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Abstract: The present paper proposes a method of texture classification based on long linear patterns. 
Linear patterns of long size are bright features defined by morphological properties: linearity, 
connectivity, width and by a specific Gaussian-like profile whose curvature varies smoothly along the 
crest line.  The most significant information of a texture often appears in the occurrence of grain 
components. That’s why the present paper used sum of occurrence of grain components for feature 
extraction. The features are constructed from the different combination of long linear patterns with 
different orientations. These features offer a better discriminating strategy for texture classification. 
Further, the distance function captured from the sum of occurrence of grain components of textures is 
expected to enhance the class seperability power. The class seperability power of these features is 
investigated in the classification experiments with arbitrarily chosen texture images taken from the 
Brodatz album. The experimental results indicated good analysis, and how the classification of 
textures will be effected with different long linear patterns.  
 
Keywords: Orientations, Linearity, Connectivity, Features. 

 
 INTRODUCTION 

 
Texture classification is an image processing 

technique by which different regions of an image are 
identified based on texture properties. This process 
plays an important role in many areas such as industrial 
automation, biomedical image processing, Content 
Based Image Retrieval and remote sensing application. 
In spite of the importance of textures in many areas of 
image processing, there is no universally accepted 
definition for the texture. We prefer to adopt the 
definition suggested in [1], because of its generality and 
it is given as follows: “The notion of texture appears to 
depend upon three ingredients: (i) some local ‘order’ is 
repeated over a region which is large in comparison to 
the order’s size, (ii) the order consists in the nonrandom 
arrangement of elementary parts, and (iii) the parts are 
roughly uniform entities having approximately the same 
dimensions everywhere within the textured region”. 
This definition explains that the texture is characterized 
not only by gray value at a given pixel, but also by the 
gray value pattern in the surrounding pixels.  The 
texture has both local and global meaning, in the sense 

that it is characterized by the invariance of certain local 
attributes that are distributed over a region of an image 
[2]. To design an effective algorithm for texture 
classification, it is essential to find a set of texture 
features with good discriminating powers. Most of the 
textural features are generally obtained from the 
application of a local operator, statistical analysis, or 
measurement in a transformed domain. Generally, the 
features are estimated from co-occurrence matrices, 
Law’s texture energy measures, Fourier transform 
domain, Markov random field models, local linear 
transforms etc. A number of texture classification 
techniques are reported in literature [3, 4, 5, 6]. The 
wavelet methods [3, 6, 7] offer computational advantages 
over other methods for texture classification and 
segmentation. In [8], Haralick features [9] are obtained 
from wavelet decomposed image yielding improved 
classification rates. In [10], texture features are 
characterized by considering intensity and contextual 
information obtained from binary images. The 
conditional co-occurrence histograms are computed 
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from the intensity and binary images. To obtain binary 
images the fixed thresholds were used. It is evident that 
the context or the position information of a pixel in an 
image is very important for the purpose of 
classification. 

 In this, paper, we propose a novel scheme of 
texture classification based on sum of occurrences of 
grain components in long linear patterns (LLP) with 
different orientations. 

This paper is organized as follows: In section 2, we 
briefly review theory of linear patterns. The 
methodology of feature extraction and distance function 
are evaluated in section 3. The analysis on texture 
classification based on experimental results is presented 
in section 4. Concluding remarks are given in section 5. 

 
 LONG LINEAR PATTERNS (LLP) 
 
The linear elements considered in the present paper 

are long one-dimensional line elements or patterns or 
structuring elements. The one-dimensional LLP play a 
significant role in many image processing operations, 
such as segmentation, edge detection, classification etc. 
Moreover line structuring elements are more suited for 
many morphological operations. In some image 
processing applications, the square, hexagon, and 
octagon patterns are used. However the above patterns 
can be easily decomposed into two, three and four line 
segments respectively [11, 12]. The advantage of using 
one dimensional line pattern segments instead of N-
dimensional structuring elements is a reduction in the 
computational complexity. 

