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Abstract: Radial basis functional neural networks (RBFNN) provide an outstanding possibility for 
generating rules for solving pattern classification problems. One of the most important factors in 
RBFNN is finding out the center and spread. This paper examines rules extracted from RBF networks 
trained by Particle swarm Optimization (PSO). The selection of the RBFNN centers, spreads and the 
network weights can be viewed as a system identification problem. Our Simulation results using 
Radial Basis Functional Neural Networks (RBFNN) was applied to the PAT, WBC and IRIS data sets 
as a classification problem to illustrate the new knowledge extraction technique. The results indicate 
that training RBFNN with PSO can provide comparable generalization of rules with less training time. 
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INTRODUCTION 

 A Radial Basis Functional neural network 
(RBFNN) is trained to perform a mapping from an m-
dimensional input space to an n-dimensional output space. 
RBFNN’s can be used for discrete pattern classification, 
function approximation, signal processing, control, or any 
other application, which requires a mapping from an 
input space to an output space. Many recent 
developments of RBFNN and its applications can be 
found in Neuro computing special issues on 
RBFNN[1, 2]. 

An RBFNN consists of the m-dimensional input x 
being passed directly to a hidden layer. Suppose there 
are c neurons in the hidden layer. Each of the c 
neurons in the hidden layer applies an activation 
function, which is a function of the Euclidean distance 
between the input and an m-dimensional prototype 
vector. Each hidden neuron contains its own prototype 
vector as a parameter. The output of each hidden 
neuron is then weighted and passed to the output 
layer. The outputs of the network consist of sums of 
the weighted hidden layer neurons. Figure 1 shows a 
schematic form of an RBFNN network. It can be seen 
from the basic architecture, that the design of an 
RBFNN requires several decisions, including the 
following: 

1. How many neurons will reside in the hidden layer? 
(i.e., what is the value of the integer c); 

2. What are the values of the prototypes (i.e., what are 
the values of the v vectors)? 

3. What function will be used at the hidden units 
(i.e., what is the function g (·))? 

4. What weights will be applied between the hidden 
layer and the output layer? 
The performance of an RBFNN network depends 
on the number and location (in the input space) of 
the centers, the shape of the RBFNN functions at the 
hidden neurons, and the method used for determining 
the network weights. Some researchers have trained 
RBFNN networks by selecting the centers 
randomly from the training data[3]. Some have used 
unsupervised procedures (such as the k-means 
algorithm) for selecting the RBFNN centers[2], 
while others have used supervised procedures for 
selecting the RBFNN centers[4]. 
 
This study will be divided into four parts: We begin 

with motivation and detailed description of Radial basis 
functional Neural Network (RBFNN) in first part and 
second part. The third part will review the most recent 
optimization technique namely Particle Swarm 
Optimization (PSO). We will end with the rule extraction 
for different data types for pattern recognition and its 
future avenue. 

Several training methods separate the tasks of 
prototype determination and weight optimization for 
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classification and rule generation. This trend probably 
arose because of the quick training that could result from 
the separation of the two tasks. In fact, one of the 
primary contributors to the popularity of RBFNN 
networks was probably their fast training times as com-
pared to gradient descent training (including back 
propagation) shown in Figure 1, it can be seen that once 
the prototypes are fixed and the hidden layer function 
g(·) is known, the network is linear in the weight 
parameters w. At that point training the network 
becomes a quick and easy task that can be solved via 
linear least squares. (This is similar to the popularity of 
the optimal interpolative net that is due in large part to 
the efficient non- iterative learning algorithms that are 
available[5,6]) 
 Training methods that separate the tasks of prototype 
determination and weight optimization often do not use 
the input—output data from the training set for the 
selection of the prototypes. For instance, the random 
selection method and the k-means algorithm result in 
prototypes that are completely independent of the 
input—output data from the training set. Although this 
results in fast training, it clearly does not take full 
advantage of the information contained in the training 
set. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  1:   Radial Basis Functional Network 
 
 Gradient descent training of RBFNN networks has 
proven to be much more effective than more conventional 
methods[4]. However gradient descent training can be 
computationally expensive. This paper extends the results 
of[4] and formulates a training method for RBFNN’s based 
on Particle Swarm Optimization. This new method proves 
to be quicker than gradient descent while still providing 
performance at the same level of effectiveness. 

Training a neural network is, in general, a 
challenging nonlinear optimization problem. Various 
derivative-based methods have been used to train neural 
networks, including gradient descent[4], Kalman     
Filtering[7,8], and the well-known back-propagation[9]. 
Derivative-free methods, including genetic     
programming[10] , learning automata[11] , and simulated 
annealing[12]  have also been used to train neural networks. 

