
Journal of Computer Science 3 (8): 592-599, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: M.R.Senapati, Konark Institute of Science & Technology, Jatni, Khurda, Orissa, India
592

Rule Extraction from Radial Basis Functional Neural Networks by Using Particle Swarm

Optimization

1M. R. Senapati ,2I.Vijaya and 3P.K.Dash (SMIEEE)
1Konark Institute of Science and Technology, Jatni, Khurda, Orissa, India
2M.Tech. Computer Science, Utkal University, Bhubaneswar, Orissa, India

3College of Engineering, Bhubaneswar, Orissa, India

Abstract: Radial basis functional neural networks (RBFNN) provide an outstanding possibility for
generating rules for solving pattern classification problems. One of the most important factors in
RBFNN is finding out the center and spread. This paper examines rules extracted from RBF networks
trained by Particle swarm Optimization (PSO). The selection of the RBFNN centers, spreads and the
network weights can be viewed as a system identification problem. Our Simulation results using
Radial Basis Functional Neural Networks (RBFNN) was applied to the PAT, WBC and IRIS data sets
as a classification problem to illustrate the new knowledge extraction technique. The results indicate
that training RBFNN with PSO can provide comparable generalization of rules with less training time.

Keywords: Radial Basis Functional Neural Networks (RBFNN); Particle Swarm Optimization (PSO),
Wisconsin Breast Cancer (WBC), Pattern classification, Gradient descent method, Genetic Algorithm.

INTRODUCTION

 A Radial Basis Functional neural network
(RBFNN) is trained to perform a mapping from an m-
dimensional input space to an n-dimensional output space.
RBFNN’s can be used for discrete pattern classification,
function approximation, signal processing, control, or any
other application, which requires a mapping from an
input space to an output space. Many recent
developments of RBFNN and its applications can be
found in Neuro computing special issues on
RBFNN[1, 2].

An RBFNN consists of the m-dimensional input x
being passed directly to a hidden layer. Suppose there
are c neurons in the hidden layer. Each of the c
neurons in the hidden layer applies an activation
function, which is a function of the Euclidean distance
between the input and an m-dimensional prototype
vector. Each hidden neuron contains its own prototype
vector as a parameter. The output of each hidden
neuron is then weighted and passed to the output
layer. The outputs of the network consist of sums of
the weighted hidden layer neurons. Figure 1 shows a
schematic form of an RBFNN network. It can be seen
from the basic architecture, that the design of an
RBFNN requires several decisions, including the
following:

1. How many neurons will reside in the hidden layer?
(i.e., what is the value of the integer c);

2. What are the values of the prototypes (i.e., what are
the values of the v vectors)?

3. What function will be used at the hidden units
(i.e., what is the function g (·))?

4. What weights will be applied between the hidden
layer and the output layer?
The performance of an RBFNN network depends
on the number and location (in the input space) of
the centers, the shape of the RBFNN functions at the
hidden neurons, and the method used for determining
the network weights. Some researchers have trained
RBFNN networks by selecting the centers
randomly from the training data[3]. Some have used
unsupervised procedures (such as the k-means
algorithm) for selecting the RBFNN centers[2],
while others have used supervised procedures for
selecting the RBFNN centers[4].

This study will be divided into four parts: We begin

with motivation and detailed description of Radial basis
functional Neural Network (RBFNN) in first part and
second part. The third part will review the most recent
optimization technique namely Particle Swarm
Optimization (PSO). We will end with the rule extraction
for different data types for pattern recognition and its
future avenue.

Several training methods separate the tasks of
prototype determination and weight optimization for

J. Computer Sci., 3 (8): 592-599, 2007

 593

classification and rule generation. This trend probably
arose because of the quick training that could result from
the separation of the two tasks. In fact, one of the
primary contributors to the popularity of RBFNN
networks was probably their fast training times as com-
pared to gradient descent training (including back
propagation) shown in Figure 1, it can be seen that once
the prototypes are fixed and the hidden layer function
g(·) is known, the network is linear in the weight
parameters w. At that point training the network
becomes a quick and easy task that can be solved via
linear least squares. (This is similar to the popularity of
the optimal interpolative net that is due in large part to
the efficient non- iterative learning algorithms that are
available[5,6])
 Training methods that separate the tasks of prototype
determination and weight optimization often do not use
the input—output data from the training set for the
selection of the prototypes. For instance, the random
selection method and the k-means algorithm result in
prototypes that are completely independent of the
input—output data from the training set. Although this
results in fast training, it clearly does not take full
advantage of the information contained in the training
set.

