
Journal of Computer Science 3 (8): 617-623, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Makhlouf Aliouat University of Ferhat Abbes, Faculty of Engineer Science, Computer Science

Department, Setif 19000 Algeria
617

Recovery in Distributed Systems from Transient and Permanent Faults

M. Aliouat and Z. Aliouat

Department Informatique, U.F.A.S, Maabouda, Route de Bejaia 19000 Algeria

Abstract: The recovery mechanism from transient fault in distributed systems has been intensively
studied in the past, but to our best knowledge, none of these studies has been devoted to cope together
with transient and permanent hard faults. Our study devoted to recovery processes in a distributed
environment in case of hard faults like transient or permanent. The recovery mechanism we presented
can be based on one of the six proposed strategies involving checkpointing and message logging
between distributed application processes. This exhaustive number is system-dependant. The strategies
have been examined with respect to propagation recovery through processes in order to prevent the
fastidious well known domino effect problem. The considered framework was a distributed system
composed of a set of autonomous nodes running each one a local system; and some of them were
predisposed to replace failing ones in case of permanent fault. Our main contribution was to enable a
distributed application to meet its requirements of terminating its mission in spite of node crash.
Preliminary experimental results of a fault tolerant mechanism based upon one of the proposed
strategies demonstrated that our proposals seem to be conclusive.

Keywords: recovery, distributed systems, transient permanent fault tolerance

INTRODUCTION

Meeting requirements of dependability in critical

applications has led to the development of techniques to
improve design of fault tolerant systems which can
maintain specified services in spite of fault occurrences.
The developed techniques can be dedicated to cope
with hardware faults, software faults or both. They are
essentially based on two fundamental and com-
plementary approaches: backward error recovery and
forward error recovery [1, 4, 6].
Based on the identification and the accurate knowledge
of the error, Forward Error Recovery (FER) copes with
the failure in correcting erroneous system state by ac-
ting on the damaged part. This action needs first an
accurate assessment of damages inflicted to the system.
Backward Error Recovery (BER) is independent to-
wards assessment and prediction of damages caused by
a fault. It is more general since it does not depend on
applications. So, recovery from an error is then
achieved by restoring an old state (presumed error free)
prior to the fault occurrence, from which restarting of
the failed system will take place.

Designing a recovery mechanism, particularly in a
distributed concurrent processes system, implies to take

into account the costly and complex problem of error
propagation resulting from message exchanges between
processes. So, if interprocess communications are not
well coordinated according to the establishment of
checkpoints, BER approach can be exposed to an
uncontrolled recovery propagation which can de-
generate into domino effect [8].
Restarting of distributed applications must take place
from a Consistent Global Checkpoint (CGC) [5] or
Recovery Line (RL) and the way according to which
this RL is determined, constitutes a characteristic of a
recovery mechanism. Two policies are commonly used:
Static determination: where the recovery line is
established during writting of programs [8] and dynamic
determination: where the RL is determined
automatically during a recovery operation [3, 6]. The
latter one may include three common approaches used
for creating global checkpoints like:

a) Coordinated checkpointing where local

checkpoints of communicating processes are
coordinated with the initiator in order to form
together a recovery line [6].

b) Uncoordinated or asynchronous checkpointing
where a total freedom is given to processes when
recording their local checkpoints without regard to
obtaining or not a recovery line [3].

 J. Computer Sci., 3 (8): 617-623, 2007

 618

c) Communication-induced checkpointing where
each process is forced to take checkpoints based on
information piggybacked on the application
messages received from other processes [9].