Derivative-free methods have the advantage that they 
do not require the derivative of the objective function 
with respect to the neural network parameters. They are 
more robust than derivative-based methods with respect 
to finding a global minimum and with respect to their 
applicability to a wide range of objective functions and 
neural network architectures. However, they typically 
tend to converge more slowly than derivative-based 
methods. Derivative-based methods have the advantage 
of fast convergence, but they tend to converge to 
local minima. In addition, due to their dependence on 
analytical derivatives, they are limited to specific 
objective functions and specific types of neural 
network architectures. 

 
INTERPRETATION OF RADIAL BASIS 

FUNCTION NEURAL NETWORKS 

 The multi layered feed forward network (MFN) is 
the most widely used neural network model for pattern 
classification applications. This is because the topology 
of the MFN allows it to generate internal 
representations tailored to classify the input regions that 
may be either disjointed or intersecting. The hidden 
layer nodes in the MFN can form hyper planes to 
partition the input space into various regions and the 
output nodes can select and combine the regions that 
belong to the same class. Back propagation (BP) is the 
most widely used training algorithm for the MFN’s. 

Recently researchers have begun to examine the 
use of Radial Basis Function neural networks (RBFNN) 
for pattern classification problems due to a number of 
drawbacks of BP-trained networks. Although a BP 
network produces decision surfaces that effectively 
separate training examples of different classes, this 
does not necessarily result in the most plausible or 
robust classifier. The decision surfaces of BP networks 
may not take on any intuitive shapes because regions of 
the input space not occupied by training data are 
classified arbitrarily, not according to proximity to 
training data. In addition, BP networks have no 
mechanism to detect that a case to be classified has 
fallen into a region with no training data. This is a 
serious drawback since the power system operates 
within a wide range of system and fault conditions.  
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The RBFNN consists of an input layer made up of 
source nodes and a hidden layer of a sufficiently high 
dimension. The output layer supplies the response of 
the network to the activation patterns applied to the 
input layer. The nodes within each layer are fully 
connected to the previous layer as shown in the    
Figure 1. The input variables are each assigned to a 
node in the input layer and pass directly to the hidden 
layer without weights. The hidden nodes, or units, 
contain the radial basis functions (RBFNN’s) and are 
represented by the bell-shaped curve in the hidden 
nodes as shown in the Fig 1. 
 
 RBFNN Algorithm: This section describes how we 
used an RBFNN network to classify the data sets. 
RBFNN used here has an input layer, a hidden layer 
consisting of Gaussian node function, an output layer, 
and a set of weights, W to connect the hidden layer and 
output layer. We denote x to be the input vector to the 
network, where x = (x1, x2, x3, ……xD ),  and D is the 
embedding dimension. We call o the ANN output 
vector, where o = (o1, o2, o3 , …. on) T is the number of 
out put nodes. We have P training patterns. The 
RBFNN classification problem is to approximate the 
mapping from the set of inputs,  

x = {x(1), x(2), ….., x(P)},                                 (1) 

to the set of outputs,  

o={o(1), o(2), o(3) , ……., o(P)}   (2) 

    For an input vector x(t) , the output of jth output node 
produced by an RBFNN is given by  
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Where Ci is the center of the ith hidden node, σi is the 
width of the ith center, and mtot is the total number of 
hidden nodes. Using vector notation, let 
ϕ = ( φ1(t),φ2(t),…..,φmtot(t)) and  wj = (w1j, w2j , ….., 
wmto(tj)) and  RBFNN output can be written as oj = 
wjϕT(t) . 

The cost function of the network for the jth output 
is then calculated as e = (d – oj)

 where d = desired 
output. The RBFNN classifier contains four sets of 
parameters that have to be learned form the examples. 
They are the centers, ci(t), number of centers mtot, 
variances σI, and weights wij,. We denote all the 
RBFNN’s centers by Cwhole. In our implementation of 
RBFNN, classes do not share centers. Each of these sets 
of centers is trained with a separate PSO clustering run. 
In each PSO run (corresponding to a different class), 

only the training vectors for that class would be used 
for clustering as described in the next section. 

Once the RBFNN centers are initialized by PSO 
then the weights are updated according to the 
following: 

ij ij iw (t+1) = w (t)+2e   (t)∅  

The centers are then updated according to the 
following: 

2
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The variances are not updated in this experiment to 
minimize the time and thus σij = σij  
There are several reasons for using an RBFNN in our 
classification problem. First many neural networks 
require nonlinear optimization for training. 