Fig. 1: Radial Basis Functional Network

 Gradient descent training of RBFNN networks has
proven to be much more effective than more conventional
methods[4]. However gradient descent training can be
computationally expensive. This paper extends the results
of[4] and formulates a training method for RBFNN’s based
on Particle Swarm Optimization. This new method proves
to be quicker than gradient descent while still providing
performance at the same level of effectiveness.

Training a neural network is, in general, a
challenging nonlinear optimization problem. Various
derivative-based methods have been used to train neural
networks, including gradient descent[4], Kalman
Filtering[7,8], and the well-known back-propagation[9].
Derivative-free methods, including genetic
programming[10] , learning automata[11] , and simulated
annealing[12] have also been used to train neural networks.

Derivative-free methods have the advantage that they
do not require the derivative of the objective function
with respect to the neural network parameters. They are
more robust than derivative-based methods with respect
to finding a global minimum and with respect to their
applicability to a wide range of objective functions and
neural network architectures. However, they typically
tend to converge more slowly than derivative-based
methods. Derivative-based methods have the advantage
of fast convergence, but they tend to converge to
local minima. In addition, due to their dependence on
analytical derivatives, they are limited to specific
objective functions and specific types of neural
network architectures.

INTERPRETATION OF RADIAL BASIS

FUNCTION NEURAL NETWORKS

 The multi layered feed forward network (MFN) is
the most widely used neural network model for pattern
classification applications. This is because the topology
of the MFN allows it to generate internal
representations tailored to classify the input regions that
may be either disjointed or intersecting. The hidden
layer nodes in the MFN can form hyper planes to
partition the input space into various regions and the
output nodes can select and combine the regions that
belong to the same class. Back propagation (BP) is the
most widely used training algorithm for the MFN’s.

Recently researchers have begun to examine the
use of Radial Basis Function neural networks (RBFNN)
for pattern classification problems due to a number of
drawbacks of BP-trained networks. Although a BP
network produces decision surfaces that effectively
separate training examples of different classes, this
does not necessarily result in the most plausible or
robust classifier. The decision surfaces of BP networks
may not take on any intuitive shapes because regions of
the input space not occupied by training data are
classified arbitrarily, not according to proximity to
training data. In addition, BP networks have no
mechanism to detect that a case to be classified has
fallen into a region with no training data. This is a
serious drawback since the power system operates
within a wide range of system and fault conditions.

�1

()1

2
g v x−

Output
layer (n
neurons)

W11 W12 W1n

Wc1
Wc2 W

W01 W02 W0n

�2 �n

()2
e v x−

Input layer
(m neurons)

x1 x n

J. Computer Sci., 3 (8): 592-599, 2007

 594

The RBFNN consists of an input layer made up of
source nodes and a hidden layer of a sufficiently high
dimension. The output layer supplies the response of
the network to the activation patterns applied to the
input layer. The nodes within each layer are fully
connected to the previous layer as shown in the
Figure 1. The input variables are each assigned to a
node in the input layer and pass directly to the hidden
layer without weights. The hidden nodes, or units,
contain the radial basis functions (RBFNN’s) and are
represented by the bell-shaped curve in the hidden
nodes as shown in the Fig 1.