Another characteristic is the relationship existing

between application programmer and a recovery
mechanism. The latter one can be transparent [10, 11] if it
is based on BER approach, or fully integrated into
application if it is issued from FER approach [6]. In this
case, the programmer must take into account the fault
tolerance problem when writting his application. A
recovery mechanism is also distinguishable with regard
of the fault type which can handle: i.e, can it only
handle software fault? Hardware fault? Or both? In case
of hardware fault, can it handle transient fault,
permanent fault or both? Most of protocols referred in
the literature are devoted to transient faults, exception
handling [4] and more generally FER approach is
dedicated to tolerate essentially software faults, while
BER fits as well on software faults as on hardware
faults. However, if BER approach is fitting on hardware
faults, more particularly in permanent ones, the
recovery of these faults always require some
redundancy in hardware components. Based on their
inherent and intrinsic redundancy and on their large
availability, distributed systems provide an appropriate
environment to improve capabilities of fault tolerance,
and thus are suitable framework to enhance their
resilience to failures.
 In this paper, we focus on the concurrent processes
recovery in distributed environment from hardware
faults (transient or permanent). Many error recovery
strategies based on BER approach are presented. The
particularity of this work is:
1. Handling together transient or permanent faults

without requiring special architecture, so the
provided recovery strategies are system level based
and may be usable in numerous existing systems
with a transparent manner [10].

2. The cost incurred (time overhead) resulting from
recovery operation are partially avoided by
message logging technique [7], or completely when
(in addition) some easily feasible criteria [2], which
prevent forward propagation (D7) between
processes, hold.

3. No constraint on processes communications or
checkpoints creation is imposed. This total freedom
can be profitably used by processes to save their
local checkpoints at convenient instants. Therefore,
this last situation is particularly important when a
process decide to record a checkpoint in order to

save an important event like receiving messages
from a sender which cannot recover, for instance a
sensor. Furthermore, when the recovery blocks
scheme [8] is integrated in our strategies, the
complexity will be certainly increased, but the
expected recovery mechanism will be of general
purpose (handling of hardware faults as well as
software ones). This combination is actually under
study. This paper is organized as follows. After a
given a background in section 2, we present, in
section 3, many basic recovery strategies. Each
strategy is examined with regard to system
perturbation (overhead) in case of error recovery
from transient or permanent fault. In order to get
minimal system perturbation values, we combine,
in section 4, the positive aspects of basic strategies
in order to form two mixed ones. In section 5, we
describe a simple implementation to point out one
of mixed strategies feasibility. A conclusion is
given in section 6.

BACKGROUND

System Model: We consider a distributed system
consisting of a set of stations or nodes running each one
its own system. A distributed computation is performed
by a set of N processes Pi, i ∈ [1, N], running
concurrently on nodes. A piece wise deterministic
model of computation is assumed, that is, a process
always generates the same sequence of outputs from its
execution for the same sequence of inputs. Fail-stop
failure mode of processes is assumed except where
otherwise stated. Hardware faults, transient or
permanent, are considered in this paper. In transient
error (an error is an erroneous process state originated
from fault), no physical damage is created, and so a
process can be re-executed and is likely to fail again
after it recovers from a failure.

Definitions: Before detail in the sequel,
some preliminary definitions are needed.
D1: A checkpoint (CP) is a process state periodically

saved for restoring it later in case of error. The
period of activity between two consecutive CPs is
called a Recovery Region (RR).

Remark: For the sake of implementation each RR can
be associated to reception or emission of message(s).
So, we need to characterize it as an RR which receives
or sends message(s) with an Identifier Receiving
Recovery Region (IRRR) or Identifier Sending
Recovery Region (ISRR).
D2: A CP is said to be active if it is the most recently

recorded one. We call Restarting Checkpoint (RCP),

 J. Computer Sci., 3 (8): 617-623, 2007

 619

a selected CP from which an execution of a process
involved in a recovery operation is restarted. Let
CPi and CPj belong to a process Pi, CPi is said to
be dominant of CPj if CPi is created before CPj
(noted: CPi < CPj).

D3: For every pair (CPp, CPq) of checkpoints, such that
CPp belongs to process P and CPq to Q, CPp is
said to be a Direct Propagator (DP) of CPq (noted
CPp → CPq) if and only if: one message at least
flows from the recovery region identified by CPp
in P to the recovery region identified by CPq in
process Q. Conversely CPq is said to be a Direct
Dependent (DD) of CPp. In the same way, CPp is
said to be an Indirect Propagator (IP) of CPq (noted
CPp CPq) if and only if: - either CPp is a DP of
CPq, - or (recursively), there exists CPs belonging
to a process S such that: CPp is a DP of CPs and,
CPs or any other checkpoint of S, successor to CPs,
is an IP of CPq. Conversely, CPq is called an
Indirect Dependent (ID) of CPp.