In the present paper LLP on the texture images are 
computed basically by using Bresenham’s line 
algorithm [13]. Bresenham [13] published an algorithm to 
draw a line segment of any size and of any orientation 
on a plotter, which could draw horizontal, vertical and 
diagonal lines. The algorithm combines small portions 
of these lines to form a line pattern of any orientation. 
In image processing, Bresenham lines are formed by 
steps in the eight cardinal directions of the grid. But 
true line patterns can be formed by using Bresenham’s 
line algorithm, for the lines on X axis, Y axis and X=Y 
axis, i.e. the lines with 00, 1800, 900 , 2700 

,450,1350,2250,3150. For all other orientation, the shape 
of the LLP appears as steps of a stair case, known as 
Jaggies. 
 

The LLPs of size 1x11 with 00, 150, 300 and  450 

orientations are shown in the following Fig. 1(a), 1(b), 
1(c) and 1(d) respectively. The following figures clearly 
indicate that the LLP length, defined by an integer 
number of pixels, depends on the degree of orientation. 
Each  degree of orientation of the LLP will have a  
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1:  LLP of Size 1x11 (a) 00 orientation. (b) 150 
orientation. (c)  300 orientation. (d)  450 orientation. 

 
different set of lengths. The present paper assumes the 
orientation of LLP as triangular shape shown in Fig.2, 
but not as a semi circle. This is one of the reasons why 
 

 
 
 
Fig. 2:    The structure of long linear pattern with 

different orientations. 
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length of the LLP is reduced for orientations other than 
X axis and Y axis. For example the LLP 1x11, is 
having length 11, 11, 9 and 9 for 00, 150, 300 and 450 
orientations respectively. The length is decreased for  
300  and 450 orientation because of the triangular 
orientation as shown in Fig.2. Where as the exact length 
of 11 pixels are resulted for the 00 and 150 orientation, 
as shown in the Fig.1 (a) and 1(b) respectively. This is 
because 00 orientation falls on X-axis and 150 
orientation is very closer to X-axis. 
 

 METHODOLOGY 
 

The present paper is not concentrated in studying 
the frequency of occurrence of one dimensional LLP on 
the texture image because their frequency occurrences 
will be minimum (most of the times one digit). The 
classification may become a problem if the frequency 
count is low. Moreover the most significant information 
of a texture appears in the occurrence of grain 
components. That’s why the present paper had chosen 
the sum of occurrence of grain components of LLP as 
feature extraction. For this one dimensional LLP’s of 
different sizes 1x11, 1x13, 1x15, and 1x17 are chosen. 
The above LLP’s are rotated for every 150 from 00 to 
900. The change of topology on LLP with respect to 
summation of number of occurrences, of grain 
components are counted, as shown in Fig.1. This 
experiment is carried out on thirteen Brodatz textures 
and is listed from Table 3 to Table 6. In order to 
classify the textures a distance function is used in the 
present paper. The distance function is calculated in the 
following way. 

 
Table 1:  Distance function with orientations. 

Name of Texture GX1
o GX2

o ----- GXn
o 

T1 A1 A2 ----- An 

T2 B1 B2 ----- Bn 

Distance between 
Textures with same 

orientations. 
|A1-B1| |A2-B2| ----- |An-Bn| 
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where GX1
o represents the total number of occurrences 

of grain components by Xi
o

 , of texture Tk. And D (T1, 
T2) is the absolute overall difference between the 
textures T1 and T2.   

The entire process of enumerating the classification of 
texture is listed in the Fig. 3.  

 
Fig. 3: Block diagram of entire process. 

      
       Table 2:  Brodatz Texture. 

Texture  Brodatz Texture name 
T1 Bark(D12) 
T2 Beach sand(D29) 
T3 Brick wall(D94) 
T4 Grass(D9) 
T5 Herringbone weave(D15) 
T6 Pigskin(D92) 
T7 Plastic bubbles(D112) 
T8 Pressed calf leather(D24) 
T9 Raffia(D84) 
T10 Straw(D15) 
T11 Water(D38) 
T12 Wood grain(D68) 
T13 Woolen cloth(D19) 
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 RESULTS AND ANALYSIS 
 

RESULTS:  The above scheme of classification is 
applied on randomly chosen 13 Brodatz textures as 
given in Table 2. Here on wards the texture number is 
presented instead of texture name. The Tables 3, 4, 5 
and 6 gives the sum of grain components of LLP 1x11, 
1x13, 1x15 and 1x17 respectively for all 13 textures 
with orientations ranging from 00 to 900 for every 150.  
 