The second reason for employing a RBFNN 
classifier is that the internal representation of training 
data of an RBFNN is intuitive. Each RBFNN center 
approximates a cluster of training of data vectors that 
are close each other in Euclidean space. When a vector 
is input to the RBFNN, the center near to that vector 
becomes strongly activated, in turn activating certain 
output nodes.   

The hypothesis space implanted by these learning 
machines is constituted by functions of the form 
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The nonlinear activation function Øk expresses 
the similarity between any input pattern x and the 
center vk by means of a distance measure. Each 
function Øk defines a region in the input space 
(receptive field) on which the neuron produces a 
appreciable activation value. If the common case 
when the Gaussian function is used, the center Ck of 
the function σk defines the prototype of input cluster 
k and the variance Øk the size of the covered region 
in the input space. 

The local nature of RBFNN networks makes 
them an interesting platform for performing rule 
extraction. However, the basis functions overlap to 
some grade in order to give a relatively smooth 
representation of the distribution of training         
data[13,14]. This overlapping is a shortcoming for rule 
extraction. Few rule extraction methods directed to 
RBFNN have been developed[15,16,17].  

The rule extraction method for RBFNN derives 
descriptions in the form of ellipsoid. Initially, 
assigning each input pattern to their closest center of 
RBFNN node according to the Euclidean distance 
function a partition of the input space is made. When  
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assigning a pattern to its closest center, this one will 
be assigned to the RBFNN node that will give the 
maximum activation value for that pattern. From 
these partitions the ellipsoid are constructed. Next, a 
class label is assigned for each center of RBFNN 
units. Output value of the RBFNN network for each 
center is used in order to determine this class label. 
Then, for each node an ellipsoid with the associated 
partition data is constructed. Once determined the 
ellipsoid, they are transferred to rules. This 
procedure will generate a rule by each node.  

 
PARTICLE SWARM OPTIMIZATION 

 
 Particle Swarm Optimization (PSO) is a population 
based stochastic search process, modeled after the 
social behavior of a bird flock[18,19,20]. The algorithm 
maintains a population of particles, where each particle 
represents a potential solution to an optimization 
problem. 

In the context of PSO, a swarm refers to a 
number of potential solutions to the optimization 
problem, where each potential solution is referred to 
as a particle. The aim of the PSO is to find the 
particle position that results in the best evaluation of 
a given fitness (objective) function. 
Each particle represents a position in Nd dimensional 
space, and is “flown” through this multi-dimensional 
search space, adjusting its position towards both  

• The particle’s best position found thus far, and 
• The best position in the neighborhood of that 

particle. 
Each particle I maintains the following information : 

•  xi  : The current position  of the particle. 
•  vi  : The current velocity  of the particle. 
•  yi : The personal best position of the 
particle. 

Using the above notation, a particle’s position is 
adjusted according to  

1 1 2i,k i,k ,k i,k i,k 2,k k i,k

i i i

v (t+1)=wv (t)+c r (t) (y (t)-x (t))+c r (t)( (t)-x (t))..........(6)

x (t+1)=x (t)+v (t+1)...........................................................(7)

y
∧

 
where w is the inertia weight c1 and c2 are the 
acceleration constants, r1,j(t), r1,j(t) ~ U(0,1), and 
k=1, … ., Nd. The velocity is thus calculated based 
on three contributions: 1) a fraction of the previous 
velocity, 2) the cognitive component which is a 
function of the distance of the particle from its 
personal best position, and 3) the social component 
which is a function of the distance of the particle 

from the best particle found thus far (i.e; the best of 
the personal bests). 
 The personal best position of the particle is 
calculated as 

 
 Two 

basic approaches to PSO exists based on the 
interpretation of the neighborhood of particles. 
Equation (6) reflects the gbest version of PSO where, 
for each particle, the neighborhood is simply the 
entire swarm. The social component then causes 
particles to be drawn toward the best particle in the 
swarm. In the lbest PSO model, the swarm is divided 
into overlapping neighborhoods, and the best particle 
of each neighborhood is determined. For the lbest  
PSO model, the social component of equation(6) 
changes to   

 
 

where ��� is the best particle in the neighborhood of 
the i-th particle. 

