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Abstract: The recovery mechanism from transient fault in distributed systems has been intensively 
studied in the past, but to our best knowledge, none of these studies has been devoted to cope together 
with transient and permanent hard faults. Our study devoted to recovery processes in a distributed 
environment in case of hard faults like transient or permanent. The recovery mechanism we presented 
can be based on one of the six proposed strategies involving checkpointing and message logging 
between distributed application processes. This exhaustive number is system-dependant. The strategies 
have been examined with respect to propagation recovery through processes in order to prevent the 
fastidious well known domino effect problem. The considered  framework was a distributed system  
composed of a set of autonomous nodes running each one a local system; and some of them were 
predisposed to replace failing ones in case of permanent fault. Our main contribution was to enable a 
distributed application to meet its requirements of terminating its mission in spite of node crash.  
Preliminary experimental results of a fault tolerant mechanism based upon one of the proposed 
strategies demonstrated that our proposals seem to be conclusive. 
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INTRODUCTION 

 
Meeting requirements of dependability in critical 

applications has led to the development of techniques to 
improve design of fault tolerant systems which can 
maintain specified services in spite of fault occurrences. 
The developed techniques can be dedicated to cope 
with hardware faults, software faults or both. They are 
essentially based on two fundamental and com-
plementary approaches:  backward error recovery and 
forward error recovery [1, 4, 6]. 
Based on the identification and the accurate knowledge 
of the error, Forward Error Recovery (FER) copes with 
the failure in correcting erroneous system state by ac-
ting on the damaged part. This action needs first an 
accurate assessment of damages inflicted to the system. 
Backward Error Recovery (BER) is independent to-
wards assessment and prediction of damages caused by 
a fault. It is more general since it does not depend on 
applications. So, recovery   from an   error is   then   
achieved  by restoring an old state (presumed error free) 
prior to the fault occurrence, from which restarting of 
the failed system will take place. 
 

Designing a recovery mechanism, particularly in a 
distributed concurrent processes system, implies to take  

 
into account the costly and complex problem of error 
propagation resulting from message exchanges between  
processes. So, if interprocess communications are not 
well coordinated according to the establishment of 
checkpoints, BER approach can be exposed to an 
uncontrolled recovery propagation which can de-
generate into domino effect [8]. 
Restarting of distributed applications must take place 
from a Consistent Global Checkpoint (CGC) [5] or 
Recovery Line (RL) and the way according to which 
this RL is determined, constitutes a characteristic of a 
recovery mechanism. Two policies are commonly used: 
Static determination: where the recovery line is 
established during writting of programs [8] and dynamic 
determination: where the RL is determined 
automatically during a recovery operation [3, 6]. The 
latter one may include three common approaches used 
for creating global checkpoints like:  
 
a)   Coordinated checkpointing where local 

checkpoints of communicating processes are 
coordinated with the initiator in order to form 
together a recovery line [6]. 

b)   Uncoordinated or asynchronous checkpointing 
where a total freedom is given to processes when 
recording their local checkpoints without regard to 
obtaining or not a recovery line [3]. 
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c)   Communication-induced checkpointing where 
each process is forced to take checkpoints based on 
information piggybacked on the application 
messages received from other processes [9]. 

 
Another characteristic is the relationship existing 

between application programmer and a recovery 
mechanism. The latter one can be transparent [10, 11] if it 
is based on BER approach, or fully integrated into 
application if it is issued from FER approach [6]. In this 
case, the programmer must take into account the fault 
tolerance problem when writting his application. A 
recovery mechanism is also distinguishable with regard 
of the fault type which can handle: i.e, can it only 
handle software fault? Hardware fault? Or both? In case 
of hardware fault, can it handle transient fault, 
permanent fault or both? Most of protocols referred in 
the literature are devoted to transient faults, exception 
handling [4] and more generally FER approach is 
dedicated to tolerate essentially software faults, while 
BER fits as well on software faults as on hardware 
faults. However, if BER approach is fitting on hardware 
faults, more particularly in permanent ones, the 
recovery of these faults always require some 
redundancy in hardware components. Based on their 
inherent and intrinsic redundancy and on their large 
availability, distributed systems provide an appropriate 
environment to improve capabilities of fault tolerance, 
and thus are suitable framework to enhance their 
resilience to failures. 
  In this paper, we focus on the concurrent processes 
recovery in distributed environment from hardware 
faults (transient or permanent). Many error recovery 
strategies based on BER approach are presented. The 
particularity of this work is:  
1.  Handling together transient or permanent faults 