 RBFNN Algorithm: This section describes how we
used an RBFNN network to classify the data sets.
RBFNN used here has an input layer, a hidden layer
consisting of Gaussian node function, an output layer,
and a set of weights, W to connect the hidden layer and
output layer. We denote x to be the input vector to the
network, where x = (x1, x2, x3, ……xD), and D is the
embedding dimension. We call o the ANN output
vector, where o = (o1, o2, o3 , …. on) T is the number of
out put nodes. We have P training patterns. The
RBFNN classification problem is to approximate the
mapping from the set of inputs,

x = {x(1), x(2), ….., x(P)}, (1)

to the set of outputs,

o={o(1), o(2), o(3) , ……., o(P)} (2)

 For an input vector x(t) , the output of jth output node
produced by an RBFNN is given by

2

j

2

1 1

()

()o (t) = (3)

i

i

i

m to t m to t

i j i j

i i

i

x t c

W t W e
σ

−
−

= =

∅ =� �

Where Ci is the center of the ith hidden node, σi is the
width of the ith center, and mtot is the total number of
hidden nodes. Using vector notation, let
ϕ = (φ1(t),φ2(t),…..,φmtot(t)) and wj = (w1j, w2j , …..,
wmto(tj)) and RBFNN output can be written as oj =
wjϕT(t) .

The cost function of the network for the jth output
is then calculated as e = (d – oj)

 where d = desired
output. The RBFNN classifier contains four sets of
parameters that have to be learned form the examples.
They are the centers, ci(t), number of centers mtot,
variances σI, and weights wij,. We denote all the
RBFNN’s centers by Cwhole. In our implementation of
RBFNN, classes do not share centers. Each of these sets
of centers is trained with a separate PSO clustering run.
In each PSO run (corresponding to a different class),

only the training vectors for that class would be used
for clustering as described in the next section.

Once the RBFNN centers are initialized by PSO
then the weights are updated according to the
following:

ij ij iw (t+1) = w (t)+2e (t)∅

The centers are then updated according to the
following:

2

2 ()
(1) () (4)

i j i i i j

i

e w x c
c t c t

σ
∅ −+ = +

The variances are not updated in this experiment to
minimize the time and thus σij = σij
There are several reasons for using an RBFNN in our
classification problem. First many neural networks
require nonlinear optimization for training.

The second reason for employing a RBFNN
classifier is that the internal representation of training
data of an RBFNN is intuitive. Each RBFNN center
approximates a cluster of training of data vectors that
are close each other in Euclidean space. When a vector
is input to the RBFNN, the center near to that vector
becomes strongly activated, in turn activating certain
output nodes.

The hypothesis space implanted by these learning
machines is constituted by functions of the form

0
1

(, ,) (,)(5)
m

k k k
i

f x w v w x v w
=

= ∅ +�

The nonlinear activation function Øk expresses
the similarity between any input pattern x and the
center vk by means of a distance measure. Each
function Øk defines a region in the input space
(receptive field) on which the neuron produces a
appreciable activation value. If the common case
when the Gaussian function is used, the center Ck of
the function σk defines the prototype of input cluster
k and the variance Øk the size of the covered region
in the input space.

The local nature of RBFNN networks makes
them an interesting platform for performing rule
extraction. However, the basis functions overlap to
some grade in order to give a relatively smooth
representation of the distribution of training
data[13,14]. This overlapping is a shortcoming for rule
extraction. Few rule extraction methods directed to
RBFNN have been developed[15,16,17].

The rule extraction method for RBFNN derives
descriptions in the form of ellipsoid. Initially,
assigning each input pattern to their closest center of
RBFNN node according to the Euclidean distance
function a partition of the input space is made. When

J. Computer Sci., 3 (8): 592-599, 2007

 595

assigning a pattern to its closest center, this one will
be assigned to the RBFNN node that will give the
maximum activation value for that pattern. From
these partitions the ellipsoid are constructed. Next, a
class label is assigned for each center of RBFNN
units. Output value of the RBFNN network for each
center is used in order to determine this class label.
Then, for each node an ellipsoid with the associated
partition data is constructed. Once determined the
ellipsoid, they are transferred to rules. This
procedure will generate a rule by each node.

PARTICLE SWARM OPTIMIZATION

 Particle Swarm Optimization (PSO) is a population
based stochastic search process, modeled after the
social behavior of a bird flock[18,19,20]. The algorithm
maintains a population of particles, where each particle
represents a potential solution to an optimization
problem.