The PSO is usually executed with repeated 
application of equations (6) and (7) until a specified 
number of iterations has been exceeded. 
Alternatively, the algorithm can be terminated when 
the velocity updates are close to zero over a number 
of iterations. 
PSO Clustering :In the context of clustering, a single 
particle represents the  Nc cluster centroid vectors. That 
is, each particle xi is constructed as follows: 
xi = (mi1, …, mij, …, miNc ) …………..(10)  where mij 
refers to the j-th cluster centroid vector of the i-th 
particle in the cluster Cij. Therefore, a swarm 
represents a number of candidate clustering for the 
current data vectors. The fitness of particles is easily 
measured as the quantization error, 
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Where d is defined in equation, 
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and | Cij | is the number  of data vectors belonging to 
the cluster Cij, ie; the frequency of that cluster. 
This section first presents the standard gbest PSO for 
clustering data into a given number of clusters  and 
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then shows the PSO algorithm can be used to  improve 
the performance of Radial basis functional Neural 
Network (RBFNN) for classification. 
 
gbest PSO clustering Algorithm 

Using the standard gbest PSO, data vectors can be 
clustered as follows : 
1. Initialize each particle to contain Nc randomly 
selected cluster centroids. 
2. For t = 1 to tmax do 
    a) For each particle i do 

b) For each data vector Zp 
        i) calculate the Euclidean distance d(Zp, mij ) to all 
cluster centroids Cij 
       ii) Assign Zp  to cluster  Cij, such that  
       d(Zp, mij ) = min∀c=1, ..., Nc {d(Zp, mic )} 
      iii) calculate the fitness function using (6 ) 
    c) Update the global best and local best positions 
    d) Update the cluster centroids using equations (6)    
and  (7). where tmax is the maximum number of 
iterations. 

DISCUSSION 
 
In order to evaluate the performance of the rule 
extraction algorithm, we carried out a two fold 
experiment with PAT[21], WBC, and IRIS data sets. The 
time for the error to converge with the center optimized 
by PSO was compared with the center optimized by 
genetic algorithm are presented in Table.7. The result 
shows if the RBFNN centers are optimized by PSO 
then the network takes less time for getting trained 
Table.7. In case of IRIS data set the overlap in the rule 
extracted is better than training RBFNN with genetic 
algorithm[22]. In case of WBC the convergence of the 
genetic algorithm takes more time than PSO[23] . The 
PAT[21] data set was included to show that this 
methodology can handle any type of classification task. 
The algorithms associated to the extraction method 
were simulated using MATLAB v6.5. 
Simulation environment: In this section we describe 
and illustrate the use of Particle Swarm Optimization 
training for the centers of an RBFNN network. We 
tested the algorithms of the previous sections on the 
classical PAT dataset[21], and Wisconsin breast cancer 
(WBC) data set, and IRIS dataset.  
PAT database: The PAT data set contains training set 
consisting of 450 exemplars and the test set containing 
430 exemplars for a total of 880 exemplars.  

• WBC database: The WBC data contains 400 
exemplars and the test set containing 299 exemplars for 
a total of 699 exemplars. 

• IRIS plants database: The IRIS data contains 
50 exemplars from each category for a total of 150 
patterns. We randomly divided the patterns into training 
and test sets, containing 34 exemplars from each 
category. The rest from each category were used for 
testing purpose. 

The input data were normalized by replacing each 
feature value x by x= (x − µx) / �x    where µx and �x 
denote the sample mean and standard deviation of this 
feature over the entire data set. The networks are 
trained to respond with the target value yik =1, and yjk = 
0 ∀ j ≠ i, when presented with an input vector xk from 
the ith category.  

The MATLAB m-files were used to generate the 
simulation results presented in this section. The training 
algorithms were initialized with prototype vectors 
randomly selected from the input data on a two fold 
basis and with the weight matrix W set to 1 and σ 
initialized to 1. 
 

SIMULATION RESULTS 
 

Fitness Convergence:  Fig.2, Fig.3, Fig.4 shows the 
fitness convergence of PAT, WBC and IRIS datasets. 
Error:  Indication of error is a key attribute for any 
simulation results. Our observation through simulation 
for errors of PAT[21], WBC and IRIS datasets 
respectively are shown in Fig.5, Fig.6 and Fig.7,  
 
Tabular Data: The results of centers obtained by 
RBFNN from our simulation studies are shown in 
tables. Table-1, Table-3, and Table-5 shows the centers 
of PAT, WBC and IRIS datasets respectively. Table-2, 
Table-4, and Table-6, shows the weights obtained for 
PAT, WBC and IRIS datasets respectively. Table-7 
shows the time required to train the data sets with PSO 
and Genetic Algorithm. 
 