without requiring special architecture, so the 
provided recovery strategies are system level based 
and may be usable in numerous existing systems 
with a transparent manner [10]. 

2.  The cost incurred (time overhead) resulting from 
recovery operation are partially avoided by 
message logging technique [7], or completely when 
(in addition) some easily feasible criteria [2], which 
prevent forward propagation (D7) between 
processes, hold.  

3.  No constraint on processes communications or 
checkpoints creation is imposed. This total freedom 
can be profitably used by processes to save their 
local checkpoints at convenient instants. Therefore, 
this last situation is particularly important when a 
process decide to record a checkpoint in order to 

save an important event like receiving messages 
from a sender which cannot recover, for instance a 
sensor. Furthermore, when the recovery blocks 
scheme [8] is integrated in our strategies, the 
complexity will be certainly increased, but the 
expected recovery mechanism will be of general 
purpose (handling of hardware faults as well as 
software ones). This combination is actually under 
study. This paper is organized as follows. After a 
given a background in section 2, we present, in 
section 3, many basic recovery strategies. Each 
strategy is examined with regard to system 
perturbation (overhead) in case of error recovery 
from transient or permanent fault. In order to get 
minimal system perturbation values, we combine, 
in section 4, the positive aspects of basic strategies 
in order to form two mixed ones. In section 5, we 
describe a simple implementation to point out one 
of mixed strategies feasibility. A conclusion is 
given in section 6. 

 
BACKGROUND 

System Model: We consider a distributed system 
consisting of a set of stations or nodes running each one 
its own system. A distributed computation is performed 
by a set of N processes Pi, i ∈ [1, N], running 
concurrently on nodes. A piece wise deterministic 
model of computation is assumed, that is, a process 
always generates the same sequence of outputs from its 
execution for the same sequence of inputs. Fail-stop 
failure mode of processes is assumed except where 
otherwise stated. Hardware faults, transient or 
permanent, are considered in this paper. In transient 
error (an error is an erroneous process state originated 
from fault), no physical damage is created, and so a 
process can be re-executed and is likely to fail again 
after it recovers from a failure. 

Definitions: Before detail in the sequel, 
some preliminary definitions are needed. 
D1: A checkpoint (CP) is a process state periodically 

saved for restoring it later in case of error. The 
period of activity between two consecutive CPs is 
called a Recovery Region (RR). 

Remark: For the sake of implementation each RR can 
be associated to reception or emission of message(s). 
So, we need to characterize it as an RR which receives 
or sends message(s) with an Identifier Receiving 
Recovery Region (IRRR) or Identifier Sending 
Recovery Region (ISRR). 
D2: A CP is said to be active if it is the most recently 

recorded one. We call Restarting Checkpoint (RCP), 
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a selected CP from which an execution of a process 
involved in a recovery operation is restarted. Let 
CPi and CPj belong to a process Pi, CPi is said to 
be dominant of CPj if CPi is created before CPj 
(noted: CPi < CPj). 