In the context of PSO, a swarm refers to a
number of potential solutions to the optimization
problem, where each potential solution is referred to
as a particle. The aim of the PSO is to find the
particle position that results in the best evaluation of
a given fitness (objective) function.
Each particle represents a position in Nd dimensional
space, and is “flown” through this multi-dimensional
search space, adjusting its position towards both

• The particle’s best position found thus far, and
• The best position in the neighborhood of that

particle.
Each particle I maintains the following information :

• xi : The current position of the particle.
• vi : The current velocity of the particle.
• yi : The personal best position of the
particle.

Using the above notation, a particle’s position is
adjusted according to

1 1 2i,k i,k ,k i,k i,k 2,k k i,k

i i i

v (t+1)=wv (t)+c r (t) (y (t)-x (t))+c r (t)((t)-x (t))..........(6)

x (t+1)=x (t)+v (t+1)...(7)

y
∧

where w is the inertia weight c1 and c2 are the
acceleration constants, r1,j(t), r1,j(t) ~ U(0,1), and
k=1, … ., Nd. The velocity is thus calculated based
on three contributions: 1) a fraction of the previous
velocity, 2) the cognitive component which is a
function of the distance of the particle from its
personal best position, and 3) the social component
which is a function of the distance of the particle

from the best particle found thus far (i.e; the best of
the personal bests).
 The personal best position of the particle is
calculated as

 Two

basic approaches to PSO exists based on the
interpretation of the neighborhood of particles.
Equation (6) reflects the gbest version of PSO where,
for each particle, the neighborhood is simply the
entire swarm. The social component then causes
particles to be drawn toward the best particle in the
swarm. In the lbest PSO model, the swarm is divided
into overlapping neighborhoods, and the best particle
of each neighborhood is determined. For the lbest
PSO model, the social component of equation(6)
changes to

where ��� is the best particle in the neighborhood of
the i-th particle.

The PSO is usually executed with repeated
application of equations (6) and (7) until a specified
number of iterations has been exceeded.
Alternatively, the algorithm can be terminated when
the velocity updates are close to zero over a number
of iterations.
PSO Clustering :In the context of clustering, a single
particle represents the Nc cluster centroid vectors. That
is, each particle xi is constructed as follows:
xi = (mi1, …, mij, …, miNc) …………..(10) where mij
refers to the j-th cluster centroid vector of the i-th
particle in the cluster Cij. Therefore, a swarm
represents a number of candidate clustering for the
current data vectors. The fitness of particles is easily
measured as the quantization error,

[]
1

(,) /
...................................(11)

c

Zp ij p j ij

i
c

N
C d Z m C

J
Nc

=

∀ ∈
=
� �

Where d is defined in equation,

2

1

(,) ()(12)
d

p j pk jk

k

N
d Z m Z m

=

= −�

where k subscripts the dimension.
1

.................(13)pj

j
Zp Cj

m
n

Z
∀ ∈

= �

and | Cij | is the number of data vectors belonging to
the cluster Cij, ie; the frequency of that cluster.
This section first presents the standard gbest PSO for
clustering data into a given number of clusters and

((t+1)) ((t))

if ((t+1)) ((t)).............(8)
i i

i i

if f x f y

f x f y

≥
<

(t+1) =
(t+1)

i
i

i

y
y

x
�
�
�

2,k k i,k2c r (t)((t)-x (t))..........(9)y

J. Computer Sci., 3 (8): 592-599, 2007

 596

then shows the PSO algorithm can be used to improve
the performance of Radial basis functional Neural
Network (RBFNN) for classification.

gbest PSO clustering Algorithm

Using the standard gbest PSO, data vectors can be
clustered as follows :
1. Initialize each particle to contain Nc randomly
selected cluster centroids.
2. For t = 1 to tmax do
 a) For each particle i do

b) For each data vector Zp
 i) calculate the Euclidean distance d(Zp, mij) to all
cluster centroids Cij
 ii) Assign Zp to cluster Cij, such that
 d(Zp, mij) = min∀c=1, ..., Nc {d(Zp, mic)}
 iii) calculate the fitness function using (6)
 c) Update the global best and local best positions
 d) Update the cluster centroids using equations (6)
and (7). where tmax is the maximum number of
iterations.

