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Abstract: R-Tree is a multidimensional indexing structure that forms basis for all the 
multidimensional indexing structures based on data partitioning. A number of attempts have been 
made in the past to improve the performance of R-Tree by manipulating the tree parameters and 
the data parameters. But hardly any attempt had been made to use external parameters such as disk 
parameters to enhance the performance. This work attempts to improve the performance of R-Tree 
by efficiently clustering the nodes into input-output units of the hard disk with in the constraint 
that the independence between the logical and physical organization of the R-Tree should be 
preserved. Moreover, to preserve the structural and functional properties of R-Tree at any point in 
the process of clustering, this paper introduces a concept called ‘controlled duplication’. Extensive 
experiments were conducted and the results are tabulated. The improvements are significant and 
open more avenues for exploration. 
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INTRODUCTION 

 
Any computer based solution has broadly two 

sides to itself – the software side and the hardware side. 
Even if the solution on one side is good, if the solution 
on the other side is not equally good, the entire purpose 
of the solution is lost. Moreover with the technology 
growing horizontally and vertically on either side 
almost independent of each other, the above said 
solutions too are required to maintain the independence 
between both sides for accommodating the 
advancement of the technologies and hence prolonging 
the longevity of the solution. One of the very few fields 
where this parlance has more significance and 
relevance is databases. 

Database applications are input-output 
intensive applications and hence their performance is 
determined by the performance of input-output devices. 
Since input and output from and to the secondary and 
peripheral devices are the one of the slowest operations 
that are done in a computer system, any input-output 
intensive application that needs to give a better 
performance should reduce the number of inputs and 
outputs done by the application without compromising 
the desired results. Even if the design of logical 
components of the databases such as in-core data 
structures, schemas, tables, indexes, procedures and 
triggers are good, the desired results cannot be obtained  

if the designs of physical components such as physical 
storage data structures and buffering are not equally 
good. The design of the physical side of the solution 
components should aim at reducing the number of 
inputs and outputs. 

Apart from traditional database applications, 
spatial database applications have become more and 
more important in different industries and research 
areas. In the areas of geography, engineering designs, 
and conceptual information management, it is not rare 
to have applications involving spatial data. Example 
applications are urban planning, geographic information 
system, computer aided design, multimedia information 
system, etc. New applications are also emerging as 
well. Here the objects whose data have to be stored and 
processed are essentially multidimensional. Even 
though strong and proven data storage and processing 
methods are available for single dimensional point data, 
they are not scalable to higher dimensions. One such 
case is indexing. B-Trees and their ramifications that 
work well for single dimensional data are not scalable 
to multidimensional data simply because of their 
inability to maintain spatial proximity which is very 
essential for efficient answering of spatial or 
multidimensional queries. A lot of work has been done 
in the past to efficiently index spatial or 
multidimensional data and R-Tree is one of the 
foremost and has a lot of sequels. 
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 R-Tree has been chosen for the purpose of 
proving the efficiency of the method. R-Tree has been 
chosen for two reasons. (i) It is the basis of all 
multidimensional spatial indexing techniques that use 
data partitioning and (ii) Every sequel to the trees in 
the R-Tree family has preserved the conceptual 
abstraction of the trees. Hence whatever that is 
applicable to the conceptual abstraction of the R-Tree 
is also applicable to its sequels. 

 
RELATED WORK AND BACKGROUND 

 
Logical Model of R-Tree: The R-tree proposed by 
Guttman A[1] and its variations are one of the most 
popular multidimensional indexing methods based on 
data partitioning. R-Tree is a multilevel and dynamic 
indexing structure like a B-Tree. While B-Tree is used 
for indexing single dimensional data, R-Tree is used 
for indexing multidimensional data. A sample 2-
dimensional data set and the corresponding R-Tree is 
shown in Fig. 1. If d is the dimensionality of the space 
whose objects are indexed, then R-Tree uses a d-
dimensional Minimum Bounding Rectangles (MBRs) 
to cover the objects. In Fig. 1 MBR with identity R3 
demonstrates the coverage of an object by a MBR. 
These MBRs are grouped together in leaf nodes 
according to their spatial proximity, which are then 
recursively grouped in higher levels up to the root.  

Every leaf node of the R-Tree contains 
between m and M index records unless it is the root.  M 
is the order of the R-Tree that specifies the maximum 
number of entries that will be fit in one node and m � 
M/2. For each index record (I, tuple-identifier) in a leaf 
node, I is the smallest rectangle that spatially contains 
the d-dimensional data object represented by the 
indicated tuple. In every non-leaf entry (I, child-
pointer) in a non-leaf node, I is the smallest rectangle 
that spatially contains the rectangles in the child node. 
The root node has at-least two children unless it is a 
leaf. All leaves appear on the same level. tuple-
identifier refers to a tuple in a database and I is d-
dimensional rectangle which is the bounding object of 
spatial object indexed  I = (I0, I1… Id-1)... MBRs as well 
as Partitions of R-Trees overlap each other. The space 
occupied by a node is called as ‘node region’. 