D4: A Dependents List (DL) of a process P is the set of
dependents of all CP's belonging to P at time t. A
sub_list of DL associated to a given CP of P is
called an Immediate Dependents List (IDL) of that
CP. In the same way, the set of DP of all CP's
belonging to P is called Propagators List (PL) of P.
The DP's of a given CP which belongs to P
represent an Immediate Propagators List (IPL) of
that CP.

D5: A consistent global state of a system (or Recovery
Line: RL) is a state defined by a set of CPs, one per
communicating process. They form together a
"barrier" which stops any recovery propagation.

D6: A Definite Invocation (DI) of a process is an
invocation for a recovery where the called process
must roll back to RCP supplied in received
invocation message. As opposed to DI, a Random
Invocation (RI) is one where the RCP of the
invocated process P is determined in accordance
with the RCP of the calling

Process indicated in received invocation message.
D7: An information message is said to be revoked if it

is erroneous, or if it is correct but its use causes
problems. A message is said to be indispensable if
it is required for a reexecution of the recovered
process. A backward propagation is a propagation
of recovery generated by a process Pj to reach Pi in
order to re-create for Pj at least one indispensable
message. A forward propagation issued from Pj to
reach Pk is recovery propagation subsequent to

reception by Pk of one revoked message at least,
sent by Pj.

D8: A recovery propagation is said to be of level n (n >
0) if it reaches n different processes from the
initiator one. A recovery propagation is said to be
of order p (p > 0) relatively to process Pi, if the
length of roll back executed by Pi is p recovery
regions.

D9: A recovery graph (RG) of process Pi (1≤ i ≤N) is a
graph which describes exchanges between Pi and
its partners Pj (i ≠ j, 1≤ j ≤N). An RG contains
information needed by a recovery operation like
DL and PL lists.

BASIC STRATEGIES

Several strategies for recovery from transient or
permanent faults have been studied; but due to the
restricted paper space, only few of them are examined
below and the others are merely introduced (For more
details refer to [2]).
Before developing some strategies, we first look into
the principle of a recovery operation, the needed
hypotheses, and how to avoid rollback propagation.

Recovery Principles
A recovery operation is the action taken by an
appropriate mechanism to enable a failing system to
recover a correct state from which reexecution is
resumed. The faults we consider are hardware (transient
or permanent), and the distinction between them is
complex (indeed impossible). So, when detected, an
error is firstly considered as transient (except the case
of processor crash where this one is detected by its
peers via an appropriate diagnostic) and handled as
such. It is considered as permanent one after several
vain trials. Usually, processing of transient faults is
accomplished in two stages: detection, and recovery;
but permanent faults may need four: detection,
diagnosis and hard reconfiguration (switching to spare
component), soft reconfiguration (selecting an efficient
process context), and restarting. To avoid any
ambiguity in recovery operation, the following
hypotheses are applied.
H1: the error latency is scarcely presumed nil except

where otherwise stated. In other words, processors
follow fail-silent failure mode.

H2: no error happens during a recovery operation.
H3: Communication system is reliable.

With H1 and H2, all messages sent and received
before errors are considered to be correct, then no

 J. Computer Sci., 3 (8): 617-623, 2007

 620

propagation of roll-back to partners of a failing
process is needed. H1, particularly, depends on the
error detection method, like concurrent detection
by means of self-checking logic. The criteria
defined below allow forward propagation to be
avoided.

Criterion 1: When received, a message is recognized to
be useful for the execution of the receiving process or
harmful because it results from a roll-back of the
issuing process and must be ignored.
Criterion 2: The recovery processor is able to
recognize the message already sent during a normal
execution of a process P and avoids the reemission of
the same message when P is rolling back after error.
Criterion 3: After a process roll back, all messages are
resent but without causing any problem in receiving
processes, i.e. the actions generated by those messages
are idempotent. It is intended that the non respect of
criteria 1, 2 is merely due to the unused of the
associated algorithms. In the sequel, we consider
criteria 1, 2 to be held. Then the consistent system state
(i.e. RL) may be reached in only one roll back per
process. A distributed algorithm [2], initiated by a
recovery processor, enables to know all CP's of
processes represented in the RL; after this, a recovery
message is sent to every concerned process.

