2 Tt 
RSVP+  :  Te =2 Tc + Tt (for one PATH message),   
                  Te = Tc + Tt (for two PATH messages). 
 

The simulator OPNET 11.0 is used to run our 
simulations. The first test is to compare the setup time 
between RSVP and RSVP+. Fig. 2 shows the test 
network that is composed of two senders and two 
receivers who are communicating through a 
bidirectional service of 96 kbps. Sender #1 is 
communicating with Receiver #1 and Sender #2 with 
Receiver #2. We used three types of links: 256, 512 and 
1024 kbps.  

Fig. 3 shows that RSVP+ has a better setup time 
than RSVP for unidirectional reservations. For 
bidirectional reservations, we considered the case 
where both sessions use the same physical path. If both 
sessions are not required to use the same path, the 
results for RSVP+ for bidirectional and unidirectional 
reservations should be the same since both reservations 
are launched simultaneously. Fig. 4 shows that RSVP+ 
has a better setup time than RSVP for bidirectional 
reservations. It can also be observed that RSVP+ is 
approximately twice faster than RSVPv2 for 
establishing bidirectional reservations. This can be 
explained by the fact that the router configuration time, 
Tc, is very small. As a result, Te ≈

 
2 Tt  for RSVPv2, Te ≈

 Tt for RSVP+ and Te (RSVP+) ≈
 
0.5 Te (RSVPv2).  

 

 
 
Fig. 3:  Setup time as a function of the link capacity for 

unidirectional reservation 
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Fig. 4:  Setup time as a function of the link capacity for 

bidirectional reservation 
 

Restoration Time in Failure Scenarios: Failure 
recovery is an important issue in networks. The 
recovery time has to be short in order to quickly restore 
the QoS for the affected flows. In our experiment, we 
use two senders and two receivers with the same 96 
kbps application. The test network is presented in Fig. 
5.  
 Sender #1 is communicating with Receiver #1 
using RSVP and Sender #2 is communicating with 
Receiver #2 without RSVP. In the no failure scenario, 
the flows use the path A-C-B. After 100 seconds, we 
simulate the failure of Router C. Thus, the flows are 
rerouted through the path A-D-B. We use 128 kbps 
links to put emphasis on congestion. Our objective is to 
determine if our algorithm is able to quickly restore the 
QoS on the alternate path. We use RSVP, RSVPv2 and 
RSVP+ for the simulation. The results are illustrated in 
Fig. 6.  
 Fig. 6 shows that the QoS restoration time is 
smaller for RSVP+. This can be explained by the fact 
that when a failure occurs, the traffics are forwarded 
through the alternate path in best effort until the QoS is 
restored. Since RSVP+ configures the QoS with the 
PATH message, the QoS is restored faster. So when the 
path message joins the receiver, the entire alternate path 
can provide the QoS end-to-end.  
 

 
Fig. 5:  Test network used to analyze the restoration 

time in failure scenarios  

 
Fig. 6:  QoS (end-to-end delay) restoration time in a failure 

scenario for RSVP, RSVPv2 and RSVP+ 
 
Refresh Reduction: In this section, we want to assess 
the proposed refresh procedure. The test network, 
presented in Fig. 7, has seven senders and seven 
receivers who are communicating through a 
bidirectional service of 96 kbps. The link capacity used 
is 1500 kbps and the simulation time is 600 seconds.  

Fig. 8 shows that the states are being refreshed 
when using RSVP+. For each RSVP packet sent or 
received, we checked the number of active RESV states 
in the router. (Note that the results for PATH states are 
similar.)  

As mentioned before, the protocol RSVP+ is 
implemented such that the states are refreshed for every 
packet associated to a flow. This approach does not 
have a measurable impact on the CPU utilization of the 
routers (see Fig. 9).  

 
Fig. 7: Test network used to analyze the refresh load 

reduction  

 
Fig. 8: Number of active RESV in Router B for RSVP+ 
 



J. Computer Sci., 3 (8): 658-665, 2007 
 

 663 

 Fig. 10 illustrates the number of refresh messages 
(PATH and RESV) sent by Router B for RSVP, 
RSVPv2 and RSVP+. The refresh interval used I is 
32.92 seconds and the simulation time is 600 seconds 
(i.e., 18 refresh cycles). 

 
Fig. 9: CPU utilization of Router B for RSVP and 

RSVP+  

 
Fig. 10: Number of refresh messages sent by Router B 

for RSVP, RSVPv2 and RSVP+ 
 
It can be observed that for RSVP, the number of 

refresh messages at each cycle is 28 (i.e., 14 PATH 
messages and 14 RESV messages). The total number of 
messages for the simulation is then 546 (i.e., 18 cycles 
of refresh messages, 28 setup messages and 14 
ResvConf messages). For RSVPv2, the number of 
refresh messages at each cycle is 14 (i.e., 7 PATH 
messages and 7 RESV messages). The total number of 
messages for the simulation is then 266 (i.e., 18 cycles 
of refresh and 14 setup messages). Finally, RSVP+ 
performs a total of 14 messages for the setup of the 7 
bidirectional sessions. The teardown messages are not 
considered in the simulations.  

Note that RSVP and RSVPv2 signaling messages 
grow linearly with the simulation time where RSVP+ 
signaling messages stay constant at 14 messages during 
the simulation time. This is an advantage for scalability 
assuming a large number of simultaneous sessions flow 
through the network.  