D3: For every pair (CPp, CPq) of checkpoints, such that 
CPp belongs to process P and CPq to Q, CPp is 
said to be a Direct Propagator (DP) of CPq (noted 
CPp  → CPq) if and only if: one message at least 
flows from the recovery region identified by CPp 
in P to the recovery region identified by CPq in 
process Q. Conversely CPq is said to be a Direct 
Dependent (DD) of CPp. In the same way, CPp is 
said to be an Indirect Propagator (IP) of CPq (noted 
CPp     CPq) if and  only if: - either CPp is a DP of 
CPq, - or (recursively), there exists CPs belonging 
to a process S such that: CPp is a DP of CPs and, 
CPs or any other checkpoint of S, successor to CPs, 
is an IP of CPq. Conversely, CPq is called an 
Indirect Dependent (ID) of CPp.  

D4: A Dependents List (DL) of a process P is the set of 
dependents of all CP's belonging to P at time t. A 
sub_list of DL associated to a given CP of P is 
called an Immediate Dependents List (IDL) of that 
CP. In the same way, the set of DP of all CP's 
belonging to P is called Propagators List (PL) of P. 
The DP's of a given CP which belongs to P 
represent an Immediate Propagators List (IPL) of 
that CP. 

D5: A consistent global state of a system (or Recovery 
Line: RL) is a state defined by a set of CPs, one per 
communicating process. They form together a 
"barrier" which stops any recovery propagation. 

D6: A Definite Invocation (DI) of a process is an 
invocation for a recovery where the called process 
must roll back to RCP supplied in received 
invocation message. As opposed to DI, a Random 
Invocation (RI) is one where the RCP of the 
invocated process P is determined in accordance 
with the RCP of the calling 

Process indicated in received invocation message. 
D7: An information message is said to be revoked if it 

is erroneous, or if it is correct but its use causes 
problems. A message is said to be indispensable if 
it is required for a reexecution of the recovered 
process.  A backward propagation is a propagation 
of recovery generated by a process Pj to reach Pi in 
order to re-create for Pj at least one indispensable 
message.  A forward propagation issued from Pj to 
reach Pk is recovery propagation subsequent to 

reception by Pk of one revoked message at least, 
sent by Pj. 

D8: A recovery propagation is said to be of level n (n > 
0) if it reaches n different processes from the 
initiator one. A recovery propagation is said to be 
of order p (p > 0) relatively to process Pi, if the 
length of roll back executed by Pi is p recovery 
regions. 

D9: A recovery graph (RG) of process Pi (1≤ i ≤N) is a 
graph which describes exchanges between Pi and 
its partners Pj (i ≠ j, 1≤ j ≤N). An RG contains 
information needed by a recovery operation like 
DL and PL lists.  

 
BASIC STRATEGIES 

Several strategies for recovery from transient or 
permanent faults have been studied; but due to the 
restricted paper space, only few of them are examined 
below and the others are merely introduced (For more 
details refer to [2]). 
Before developing some strategies, we first look into 
the principle of a recovery operation, the needed 
hypotheses, and how to avoid rollback propagation. 

Recovery Principles 
A recovery operation is the action taken by an 
appropriate mechanism to enable a failing system to 
recover a correct state from which reexecution is 
resumed. The faults we consider are hardware (transient 
or permanent), and the distinction between them is 
complex (indeed impossible). So, when detected, an 
error is firstly considered as transient (except the case 
of processor crash where this one is detected by its 
peers via an appropriate diagnostic) and handled as 
such. It is considered as permanent one after several 
vain trials. Usually, processing of transient faults is 
accomplished in two stages: detection, and recovery; 
but permanent faults may need four: detection, 
diagnosis and hard reconfiguration (switching to spare 
component), soft reconfiguration (selecting an efficient 
process context), and restarting. To avoid any 
ambiguity in recovery operation, the following 
hypotheses are applied.  
H1: the error latency is scarcely presumed nil except 

where otherwise stated. In other words, processors 
follow fail-silent failure mode.  

H2: no error happens during a recovery operation.  
H3: Communication system is reliable. 