Strategy A: In this strategy, every node saves messages
that it receives. In order to see what happens and how
each type of hard fault is handled, strategy A is
successively examined according to transient fault,
permanent fault and finally both integrated in the same
handling algorithm.
Transient faults:Their occurrences may lead to a state
alteration of the affected process Pi and possibly, by
"contamination", to its partners Pjs. This contamination
takes place when Pj's partners have consumed at least a
revoked message (D7) produced by Pi. To correct this
erroneous system state, Pi and Pj's must suspend their
current execution and resume from a recovery line.
Since the new execution is submitted to the same events
as during the first one, particularly, the need to re-use
the same information, this is accomplished by means of
locally saved messages in the failing node.
With hypothesis H1 and criteria 1 or 2, recovery opera-
tion is achieved without any propagation to Pj’s
partners. Then, the recovery of any failing process takes
place in the original failing node, since the latter is not
affected by any irreversible physical damage.
Permanent fault: Contrary to what happens in case of
transient fault, the damaged node is now unable to
pursue the execution of its process Pi, and then

recovery is achieved in another operational node called
Recovering Node (RN) associated to the first one. The
RN may be a spare node in case of non graceful system
degradation, in which original architecture topology is
preserved, or in one of the active nodes with degradable
performance (may be in modified topology). All
information saved in the failing node is presumed to be
lost and the only recovery information available on the
RN is: the code of failing process Pi and one CP at
least. To resume execution of Pi, the recovery processor
must impose the backward propagation to all Pj
partners to recreate indispensable messages for Pi.
Forward propagation inherent to messages sent
previously by Pi, is avoided by criteria 1 and 2. We
now examine what information is needed to the
mechanism which may adopts this recovery strategy.

Required information:To respect criterion 1, it is
necessary for every process to keep information relative
to received messages, (message serial number, and
sender identifier). For the criterion 2, saving of serial
number of each sent message and identifier of its
receiver process is needed.
In case of unsatisfied criteria 1 or 2, it is important to
propagate the recovery from the failing process Pi to
every partner Pj which has received from Pi one
revoked message at least. This action is achieved by
means of information which identifies message
exchanges established between Pi and Pj. That
information is found in the DL list (D4) of the recovery
graph (D9). Thereby, a protocol between processes is
needed, so when a process receives a message, it sends
to its sender the Identifier of Receiving Recovery
Region (IRRR). Thus, with DL list, a recovery
processor is able to designate to each partner Pj of the
failing process Pi, an RCP (D2) from which restart can
be done (definite invocation, D6). The information
required handling permanent faults, and available on
each Recovering Node, is: the process code and one or
several contexts associated to CP of that process.
Application messages may piggyback some additional
information to be used by the recovery mechanism; for
instance: message number, the Identifier of the
Emission Recovery Region (ISRR), required
constructing the PL list (D4) of recovery graph.

Recovery operation
Case of Transient Fault: After error detection, the
Recovering Processor RPri restarting the failing process
Pi, performs the following recovery algorithm.
1. RPri uses as Restart Checkpoint (RCP) the active

CP of Pi. Since no forward propagation is possible,
there is no return of propagation to Pi reaching a
dominant CP (D2) of RCP;

 J. Computer Sci., 3 (8): 617-623, 2007

 621

2. RPri restores the state of Pi corresponding to RCP;
3. RPri resumes execution of Pi.

In this case, only a single CP is needed to save for each
process of the system, and moreover, criterion 2 may be
preferably satisfied.