ANALYSIS: The Tables 7, 8, 9 and 10 indicate the 
distance measure between all thirteen textures in all 
orientations, of LLP of size 1x11, 1x13, 1x15 and 1x17 
respectively. The diagonal elements of all distance 
Tables 7, 8, 9 and 10 prove the following fact, that the 
distance between same textures is zero. i.e. DIST (Ti, 
Ti) = 0. 

The textures that differ with a distance threshold 
factor of‘d’ can be considered as one class. That is two or 
more textures can be placed into one class ‘C’ if each  
texture differs with all other textures in the group by a 
distance of less than or equal to d, as specified below. 
C = {Ti, Ti+1, Ti+2, ----, Tn}, this is true if and only if for 
all textures, D (Ti,, Tj) <= d,   where i, j are 1 to n and  
i � j. 

The following analysis on classification of textures 
for all LLP’s has been done with the same distance 
threshold value 20. Careful analysis of Table 7, of LLP 
1x11 reveals the following texture classification for a 
unique distance threshold value, 20. 
C1 = {T1, T2, T3, T10, T12} <= di 

C2 = {T4, T5, T7, T8, T9, T11, T13} <= di 

C3 = {T6} 

 
Table 3:  Sum of occurrence of grain components for LLP of size 11 

  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 

SE00 247,518 240,465 248,436 221,497 226,064 272,382 209,561 216,544 213,224 233,622 216,200 247,917 218,532 
SE150 245,853 238,906 246,746 220,147 224,614 270,653 208,127 215,157 211,773 232,168 215,127 246,095 216,782 
SE300 201,351 195,778 202,112 180,453 183,913 222,417 170,377 176,198 173,283 190,236 176,059 201,757 177,752 
SE450 197,506 191,895 198,670 177,090 180,488 219,626 167,110 172,747 169,967 186,710 172,755 197,405 174,755 
SE600 199,761 194,006 200,118 179,066 182,296 221,964 168,826 174,429 171,779 188,600 174,417 200,121 176,389 
SE750 247,007 239,728 246,198 221,634 224,755 275,278 208,660 214,834 211,905 232,854 215,523 248,526 217,687 
SE900 249,649 242,514 249,630 224,138 227,081 278,198 211,234 216,804 213,663 235,236 217,672 252,207 219,635 

 
Table 4:  Sum of occurrence of grain components for LLP of size 13 

  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 

SE00 289,428 280,932 290,640 258,735 264,411 318,465 245,154 253,159 249,514 273,292 253,023 289,423 255,720 
SE150 284,727 276,459 286,365 254,793 260,416 314,420 241,222 249,245 245,636 269,306 249,504 284,309 251,744 
SE300 241,205 234,293 242,780 216,076 220,541 267,203 204,203 211,121 207,890 228,132 211,173 240,929 213,442 
SE450 197,506 191,895 198,670 177,090 180,488 219,626 167,110 172,747 169,967 186,710 172,755 197,405 174,755 
SE600 241,747 234,673 242,150 216,787 220,608 269,609 204,258 211,057 207,823 228,320 211,077 241,801 213,699 
SE750 285,907 277,346 285,364 256,574 260,461 319,893 241,470 249,083 245,390 269,899 249,530 286,260 252,533 
SE900 292,108 283,557 292,189 262,310 265,582 326,559 247,106 253,545 249,942 275,338 254,597 294,597 257,155 