DISCUSSION

In order to evaluate the performance of the rule
extraction algorithm, we carried out a two fold
experiment with PAT[21], WBC, and IRIS data sets. The
time for the error to converge with the center optimized
by PSO was compared with the center optimized by
genetic algorithm are presented in Table.7. The result
shows if the RBFNN centers are optimized by PSO
then the network takes less time for getting trained
Table.7. In case of IRIS data set the overlap in the rule
extracted is better than training RBFNN with genetic
algorithm[22]. In case of WBC the convergence of the
genetic algorithm takes more time than PSO[23] . The
PAT[21] data set was included to show that this
methodology can handle any type of classification task.
The algorithms associated to the extraction method
were simulated using MATLAB v6.5.
Simulation environment: In this section we describe
and illustrate the use of Particle Swarm Optimization
training for the centers of an RBFNN network. We
tested the algorithms of the previous sections on the
classical PAT dataset[21], and Wisconsin breast cancer
(WBC) data set, and IRIS dataset.
PAT database: The PAT data set contains training set
consisting of 450 exemplars and the test set containing
430 exemplars for a total of 880 exemplars.

• WBC database: The WBC data contains 400
exemplars and the test set containing 299 exemplars for
a total of 699 exemplars.

• IRIS plants database: The IRIS data contains
50 exemplars from each category for a total of 150
patterns. We randomly divided the patterns into training
and test sets, containing 34 exemplars from each
category. The rest from each category were used for
testing purpose.

The input data were normalized by replacing each
feature value x by x= (x − µx) / �x where µx and �x
denote the sample mean and standard deviation of this
feature over the entire data set. The networks are
trained to respond with the target value yik =1, and yjk =
0 ∀ j ≠ i, when presented with an input vector xk from
the ith category.

The MATLAB m-files were used to generate the
simulation results presented in this section. The training
algorithms were initialized with prototype vectors
randomly selected from the input data on a two fold
basis and with the weight matrix W set to 1 and σ
initialized to 1.

SIMULATION RESULTS

Fitness Convergence: Fig.2, Fig.3, Fig.4 shows the
fitness convergence of PAT, WBC and IRIS datasets.
Error: Indication of error is a key attribute for any
simulation results. Our observation through simulation
for errors of PAT[21], WBC and IRIS datasets
respectively are shown in Fig.5, Fig.6 and Fig.7,

Tabular Data: The results of centers obtained by
RBFNN from our simulation studies are shown in
tables. Table-1, Table-3, and Table-5 shows the centers
of PAT, WBC and IRIS datasets respectively. Table-2,
Table-4, and Table-6, shows the weights obtained for
PAT, WBC and IRIS datasets respectively. Table-7
shows the time required to train the data sets with PSO
and Genetic Algorithm.