With H1 and H2, all messages sent and received 
before  errors  are  considered to be correct, then no  



 J. Computer Sci., 3 (8): 617-623, 2007 
 

 620 

propagation of roll-back to partners of a failing 
process is needed. H1, particularly, depends on the 
error detection method, like concurrent detection 
by means of self-checking logic. The criteria 
defined below allow forward propagation to be 
avoided.  

Criterion 1: When received, a message is recognized to 
be useful for the execution of the receiving process or 
harmful because it results from a roll-back of the 
issuing process and must be ignored. 
Criterion 2: The recovery processor is able to 
recognize the message already sent during a normal 
execution of a process P and avoids the reemission of 
the same message when P is rolling back after error. 
Criterion 3: After a process roll back, all messages are 
resent but without causing any problem in receiving 
processes, i.e. the actions generated by those messages 
are idempotent. It is intended that the non respect of 
criteria 1, 2 is merely due to the unused of the 
associated algorithms. In the sequel, we consider 
criteria 1, 2 to be held. Then the consistent system state 
(i.e. RL) may be reached in only one roll back per 
process.  A distributed algorithm [2], initiated by a 
recovery processor, enables to know all CP's of 
processes represented in the RL; after this, a recovery 
message is sent to every concerned process. 

Strategy A: In this strategy, every node saves messages 
that it receives. In order to see what happens and how 
each type of hard fault is handled, strategy A is 
successively examined according to transient fault, 
permanent fault and finally both integrated in the same 
handling algorithm. 
Transient faults:Their occurrences may lead to a state 
alteration of the affected process Pi and possibly, by 
"contamination", to its partners Pjs. This contamination 
takes place when Pj's partners have consumed at least a 
revoked message (D7) produced by Pi. To correct this 
erroneous system state, Pi and Pj's must suspend their 
current execution and resume from a recovery line. 
Since the new execution is submitted to the same events 
as during the first one, particularly, the need to re-use 
the same information, this is accomplished by means of 
locally saved messages in the failing node. 
With hypothesis H1 and criteria 1 or 2, recovery opera-
tion is achieved without any propagation to Pj’s 
partners. Then, the recovery of any failing process takes 
place in the original failing node, since the latter is not 
affected by any irreversible physical damage. 
Permanent fault: Contrary to what happens in case of 
transient fault, the damaged node is now unable to 
pursue the execution of its process Pi, and then 

recovery is achieved in another operational node called 
Recovering Node (RN) associated to the first one. The 
RN may be a spare node in case of non graceful system 
degradation, in which original architecture topology is 
preserved, or in one of the active nodes with degradable 
performance (may be in modified topology). All 
information saved in the failing node is presumed to be 
lost and the only recovery information available on the 
RN is: the code of failing process Pi and one CP at 
least. To resume execution of Pi, the recovery processor 
must impose the backward propagation to all Pj 
partners to recreate indispensable messages for Pi. 
Forward propagation inherent to messages sent 
previously by Pi, is avoided by criteria 1 and 2. We 
now examine what information is needed to the 
mechanism which may adopts this recovery strategy. 
 
Required information:To respect criterion 1, it is 
necessary for every process to keep information relative 
to received messages, (message serial number, and 
sender identifier). For the criterion 2, saving of serial 
number of each sent message and identifier of its 
receiver process is needed. 
In case of unsatisfied criteria 1 or 2, it is important to 
propagate the recovery from the failing process Pi to 
every partner Pj which has received from Pi one 
revoked message at least. This action is achieved by 
means of information which identifies message 
exchanges established between Pi and Pj. That 
information is found in the DL list (D4) of the recovery 
graph (D9). Thereby, a protocol between processes is 
needed, so when a process receives a message, it sends 
to its sender the Identifier of Receiving Recovery 
Region (IRRR). Thus, with DL list, a recovery 
processor is able to designate to each partner Pj of the 
failing process Pi, an RCP (D2) from which restart can 
be done (definite invocation, D6). The information 
required handling permanent faults, and available on 
each Recovering Node, is: the process code and one or 
several contexts associated to CP of that process. 
Application messages may piggyback some additional 
information to be used by the recovery mechanism; for 
instance: message number, the Identifier of the 
Emission Recovery Region (ISRR), required 
constructing the PL list (D4) of recovery graph. 