Case of Permanent Fault: The failing node is
recognized as such, diagnosis and hard reconfiguration
are supposed realized. Because lack of Pi Recovery
Graph, the Recovering Processor RPri initiates a
random invocation (D6) to cause backward propagation
of every Process Pj, partner of Pi, such that : ∃ CPj∈Pj
and CPj → RCP, i.e. CPj is a direct propagator (D3) of
RCP of the failing process Pi. The following actions are
executed.
1. Sending by RPri, to every process/node, of a

random invocation message which contains the
RCP of the failing process Pi. This RCP is the
active CP of Pi.

2. After the invocation message is sent, RPri restores
the state of Pi associated to RCP, and restarts Pi
execution.

3. As soon as an invocation message is received, the
receiver processor RPrj determines if there is one
of its processes Pj such that : CPj ∈ Pj and CPj →
RCP, if several CPj may exist, then only the
dominant one is selected.

4. Deletion of all possible successors of CPj.
5. Restoration of Pj state corresponding to CPj.
6. Restarting of Pi (Because criterion 2 is set, only

application messages needed by Pi are re-sent).

Case of transient or permanent Faults: The major
aim of this study is to recover from solid faults,
whatever their type. Then when detected, a fault is
firstly handled as a transient one; it is considered as a
permanent after many vain attempts to recover from it.
The precedent actions in a) and b) are then applied.
Overhead and roll-back length: The concern of a
recovery mechanism is tightly related to its cost
(overhead incurred), then the difficulties resulting from
its design is more relevant to efficiency than to the error
recovery aspect. Therefore, the strategy is considered
according to a determining factor inherent to recovery
operation cost like domino effect.
Avoidance of any propagation in transient fault, gives
the strategy optimal perturbation values, thus the factors
of propagation (D8) are: level n=0 and order p= 1.
Generally, with any type of solid fault, strategy A is
exempt from domino effect. Indeed, the latter one can

only be caused by backward propagation, but while
only a single permanent fault is considered at time, any
process Pj reached by a backward propagation cannot
propagate the latter (since indispensable messages are
locally available for failing process Pi). Then there is no
possibility of creating a cycle of backward propagation,
and the absence of a cycle implies absence of a domino
effect. Therefore the level of propagation is: n ≤ m
where m is the number of direct propagators of Pi.
The strategy A is attractive for recovery of transient
faults. However permanent faults may create situation
of unnegligible system overhead during recovery
operation. Since the occurrence frequency of these
permanent faults is lower than the one of transient fault,
this does not represent a handicap. Nevertheless, an
improvement to handle this class of faults is devoted to
the strategy B.

Strategy B: Every message received by a node is saved
in its producer one. Due to restricted space, we only
give the obtained results (Cf. [2]).
Roll-backs length and overhead: The forward
propagation is avoided, but backward propagation may
be imposed to get indispensable messages for the
failing process P. Therefore two cases may occur: -
Before a permanent fault occurrence, no propagation is
possible then the overhead factors are optimal: level n =
0, order p = 1 because only the failing process has to
roll back at its active CP. - After permanent fault, it
may be possible to impose the backward propagation to
message producers when the former ones are located in
a recovery node. Then, factors are: level: n ≤ m (m is
the number of these producers), order P = 1 only for P.

Strategy C: No saving messages are required
This strategy is only based on checkpointing but no
messages logging is used. It can be studied when all
strategies concern only checkpointing or can be used as
a reference position. Knowing that strategy C is optimal
in terms of incurred overhead during normal execution
(no messages logging), we can then use it when
comparing among others strategies.

Strategy D:This strategy is characterized as follows:
Every message received by a node is picked up and
saved by the corresponding recovering node.
Because process code, checkpoints and needed
messages are available in the recovering node, this
strategy is particularly attractive in case of permanent
errors. So, in long living application when hard
components redundancy is very extensive, like in Blue
Gene/L supercomputer with 16384 processors [12], we
can make no difference between transient and
permanent error. For instance, every error (even

 J. Computer Sci., 3 (8): 617-623, 2007

 622

transient) affecting a node may involve to immediately
and systematically switching to associated recovering
node. This approach is very realistic because the Mean
Time between Failure factor is very small like about
few hours. Therefore, to save time from repetitive tries
to recover from a recurrent transient error, it is
convenient to make no distinction and consider all
errors as permanent.
Description: As we have seen before, saving messages
plays a privileged part in the limitation of perturbations,
and permanent faults may involve many processes,
causally related to a failing one, in backward
propagation actions. The aim of this strategy is to create
an adequate environment to handle permanent errors.
Therefore, every received message in a node is captured
and saved in the corresponding recovery node. We,
thereby, consider the recovery operation according to
the type of occurred error:
• When the detected error is considered as a transient

one, the recovery processor requests the recovery
node to get saved messages which are
indispensable to resume the execution of the failing
process.