Fig.2: Fitness Convergence of Pat Dataset using PSO

J. Computer Sci., 3 (8): 592-599, 2007

 597

Fig.3: Fitness Convergence of WBC Dataset using PSO

Fig.4: Fitness Convergence of IRIS Dataset using PSO

Fig.5: Error minimization of PAT Dataset using RBFNN

Fig.6: Error minimization of WBC Dataset using RBFNN

Table 1: Centers obtained from RBFNN for PAT Data

11.8460 7.0010
 2.0048 2.6812

P
A
T 11.5228 6.6686

Table 2: Weights obtained from RBFNN for PAT Data

-2.9305 4.1148
0.0405 -1.5288
-1.5702 3.7191

Table 3: Centers obtained from RBFNN for WBC Data

0.1845 2.5741 4.7897 3.2428 1.7303
0.1038 1.3345 2.3379 0.9890

4.8878 6.0007 6.2246 12.3465 16.6876

W

B

C 11.4862 10.6686 2.0459 13.2855

Table 4: Weights obtained from RBFNN for WBC Data

-3.1954 -3.1954
0.5514 0.5514

Table 5: Centers obtained from RBFNN for IRIS Data

2.0790 -2.9273 7.0868 8.5308

2.0488 -2.8025 6.8230 8.1882

I
R
I
S
 -1.1022 1.7729 -21356 -2.0742

Table 6: Weights obtained from RBFNN for IRIS Data

-0.2179 -0.0954
-0.5244 -0.3841
0.1900 -0.0424

Fig.7: Error minimization of IRIS Dataset using RBFNN

J. Computer Sci., 3 (8): 592-599, 2007

 598

Table 7: Time taken for RBFNN to get trained with
center optimized by PSO and Genetic
Algorithm.

 PSO Time in Sec Genetic Algorithm
Time in Sec

PAT 5.0630 5.0940
WBC 4.0790 14.8130
IRIS 2.0160 2.0320

Rule for classification of PAT data sets
If (o(r, 1) >= 1.0000 or o(r, 1) <= 1.0122) and
(o(r, 2) >= 0.5936 and o(r, 2) <= 1.0000) then

Class= 1
If (o(r, 1) >= 1.0050and o(r, 1) <= 1.0161) and
(o(r, 2) >= 0.3937 and o(r, 2) <= 0.8124) then
 Class=2
If (o(r, 1) >= 1.0003 and o(r, 1) <= 1.0374) and
 (o(r, 2) >= -0.4115 and o(r, 2) <= 0.9869) then
 Class=3
Rule for classification of WBC data sets
If (o(r, 1) >= -0.6914 or o(r, 1) <= 1) and
(o(r, 2) >= -0.6914 or o(r, 2) <= 1) then
 Class=1
If (o(r, 1) >= 0.9894 or o(r, 1) <= 1) and
 (o(r, 2) >= 0.9894 or o(r, 2) <= 1) then
 Class=2
Rule for classification of IRIS data set
If (o(r, 1) >= 0.3060 or o(r, 1) <=0.9987) and
 (o(r, 2) >= 0.3060 or o(r, 2) <= 0.9987) then
 Class=1
 If (o(r, 1) >= 0.9989 or| o(r, 1) <= 1.0000) and
 (o(r, 2) >= 0.9989 or o(r, 2) <= 0.9998) then
 Class=2;
If (o(r, 1) >= 1.0000 or o(r, 1) <= 1.0000) and
 (o(r, 2) >= 1.0000 or o(r, 2) <= 1.0000) then
 Class=3

CONCLUSION

 The success of neural network architecture depends
heavily on the availability of effective learning
algorithms. The theoretical strength of the Particle
Swarm Optimization (PSO) is yet to be used in
hundreds of technologies, and this paper demonstrates
that RBFNN network training is yet another fruitful
application of Particle Swarm Optimization (PSO). Our
simulation using MATLAB v6.5 verifies that
initialization of the centers through Particle Swarm
Optimization provides better performance. Further
research could focus on the application of Particle
Swarm Optimization (PSO) training to RBFNN
networks with alternative forms of the generator

function. (Recall that in this paper the deviations and
weight matrix was initialized to ones.) Applying these
techniques to large problems to obtain experimental
verification of the computational savings of training the
centers by PSO can be included as a future work

REFERENCES

1. V. D. Suanchez, A. (Ed.), 1998. Special Issue

on RBFNN Networks, Part I, Neuro
computing.

2. V. D. Suanchez, A. (Ed.), 2004. Special Issue
on RBFNN Networks, Part II, Neuro
computing.

3. D. Broomhead, D. Lowe, 1998.Multivariable
functional interpolation and adaptive networks,
Complex Systems v2, pp. 321-355

4. N. Karayiannis, 1999. Reformulated radial basis
neural networks trained by gradient descent, IEEE
Transactions on Neural Networks, Volume:10,
Issue: 3, pp. 657-671.

5. D. Simon, Distributed fault tolerance in optimal
interpolative nets, 2001. IEEE Transaction on
Neural Networks, Volume: 12, Issue: 6, pp. 1348-
1357.