 

 
Fig.2:  Fitness Convergence of Pat Dataset using PSO 
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Fig.3: Fitness Convergence of WBC Dataset using   PSO 
 

Fig.4:  Fitness Convergence of IRIS Dataset using PSO 

Fig.5: Error minimization of PAT Dataset using   RBFNN 

 

Fig.6:  Error minimization of WBC Dataset using   RBFNN 

 
 

 
 
Table 1:  Centers obtained from RBFNN for PAT  Data 

11.8460 7.0010 
 2.0048     2.6812 

P 
A 
T 11.5228      6.6686 

 
 
Table 2:   Weights obtained from RBFNN for PAT Data 

-2.9305     4.1148 
0.0405    -1.5288 
-1.5702     3.7191 

 
 
Table 3:   Centers obtained from RBFNN for WBC Data 

0.1845 2.5741 4.7897    3.2428    1.7303    
0.1038    1.3345    2.3379    0.9890  
     
4.8878    6.0007    6.2246   12.3465   16.6876   

W 
 
B 
 
C 11.4862   10.6686    2.0459   13.2855  

 
 
Table 4:  Weights obtained from RBFNN for WBC Data 

-3.1954 -3.1954 
0.5514 0.5514 

 
Table 5:   Centers obtained from RBFNN for IRIS Data 

2.0790 -2.9273 7.0868 8.5308 

2.0488 -2.8025 6.8230 8.1882 

I 
R 
I 
S 
 -1.1022 1.7729 -21356 -2.0742 

 
Table 6:  Weights obtained from RBFNN for IRIS Data 

-0.2179 -0.0954   
-0.5244 -0.3841 
0.1900 -0.0424 

 
Fig.7: Error minimization of IRIS Dataset using RBFNN 

  



J. Computer Sci., 3 (8): 592-599, 2007 
 

 598 

Table 7: Time taken for RBFNN to get trained with 
center optimized by PSO and Genetic 
Algorithm. 

 PSO Time in Sec Genetic Algorithm 
Time in Sec 

PAT 5.0630 5.0940 
WBC 4.0790 14.8130 
IRIS 2.0160 2.0320 

 
Rule for classification of PAT data sets 
If (o(r, 1) >= 1.0000 or o(r, 1) <= 1.0122) and  
(o(r, 2) >= 0.5936 and o(r, 2) <= 1.0000) then   

Class= 1 
If (o(r, 1) >= 1.0050and o(r, 1) <= 1.0161) and  
(o(r, 2) >= 0.3937 and o(r, 2) <= 0.8124) then  
                             Class=2 
If (o(r, 1) >= 1.0003 and o(r, 1) <= 1.0374) and 
 (o(r, 2) >= -0.4115 and o(r, 2) <= 0.9869) then 
                             Class=3 
Rule for classification of WBC data sets 
If  (o(r, 1) >= -0.6914 or o(r, 1) <= 1) and  
(o(r, 2) >= -0.6914 or o(r, 2) <= 1) then 
                               Class=1 
If (o(r, 1) >= 0.9894 or o(r, 1) <= 1) and 
 (o(r, 2) >= 0.9894 or o(r, 2) <= 1) then  
                               Class=2 
Rule for classification of IRIS data set 
If (o(r, 1) >= 0.3060 or o(r, 1) <=0.9987) and  
   (o(r, 2) >= 0.3060 or o(r, 2) <= 0.9987) then 
                               Class=1 
 If (o(r, 1) >= 0.9989 or| o(r, 1) <= 1.0000) and  
    (o(r, 2) >= 0.9989 or o(r, 2) <= 0.9998) then  
                                Class=2; 
If (o(r, 1) >= 1.0000 or o(r, 1) <= 1.0000) and  
    (o(r, 2) >= 1.0000 or o(r, 2) <= 1.0000) then 
                              Class=3 
 

CONCLUSION 
 

 The success of neural network architecture depends 
heavily on the availability of effective learning 
algorithms. The theoretical strength of the Particle 
Swarm Optimization (PSO) is yet to be used in 
hundreds of technologies, and this paper demonstrates 
that RBFNN network training is yet another fruitful 
application of Particle Swarm Optimization (PSO). Our 
simulation using MATLAB v6.5 verifies that 
initialization of the centers through Particle Swarm 
Optimization provides better performance. Further 
research could focus on the application of Particle 
Swarm Optimization (PSO) training to RBFNN 
networks with alternative forms of the generator 

function. (Recall that in this paper the deviations and 
weight matrix was initialized to ones.) Applying these 
techniques to large problems to obtain experimental 
verification of the computational savings of training the 
centers by PSO can be included as a future work 
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