• When the error is handled as a permanent one, the
failing process P will be resumed in recovery node,
where essential P context is provided. No
backward propagation is needed unless case where
a recovery node is crashed before P (case of
multiple permanent faults). Due to the strategy
specification, it convenient to have a
communication medium allowing a capture of
messages easily (like broadcast medium). So, the
strategy best fits an Ethernet or Wireless area
network. The information needed for a recovery
mechanism is of two sorts:

• One relative to the recovery node with recovery
graph adapted to this case, particularly, each
element of the propagator list must indicate the
number of the first message received in the as-
sociated Receiving Recovery Region. This is
needed for requesting indispensable saved
messages in case of roll-back.

• Another one, related to the recovery node,
concerning the saved messages and associated RP.

Recovery in Transient or permanent fault
1. Transient fault:
a Sending, by a Recovery Processor RPri, a request

to the recovery node to supply the indispensable
messages. The request must piggyback the RCP of
the failing process Pi, or the first message number
previously received in the RCP recovery region.

b Restoration of Pi state corresponding to RCP and
resumption of Pi execution.

2. Permanent fault:
a Reconfiguration: i.e. disconnection of failing node

and commutation to corresponding RN.
b Restoration of state associated to RCP (most

recently saved in RN) and resumption of Pi.
Perturbations and Roll-back length: The
perturbations are eliminated; so the propagation factors
are: level n = 0 and order p = 1. When a request for
indispensable messages cannot be satisfied because of
absence of the concerned Recovery Node, the level n is
such that n �� m where m is the number of direct
propagator processes of the failing one.
All previous strategies are of concern to find a tradeoff
between several factors like: lowering or preventing
domino effect, minimizing overhead during normal
execution of the system ... The next mixed strategies
particularly advocate creating an appropriate
environment to recover from permanent errors.

MIXED STRATEGIES

Since these strategies are combined from basic ones, a
summary description of each one is given below.

Strategy AB : Sender-Receiver based strategy.
Every message received and saved in a receiving node
is also saved in sending node.
This strategy is a combination of strategy A and
strategy B. Two important results are reached namely:
1) The perturbations are optimum so, level n = 0 and
order p = 1. 2) A single context corresponding to the
active CP is saved for any process.

Strategy AD: Sender-Recovering node based strategy.
Every message received and saved in a Node is
captured and saved by the corresponding Recovering
Node.
With duplication of message saving, in both potential
failing node and Recovering Node, we gather
advantages of basic strategies A and D in order to easily
handle transient faults and permanent ones. So, it
results from this association two fundamental
characteristics, namely: - No transfer of indispensable
messages takes place during a recovery operation, then
neither penalization of processes other the failing one,
and no tendency to increase the activity of transmission
system is incurred. - Complete isolation of safe
processes opposite to the failing one. Consequently a
single context is saved for each process.
While overhead incurred from message management is
proportional to processes interaction, the former may be
unnegligible. However, a separate processor may be
dedicated to perform this management.

 J. Computer Sci., 3 (8): 617-623, 2007

 623

Recovery Operation: While strategy AD is combined
from strategies A and D, the recovery information re-
quired are: a recovery graph as described in strategy A,
and a data structure inherent to a Recovering Node like
one defined in strategy D. The recovery algorithm is
formed by the one defined in strategy A for transient
fault, combined to which given in strategy D for perma-
nent fault.

Perturbation and Roll-backs Length: Strategy AD is
the most optimal one so, we state: level n = 0, order p
= 1.