6. S. Sin, R. DeFigueiredo, 1993. Efficient learning
procedures for optimal interpolative nets, Neural
Networks, Volume:6 , Issue:1, pp. 6 99-113.

7. John Sum, Chi-sing Leung, Gilbert H. Young, and
Wing-kay Kan, 1999. Kalman Filtering Method in
Neural-Network, Training and Pruning, IEEE
Transactions On Neural Networks,. Volume:10,
Issue:1, pp. 161-166.

8. Y. Zhang, X. Li, 1999. A fast U-D factorization-
based learning algorithm with applications to
nonlinear system modeling and identification,
IEEE Transaction on Neural Networks,
Volume:10, Issue: 4, pp. 930 - 938 .

9. Duro, R.J.; Reyes, J.S, 1999. Discrete-time back
propagation for training synaptic delay-based
artificial neural networks, IEEE Transaction on
Neural Networks, Volume: 10, Issue: 4, pp. 779-
789.

10. S. Chen, Y. Wu, B. Luk, 1999. Combined genetic
algorithm optimization and regularized orthogonal
least squares learning for radial basis function
networks, IEEE Transaction on Neural Networks,
Volume: 10, Issue: 5, pp. 1239-1243.

11. McKay B.; Wills, M.J.; Hidden, H.G.; Montague,
G.A. and Barton, G.W. March, 1996.
Identification of industrial processes using genetic
programming. Proceedings of International
Conference on Identification in Engineering
Systems, pp.328-337.

J. Computer Sci., 3 (8): 592-599, 2007

 599

12. S. Kirkpatrick, Cl. Gelatt, M. Vecchi, 1983.
Optimization by simulated annealing, Volume:
220, no: 4598, pp. 671 - 680.

13. J. Moody and C. Darken, 1989. Fast learning in
networks of locally tuned processing units. Neural
computation, 1(2): pp.281–294.

14. X. Fu and L. Wang, 2001. Rule extraction by
genetic algorithms based on a simplified RBFNN
neural network. In Proceedings of the Congress on
Evolutionary Computation volume: 2, pp.753–
758.

15. K. Huber and M. Berthold, 1995. Building precise
classifiers with automatic rule extraction. Neural
Networks, 1995. Proceedings., IEEE International
Conference on Neural Networks, volume:3,

 pp. 1263–1268.
16. K. McGarry, S. Wermter, and J. MacIntyre, 2001.

Knowledge extraction from local function
networks. In Proceedings of the International Joint
Conference on Neural Networks, pp.765–770.

17. J Kennedy, RC Eberhart, Y Shi. 1995, “Particle
Swarm Optimization”, Proceedings of the IEEE
International Joint Conference on Neural
Networks, volume: 4, pp. 1942-1948.

18. J Kennedy, RC Eberhart, Y.Shi. 2002, “Swarm
Intelligence”,International Journal of Computer
Research, pp.434-452.

19. Xiaohui Hu, Yuhui Shi, and Russ Eberhart, 2004.
Recent advances in particle swarm.
In Proceedings of IEEE Congress on Evolutionary
Computation (CEC), pp. 90-97.

20. J. Kennedy, 2000. Stereotyping: improving particle
swarm performance with cluster analysis.
In Proceedings of the IEEE Congress on
Evolutionary Computation (CEC), pp.1507-1512.

21. S. K. Pal and S. Mitra. 1994, “Fuzzy versions of
Kohonen's net and MLP-based classification:
Performance evaluation for certain nonconvex
decision regions”', Information Sciences, Volume:
76, pp. 297-337.

22. Kenneth J. McGarry, John Tait, Stefan Wermter,
and John Macintyre, 1999, “Rule-Extraction From
Radial Basis Function Networks”, IEE, pp 613-
618.

23. Bahram G. Kermani, Mark W. White, H. Tory
Nagle 1997, “Feature Extraction By Genetic
Algorithms for Neural Networks in Breast Cancer
Classification”, IEEE, pp.831-832.