Recovery operation 
Case of Transient Fault: After error detection, the 
Recovering Processor RPri restarting the failing process 
Pi, performs the following recovery algorithm. 
1.  RPri uses as Restart Checkpoint (RCP) the active 

CP of Pi. Since no forward propagation is possible, 
there is no return of propagation to Pi reaching a 
dominant CP (D2) of RCP;  
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2.   RPri restores the state of Pi corresponding to RCP; 
3.   RPri resumes execution of Pi. 

In this case, only a single CP is needed to save for each 
process of the system, and moreover, criterion 2 may be 
preferably satisfied. 
 
Case of Permanent Fault: The failing node is 
recognized as such, diagnosis and hard reconfiguration 
are supposed realized. Because lack of Pi Recovery 
Graph, the Recovering Processor RPri initiates a 
random invocation (D6) to cause backward propagation 
of every Process Pj, partner of Pi, such that : ∃ CPj∈Pj 
and CPj → RCP, i.e. CPj is a direct propagator (D3) of 
RCP of the failing process Pi. The following actions are 
executed. 
1.  Sending by RPri, to every process/node, of a 

random invocation message which contains the 
RCP of the failing process Pi. This RCP is the 
active CP of Pi. 

2. After the invocation message is sent, RPri restores 
the state of Pi associated to RCP, and restarts Pi 
execution. 

3.  As soon as an invocation message is received, the 
receiver processor RPrj determines if there is one 
of its processes Pj such that : CPj ∈ Pj and CPj → 
RCP, if several CPj may exist, then only the 
dominant one is selected. 

4.  Deletion of all possible successors of CPj. 
5.  Restoration of Pj state corresponding to CPj. 
6.  Restarting of Pi (Because criterion 2 is set, only 

application messages needed by Pi are re-sent). 
 
Case of transient or permanent Faults: The major 
aim of this study is to recover from solid faults, 
whatever their type. Then when detected, a fault is 
firstly handled as a transient one; it is considered as a 
permanent after many vain attempts to recover from it. 
The precedent actions in a) and b) are then applied. 
Overhead and roll-back length: The concern of a 
recovery mechanism is tightly related to its cost 
(overhead incurred), then the difficulties resulting from 
its design is more relevant to efficiency than to the error 
recovery aspect. Therefore, the strategy is considered 
according to a determining factor inherent to recovery 
operation cost like domino effect. 
Avoidance of any propagation in transient fault, gives 
the strategy optimal perturbation values, thus the factors 
of propagation (D8) are: level n=0 and order p= 1. 
Generally, with any type of solid fault, strategy A is 
exempt from domino effect. Indeed, the latter one can 

only be caused by backward propagation, but while 
only a single permanent fault is considered at time, any 
process Pj reached by a backward propagation cannot 
propagate the latter (since indispensable messages are 
locally available for failing process Pi). Then there is no 
possibility of creating a cycle of backward propagation, 
and the absence of a cycle implies absence of a domino 
effect. Therefore the level of propagation is: n ≤ m 
where m is the number of direct propagators of Pi. 
The strategy A is attractive for recovery of transient 
faults. However permanent faults may create situation 
of unnegligible system overhead during recovery 
operation. Since the occurrence frequency of these 
permanent faults is lower than the one of transient fault, 
this does not represent a handicap. Nevertheless, an 
improvement to handle this class of faults is devoted to 
the strategy B. 