 
Table 5:  Sum of occurrence of grain components for LLP of size15 

  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 

SE00 330,432 320,420 331,762 295,014 301,897 363,458 280,008 288,992 285,123 312,156 289,043 330,030 292,051 
SE150 325,080 315,351 326,887 290,538 297,355 358,831 275,551 284,551 280,714 307,647 285,064 324,230 287,508 
SE300 281,978 273,643 283,969 252,328 257,870 312,412 238,839 246,745 243,220 266,822 247,039 281,177 249,728 
SE450 236,453 229,511 238,362 211,972 216,225 263,889 200,148 206,845 203,723 223,735 207,026 235,495 209,708 
SE600 279,697 271,440 281,559 250,903 255,388 313,118 236,549 244,450 240,562 264,563 244,538 278,572 247,906 
SE750 326,587 316,618 326,018 293,079 297,367 366,134 275,777 284,318 280,172 308,408 284,910 326,357 288,662 
SE900 333,678 323,707 333,845 299,639 303,230 373,769 282,224 289,416 285,383 314,621 290,683 335,922 293,960 

 
Table 6:  Sum of occurrence of grain components for LLP of size 17 

  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 

SE00 370,435 358,979 371,812 330,319 338,491 407,420 314,023 324,006 319,966 350,200 324,256 369,658 327,545 
SE150 364,347 353,224 366,320 325,218 333,324 402,222 308,983 318,969 314,969 345,110 319,695 363,082 322,481 
SE300 318,850 309,044 321,297 285,064 291,717 354,326 270,162 278,937 275,281 301,986 279,641 317,181 282,701 
SE450 273,760 265,301 276,159 245,202 250,264 306,458 231,788 239,329 235,981 259,263 239,828 271,706 243,119 
SE600 319,516 309,860 321,677 286,623 291,598 358,391 270,156 279,051 274,700 302,358 279,209 317,608 283,388 
SE750 366,426 355,050 365,970 328,768 333,554 411,186 309,420 318,745 314,146 346,132 319,472 365,481 323,976 
SE900 374,388 362,965 374,572 336,117 340,091 419,756 316,605 324,439 320,016 353,071 325,963 376,184 329,954 
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Table 7:  Distances between textures using LLP of size 11.  
  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 

T1 0 6 0 48 38 38 91 65 91 16 58 0 53 
T2 6 0 6 22 16 72 53 33 53 4 28 6 25 
T3 0 6 0 48 38 38 91 65 91 16 58 0 53 
T4 48 22 48 0 2 170 7 3 7 10 2 48 1 
T5 38 16 38 2 0 150 13 5 13 6 4 38 3 
T6 38 72 38 170 150 0 245 201 245 100 188 38 179 
T7 91 53 91 7 13 245 0 4 0 33 5 91 6 
T8 65 33 65 3 5 201 4 0 4 19 1 65 2 
T9 91 53 91 7 13 245 0 4 0 33 5 91 6 
T10 16 4 16 10 6 100 33 19 33 0 16 16 13 
T11 58 28 58 2 4 188 5 1 5 16 0 58 1 
T12 0 6 0 48 38 38 91 65 91 16 58 0 53 
T13 53 25 53 1 3 179 6 2 6 13 1 53 0 

 
Table 8:  Distances between textures using LLP of size 13. 

  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 
T1 0 6 1 48 38 65 114 84 84 13 84 0 70 
T2 6 0 7 24 16 107 72 48 48 3 48 6 38 
T3 1 7 0 55 43 60 123 91 91 16 91 1 77 
T4 48 24 55 0 2 223 16 6 6 13 6 48 4 
T5 38 16 43 2 0 199 22 10 10 7 10 38 6 
T6 65 107 60 223 199 0 349 295 295 132 295 65 267 
T7 114 72 123 16 22 349 0 4 4 53 4 114 6 
T8 84 48 91 6 10 295 4 0 0 33 0 84 2 
T9 84 48 91 6 10 295 4 0 0 33 0 84 2 
T10 13 3 16 13 7 132 53 33 33 0 33 13 25 
T11 84 48 91 6 10 295 4 0 0 33 0 84 2 
T12 0 6 1 48 38 65 114 84 84 13 84 0 70 
T13 70 38 77 4 6 267 6 2 2 25 2 70 0 

 
Table 9:  Distances between textures using LLP of size 15. 