 IMPLEMENTATION

Our first simple application was experimented in three
workstations on each one is running a process. One of
the three processes say P has to determine prime
numbers in [1, N] interval and sends then to the others
(Q, R) for usage (the prime numbers are also displaying
in P screen). Q and R are doing other things where the
generated numbers are consumed. Each workstation has
an associated recovery one. A transient fault was
simulated in executing an interruption handler, while a
permanent one is simulated in switching off the
P/workstation. In the first case, the process P redisplays
the prime numbers previously determined in the active
recovery region showing then the AD strategy
principles. In the second case, the failed process P is
recovered on its recovery workstation (Q); the
displaying of prime numbers is resumed at point it was
previously interrupted. The recovery workstation screen
is divided in two windows where one part shows
scrolling of resumed prime numbers and the second part
shows the process Q result. The progression of Q and R
are not affected. The second switching off of Q/node
had led to R/node to support P, Q, R continuation but
the given response time was slightly heavy. The
obtained results are then to confirm our ideas.

CONCLUSION AND FUTUR WORK

Several recovery strategies in distributed system have
been presented. They handle both transient and
permanent faults. This can allow the crucial application
programs to have a non-stop execution despite solid fai-
lures. Generally, the avoidance of situation of
important system penalization (undoing a great deal
computation in case of error) is obtained from
propagation control constraints. These constraints are
relative either to the communications or checkpoints
setting. This control is achieved in our strategies,
partially by saving messages, or completely by additio-
nal criteria. Then the processes liberty is preserved. The
strategies (notably AD, AB) are very attractive because
they are almost domino effect free, and also, only a

single checkpoint is saved for each process. The aim of
the strategies exhaustivity is to cope with a great class
of fault tolerant systems.
 It is noteworthy that to improve more and more
reliability, it is necessary to take into account both
hardware and software faults. So, we are actually
incorporating the recovery blocks technique in the
proposed strategies in order to reach a more general
recovery mechanism.

REFERENCES

1. Aliouat, M. 1986. Reprise de processus en

environnement distribué après pannes matérielles.
PHD Thesis, INPG Grenoble France.

2. Aliouat, M. 2006. Recovery from Hard Faults in
Distributed Environment. RR. N°19B06, Computer
Science dept. U.F.A.S University, Algeria.

3. Storm R.E. and S. Yemini, 1985. Optimistic
Recovery in Distributed Systems, ACM Trans.
Computer Systems, vol. 3, pp 204-226, Aug.

4. Cristian F, 1982. Exception Handling and Software
Fault Tolerance. IEEE Trans. On computers, C.31
pp. 531-539.

5. Netzer R. and J. Xu, 1995. Necessary and
Sufficient Conditions for Consistent Global
Snapshots, IEEE Trans on Parallel and Dist.
System, Feb.

6. Elnozahy E. N., L. Alvisi, Y. M. Wang and D. B.
Johnson, 2002. A Survey of Rollback-Recovery
Protocols in Message-Passing Systems, ACM
Comp. Surveys, Sep.

 7. Alvisi L. and K. Marzullo, 1998. .Message
Logging: Pessimistic, Optimistic, Causal and
Optimal, IEEE Transactions on Software
Engineering, Feb.

8. Randell B, 1975. System Structure for Software
Fault Tolerance. IEEE Trans. Soft. Eng.SE 1, 2 pp.
220-232,

9. Russell D.L, 1980. State Restoration in Systems of
Communicating Processes. IEEE Trans. soft. Eng.,
vol. 6 pages 183-194, Mar.

10. Janakiraman G.F., J.R. Santos, D. Subharaveti, and
Y. Turner, 2005. Cruz: Application-Transparent
Distributed Checkpoint-Restart on Standard
Operating Systems. DSN Yokohama Japan

11. Gao Q., W. Yu, W. Huang, and D.K. Panda.,
2006. Application-Transparent Checkpoint/Restart
for MPI programs over infiniBand. Proceedings of
intl. conf. on parallel Processing, pp. 471-478.

12. Amati G. and others, 2005. Early Experience with
Scientific Application on the Bleue Gene/L
supercomputer, Springer, vol. 36 (48).