Strategy B: Every message received by a node is saved 
in its producer one. Due to restricted space, we only 
give the obtained results (Cf. [2]).  
Roll-backs length and overhead: The forward 
propagation is avoided, but backward propagation may 
be imposed to get indispensable messages for the 
failing process P. Therefore two cases may occur: - 
Before a permanent fault occurrence, no propagation is 
possible then the overhead factors are optimal: level n = 
0, order p = 1 because only the failing process has to 
roll back at its active CP. - After permanent fault, it 
may be possible to impose the backward propagation to 
message producers when the former ones are located in 
a recovery node. Then, factors are: level: n ≤ m (m is 
the number of these producers), order P = 1 only for P. 

Strategy C: No saving messages are required 
This strategy is only based on checkpointing but no 
messages logging is used. It can be studied when all 
strategies concern only checkpointing or can be used as 
a reference position. Knowing that strategy C is optimal 
in terms of incurred overhead during normal execution 
(no messages logging), we can then use it when 
comparing among others strategies. 

Strategy D:This strategy is characterized as follows: 
Every message received by a node is picked up and 
saved by the corresponding recovering node.  
Because process code, checkpoints and needed 
messages are available in the recovering node, this 
strategy is particularly attractive in case of permanent 
errors. So, in long living application when hard 
components redundancy is very extensive, like in Blue 
Gene/L supercomputer with 16384 processors [12], we 
can make no difference between transient and 
permanent error. For instance, every error (even 
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transient) affecting a node may involve to immediately 
and systematically switching to associated recovering 
node. This approach is very realistic because the Mean 
Time between Failure factor is very small like about 
few hours. Therefore, to save time from repetitive tries 
to recover from a recurrent transient error, it is 
convenient to make no distinction and consider all 
errors as permanent. 
Description: As we have seen before, saving messages 
plays a privileged part in the limitation of perturbations, 
and permanent faults may involve many processes, 
causally related to a failing one, in backward 
propagation actions. The aim of this strategy is to create 
an adequate environment to handle permanent errors. 
Therefore, every received message in a node is captured 
and saved in the corresponding recovery node. We, 
thereby, consider the recovery operation according to 
the type of occurred error: 
• When the detected error is considered as a transient 

one, the recovery processor requests the recovery 
node to get saved messages which are 
indispensable to resume the execution of the failing 
process.  

• When the error is handled as a permanent one, the        
failing process P will be resumed in recovery node, 
where essential P context is provided. No 
backward propagation is needed unless case where 
a recovery node is crashed before P (case of 
multiple permanent faults). Due to the strategy 
specification, it convenient to have a 
communication medium allowing a capture of 
messages easily (like broadcast medium). So, the 
strategy best fits an Ethernet or Wireless area 
network.  The information needed for a recovery 
mechanism is of two sorts: 

•  One relative to the recovery node with recovery 
graph adapted to this case, particularly, each 
element of the propagator list must indicate the 
number of the first message received in the as-
sociated Receiving Recovery Region. This is 
needed for requesting indispensable saved 
messages in case of roll-back. 

• Another one, related to the recovery node, 
concerning the saved messages and associated RP. 

 
Recovery in Transient or permanent fault 
1.  Transient fault: 
a   Sending, by a Recovery Processor RPri, a request 

to the recovery node to supply the indispensable 
messages. The request must piggyback the RCP of 
the failing process Pi, or the first message number 
previously received in the RCP recovery region. 

b Restoration of Pi state corresponding to RCP and 
resumption of Pi execution. 

2.  Permanent fault: 
a  Reconfiguration: i.e. disconnection of failing node 

and commutation to corresponding RN. 
b  Restoration of state associated to RCP (most   

recently saved in RN) and resumption of Pi. 
Perturbations and Roll-back length: The 
perturbations are eliminated; so the propagation factors 
are: level n = 0 and order p = 1. When a request for 
indispensable messages cannot be satisfied because of 
absence of the concerned Recovery Node, the level n is 
such that n �� m where m is the number of direct 
propagator processes of the failing one. 
All previous strategies are of concern to find a tradeoff 
between several factors like: lowering or preventing 
domino effect, minimizing overhead during normal 
execution of the system ... The next mixed strategies 
particularly advocate creating an appropriate 
environment to recover from permanent errors. 
 