  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 
T1 0 7 0 77 48 72 148 116 130 25 107 2 91 
T2 7 0 7 38 19 123 91 67 77 6 60 9 48 
T3 0 7 0 77 48 72 148 116 130 25 107 2 91 
T4 77 38 77 0 5 295 13 5 7 16 4 77 2 
T5 48 19 48 5 0 236 28 16 22 5 13 50 7 
T6 72 123 72 295 236 0 424 368 392 179 353 72 323 
T7 148 91 148 13 28 424 0 4 2 53 5 150 7 
T8 116 67 116 5 16 368 4 0 2 35 1 116 3 
T9 130 77 130 7 22 392 2 2 0 43 3 130 5 
T10 25 6 25 16 5 179 53 35 43 0 30 27 22 
T11 107 60 107 4 13 353 5 1 3 30 0 109 2 
T12 2 9 2 77 50 72 150 116 130 27 109 0 93 
T13 91 48 91 2 7 323 7 3 5 22 2 93 0 

 
Table 10:  Distances between textures using LLP of size 17. 

  T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 
T1 0 6 2 72 65 114 188 132 161 22 123 1 114 
T2 6 0 10 38 33 168 130 84 107 6 77 9 70 
T3 2 10 0 84 77 100 208 148 179 28 139 3 130 
T4 72 38 84 0 1 362 28 10 19 16 7 79 6 
T5 65 33 77 1 0 347 33 13 22 13 10 72 7 
T6 114 168 100 362 347 0 590 488 541 232 469 105 452 
T7 188 130 208 28 33 590 0 6 3 84 7 199 10 
T8 132 84 148 10 13 488 6 0 3 48 1 143 2 
T9 161 107 179 19 22 541 3 3 0 67 4 172 5 
T10 22 6 28 16 13 232 84 48 67 0 43 27 38 
T11 123 77 139 7 10 469 7 1 4 43 0 132 1 
T12 1 9 3 79 72 105 199 143 172 27 132 0 123 
T13 114 70 130 6 7 452 10 2 5 38 1 123 0 
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where di =20 
The study of distance function Table 8 of LLP 1x13 
depicts the following texture classes for a distance 
threshold value of 20. 
 C1 = {T1, T2, T3, T10, T12} 
 C2 = {T4, T7, T8, T9, T11, T13} 
 C3 = {T5} 
 C4 = {T6}. 
Here texture T5 is not placed in class C2 because T5 

differs with T7, a distance threshold value greater than 
20. However T5 differs with all other textures of C2 by 
a distance factor less than 20.Therefore the other way of 
writing class C3 is  
C3 = {T1, T5, T8, T9, T11, T13}. 
The clear observation of    distance function in Table 9 
of LLP 1x15 depicts the following texture classes for a 
distance threshold value of 20.  
C1 = {T1, T2, T3, T12} 
C2 = {T4, T7, T8, T9, T11, T13} 

C3 = {T5} or {T4, T5, T8, T9, T11, T13} 
C4 = {T6} 
C5 = {T10}. 
The examination of distance function Table 10 of LLP 
1x17 depicts the following texture classes for a distance 
threshold value of 20 
C1 = {T1, T2, T3, T12} 
C2 = {T4, T8, T9, T11, T13} 
C3 = {T5} or {T4, T5, T8, T11, T13} 
C4 = {T7} or {T7, T8, T9, T11, T13} 
C5 = {T10} 
C6 = {T6}. 

CONCLUSIONS   
The analysis about distance functions of LLP concludes 
that the number of overlapping texture classes will be 
more by increasing the linear element size. The texture 
groups or classes are very concise by LLP of size 1x11. 
The sum  of the grain components of large linear 
patterns 1x11, 1x13, 1x15 and 1x17 as listed in the 
Tables  3,4,5 and 6 respectively indicates a decreasing 
trend from 00 to 450 and an increased trend from 450 to 
900 of grain components. This clearly reflects the 
geometrical property on linearity that is reflection about 
the line X = Y. From this the present paper concludes 
that, it is not necessary to compute the orientations of 
linear patterns from 900 to 3600, as they can be counted 
merely by reflection of X axis and Y axis. 
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