The following notation is used to evaluate the 
average signaling load generate by a single router:  

• N, the number of routers in the network;  
• B, the bundle header length in RFC 2961 (in bits);  
• C, the average number of bidirectional connections 

flowing through a router;  
• D, the average session duration (in sec);  
• F, the average number of connected interfaces on a 

router;  
• HIP , the length of an IP packet header (in bits);  
• Ir , the refresh interval for a given router (in sec);  
• MID, the length of message ID object in RFC 2961 

(in bits);  
• P, the length of the PATH message (in bits);  
• R, the length of the RESV message (in bits);  
• S, the header length of the message that contains the 

messages ID (in bits);  
• L, the average refresh signaling load generated by a 

single router when using classical refresh procedure 
(in bps);  

• LB, the average refresh signaling load generated by a 
single router when using bundle described in RFC 
2961 (in bps);  

• LS, the average refresh signaling load generated by a 
single router when using SRefresh described in RFC 
2961 (in bps).  

 
First note that for RSVP+, the signaling load is 

zero since there are no refresh messages. Moreover, for 
RFC 2961 solutions, there is only one IP header per 
bundle of RSVP messages and we consider the 
acknowledgement messages. The equation of the 
signaling load for each protocol follows.  
 
 RSVP   

 
    L 

 
= 
 
= )(

2

)(
1

)(
1

2

IP
r

IP
r

IP
r

HRP
I
C

HR
I

HP
I

C

++

�
�

�
�
�

�
+++

 
 
 
 
(1) 

 
LB 

 
= 
 
 
= [ ])()(2

1

)2

222(
1

IPID
r

ID

IDIP
r

HSBFMRPC
I

FSCM

CMFHFBCRCP
I

+++++

++

++++
 

 
 
 
 
(2) 

 
LS 

 
= 
 
 
= [ ])(8

1

)

2222(
1

IPID
r

IP

IDIDIDID
r

HSFCM
I

FHFS

CMCMCMCM
I

++

++

+++
 

 
 
 
 
(3) 



J. Computer Sci., 3 (8): 658-665, 2007 
 

 664 

RSVPv2 
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Based on RFC 2205, Ir is supposed to be between 

15 and 45 seconds. Let us calculate the bandwidth (in 
bps) for the extreme values when B is set to 64 bits, F 
to 3, HIP to 160 bits, MID to 64 bits, P to 896 bits, R to 
736 bits, and S to 64 bits. The results are presented in 
tables 1 and 2. The results are described for classical 
refresh, bundle extensions and SRefresh extensions. For 
all scenarios, RSVPv2 gives better performances than 
RSVP.  
 
  Table 1: Refresh signaling load (in bps) for Ir = 15 seconds 

 RSVP RSVPv2 

Classical 260.27 C 130.14 C 

Bundle 234.67 C + 57.6 117.33 C + 57.6 

SRefresh 34.13 C + 44.8 17.07 C + 44.8 
 
   Table 2: Refresh signaling load (in bps) for Ir = 45 seconds 

 RSVP RSVPv2 

Classical  86.75 C 43.38 C 

Bundle  78.22 C + 19.2 39.11 C + 19.2 

SRefresh  11.37 C + 14.93 5.67 C + 14.93 
 

The results in those tables also present the gap 
between RSVP+ and RSVP and the gap between 
RSVP+ and RSVPv2 since the signaling load of 
RSVP+ due to refresh message is zero.  

These results are only the average signaling load 
for one router. Now consider a network with N = 30 
nodes and C = 1000. Let us calculate the overall 
network signaling load NLS, for some cases.  

RSVP and classical Refresh, Ir = 15 seconds:  
 NLS = 30[260.27(1000)] = 7.808 Mbps  

RSVP and classical Refresh, Ir = 45 seconds:  
 NLS = 30[86.75(1000)] = 2.602 Mbps  

RSVPv2 and SRefresh, Ir = 15 seconds:  
 NLS = 30[17.07(1000)+44.8] = 513.444 kbps  
  

RSVPv2 and SRefresh, Ir = 45 seconds:  
 NLS = 30[5.67(1000)+14.93] = 170.548 kbps.  

 
As a result, RSVP with classical refresh is the 

worst case and RSVPv2 with SRefresh is the best case.  
 
Best Field of Applications: RSVP+ is a protocol that 
can be used instead of RSVP. However, RSVP+ works 
better in unreliable networks because its restoration 
time is better.  

Another important area is mobile networks where 
the network needs to quickly restore QoS in a new path 
when it switches from an access router to another. 
RSVP+ reduces the delay to restore the QoS in the new 
segment.  

 
CONCLUSIONS AND FURTHER WORKS 

 
 In this paper, we proposed RSVP+, an improved 
resource reservation protocol. Our protocol is sender-
oriented. With one PATH message, we can signal 
bidirectional reservations or unidirectional reservations 
in every direction without the need of a query message 
like in NSIS QoS. RSVP+ sets up the reservations more 
quickly than the other protocols and the restoration time 
is faster. Moreover, we have proposed a new refresh 
procedure with a minimum number of refresh 
messages. RSVP+ is also more robust because every 
data packet acts like a refresh packet. Many features of 
RSVP+ could be included in other resource reservation 
protocols like NSIS QoS.  

There are several avenues of research that are open 
at this point. Indeed, it would be interesting to 
implement the refresh mechanism in a way that each 
router will update the state only after a certain interval 
of time and to see the performance of RSVP+ in a 
mobility context and to implement the solution for 
reducing the blocking due to uncompleted reservation.  
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