MIXED STRATEGIES 
 
Since these strategies are combined from basic ones, a 
summary description of each one is given below. 

Strategy AB :   Sender-Receiver based strategy. 
Every message received and saved in a receiving node 
is also saved in sending node. 
This strategy is a combination of strategy A and 
strategy B. Two important results are reached namely: 
1) The perturbations are optimum so, level n = 0 and 
order p = 1. 2) A single context corresponding to the 
active CP is saved for any process.  

Strategy AD:  Sender-Recovering node based strategy. 
Every message received and saved in a Node is 
captured and saved by the corresponding Recovering 
Node.  
With duplication of message saving, in both potential 
failing node and Recovering Node, we gather 
advantages of basic strategies A and D in order to easily 
handle transient faults and permanent ones. So, it 
results from this association two fundamental 
characteristics, namely: - No transfer of indispensable 
messages takes place during a recovery operation, then 
neither penalization of processes other the failing one, 
and no tendency to increase the activity of transmission 
system is incurred. - Complete isolation of safe 
processes opposite to the failing one. Consequently a 
single context is saved for each process. 
While overhead incurred from message management is 
proportional to processes interaction, the former may be 
unnegligible. However, a separate processor may be 
dedicated to perform this management. 
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Recovery Operation: While strategy AD is combined 
from strategies A and D, the recovery information re-
quired are: a recovery graph as described in strategy A, 
and a data structure inherent to a Recovering Node like 
one defined in strategy D. The recovery algorithm is 
formed by the one defined in strategy A for transient 
fault, combined to which given in strategy D for perma-
nent fault. 
 
Perturbation and Roll-backs Length: Strategy AD is 
the most optimal one so, we state: level n = 0,   order p 
= 1. 

 IMPLEMENTATION 
 
Our first simple application was experimented in three 
workstations on each one is running a process.  One of 
the three processes say P has to determine prime 
numbers in [1, N] interval and sends then to the others 
(Q, R) for usage (the prime numbers are also displaying 
in P screen). Q and R are doing other things where the 
generated numbers are consumed. Each workstation has 
an associated recovery one. A transient fault was 
simulated in executing an interruption handler, while a 
permanent one is simulated in switching off the 
P/workstation. In the first case, the process P redisplays 
the prime numbers previously determined in the active 
recovery region showing then the AD strategy 
principles. In the second case, the failed process P is 
recovered on its recovery workstation (Q); the 
displaying of prime numbers is resumed at point it was 
previously interrupted. The recovery workstation screen 
is divided in two windows where one part shows 
scrolling of resumed prime numbers and the second part 
shows the process Q result. The progression of Q and R 
are not affected. The second switching off of Q/node 
had led to R/node to support P, Q, R continuation but 
the given response time was slightly heavy. The 
obtained results are then to confirm our ideas.  
 

CONCLUSION AND FUTUR WORK 
 
Several recovery strategies in distributed system have 
been presented. They handle both transient and 
permanent faults. This can allow the crucial application 
programs to have a non-stop execution despite solid fai-
lures.  Generally, the avoidance of situation of 
important system penalization (undoing a great deal 
computation in case of error) is obtained from 
propagation control constraints. These constraints are 
relative either to the communications or checkpoints 
setting. This control is achieved in our strategies, 
partially by saving messages, or completely by additio-
nal criteria. Then the processes liberty is preserved. The 
strategies (notably AD, AB) are very attractive because 
they are almost domino effect free, and also, only a 

single checkpoint is saved for each process. The aim of 
the strategies exhaustivity is to cope with a great class 
of fault tolerant systems. 
  It is noteworthy that to improve more and more 
reliability, it is necessary to take into account both 
hardware and software faults. So, we are actually 
incorporating the recovery blocks technique in the 
proposed strategies in order to reach a more general 
recovery mechanism. 
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