When searching for a suitable node to insert 
an object, one out of three cases may occur. (i) The 
object is contained in exactly one node region. In this 
case, the corresponding node is used. (ii) The object is 
contained in several different node regions. In this 
case, the node region with the smallest volume is used 
and (iii) No node region contains the object. In this 
case, the region which yields the smallest volume 
enlargement is chosen. If several such regions yield 
minimum enlargement, the region with the smallest 

volume among them is chosen. The insert algorithm 
starts with the root and chooses in each step a child 
node by applying the rules above. Page overflows are 
handled by splitting the page. Four different algorithms 
have been published for the purpose of finding the right 
split dimension (also called split axis) and the split 
hyper plane. They are distinguished according to their 
time complexity with varying page capacity C. They 
are (i) quadratic algorithm (ii) linear algorithm (iii) 
exhaustive algorithm and (iv) Greene’s algorithm. The 
quadratic split uses the distance to select the seed nodes 
for splitting. The linear and Greene's algorithm select a 
split axis by finding the normalized maximum 
separation along each axis. The performance efficiency 
of R-Tree with respect to various algorithms are widely 
discussed in the literature and do not have a greater 
significance in the context of the work presented in this 
paper. 

 

     
Fig 1: A sample 2-dimensional data set and the 

corresponding R-Tree 
 
Measuring the performance of R-Tree: The 
efficiency of any modification suggested to various 
structural and functional aspects of R-Tree is expressed 
in terms of number of nodes accessed to answer a 
query. Any modification that gives less number of node 
accesses for answering the queries is deemed to be a 
better modification. There are a wide variety of queries 
that can be posed on R-Tree. Delving into those 
categories is beyond the scope of this work. A ‘query’ 
in this paper refers to a ‘window query’. A window 
query is one that retrieves all the nodes of an R-Tree in 
which at least one MBR intersects the given query 
MBR. In Fig. 1 the query window Q retrieves the root 
and the child of R12. Based on this a lot of 
modifications were made that resulted in a long list of 
sequel to the R-Tree. 
 
Sequel to R-Tree: R-Tree has a wide variety of sequel, 
each one trying to improve the performance of the base 
model by manipulating one or two parameters. 
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B[2] suggested R*-Tree that focused on efficient 
splitting and forced reinsertion. I.Kamel and 
C.Faloutsos[5] attempted to efficiently handle the 
spatial proximity of the data by using the Hilbert 
ordering of special objects. C.Aggarwal, J.Wolf, P.Wu 
and M.Epelman[7] bounded the spatial objects with 
Minimum Bounding Spheres (MSB) instead of MBRs. 
Katayama N., and Satoh S[3]., tried a combination of 
both MBRs and MBSs. Yasushi Sakurai, Masatoshi 
Yoshikawa et al,[6] proposed  A-Trees that attempted at 
consuming minimum bytes to store objects. 
S.Berchtold, D.A.Keim and H.P.Kriegel[8] delayed the 
splits till a splitting threshold was reached. Lin, K.-I., 
Jagadish, H., and Faloutsos, C[14] proposed TV-Trees 
that ignored the less significant dimensions. 
F.Sagayaraj Francis, P.Thambidurai and others[4] used 
polygons to bind the spatial objects to reduce the 
influence of dead spaces in processing. While some of 
these trees behaved well with point data, others 
behaved well with non-point objects. Their efficiency 
and applicability are well documented and discussed in 
the literature.  

While the above category of trees attempted to 
improve the R-Tree performance by manipulating data 
characteristics, another category of trees attempted the 
same by manipulating the tree characteristics. 
T.Brinhhoff, H.Horn, H.-P.Kriegel and 
R.Schneuder[10], S.Leutenegger and M.Lopez[12] and 
S.Leutenegger, J.M.Edgington and M.A.Lopez[13] tried 
to improve the performance of the R-Tree by working 
on the node size, fan out, packing density and tree 
heights. I.Kamel and C.Faloutsos[11] proposed Packed 
R-Trees that proposed methods to improve storage 
utilization of the R-Tree. But this tree and the 
ramifications of this tree did not prove their efficiency 
when it came to the point of answering queries.  

F.Sagayaraj Francis, P.Thambidurai, and 
Others[9] tried to take a middle path between the above 
said approaches. The trees were allowed to follow the 
concepts of earlier category of trees, but during 
reindexing the objectives of the later category were 
tried to be fulfilled.  

But none of these approaches to improve the 
performance of R-Trees established the desired 
relationship between tree parameters, data parameters 
and query parameters. In other words, there exists no 
model into which all the parameters can be fit in and 
optimized for an objective. 

 
 Disk Organization: A hard disk is a direct access 
storage device with large capacity. It is ubiquitous and 
part of every present day computing system. A ‘sector’ 
is the smallest addressable storage unit in a hard disk. 
This means, any storage object in the system takes at 

least one sector to get stored. This also implies that the 
data transfer between hard disk and the main memory 
is done sector by sector. But in present day computers 
transfer of data is done at a much higher volume and 
the term ‘cluster’ is used to mention the storage unit. A 
cluster is a group of pre-defined number of sectors and 
is constant for a system. In this paper ‘input-output 
unit’ and ‘storage unit’ are used instead of cluster to 
avoid the confusion between R-Tree clusters and disk 
clusters. A ‘track’ in a surface has many clusters in it. 
All the ith tracks in all the surfaces form the ith 
‘cylinder’ of the hard disk. The organization of a hard 
disk is given in Fig. 2. With one read/write head for 
each surface of every ‘platter’, all the tracks of a 
cylinder can be read in one go after positioning the 
head at the required cylinder. The time taken to move 
the head from one cylinder to another cylinder is called 
as the ‘seek’ time. Bringing the required cluster under 
the read/write head requires the rotation of the disk and 
the time taken for it is called ‘latency’ time. 
‘Read/write’ time refers to the actual time taken to 
transfer data between a cluster and main memory. Each 
cluster in the hard disk can now be identified with 
hierarchical address cylinder#.surface#.cluster #  

 
Fig. 2: Hard Disk Organization 

 
The hard disk, operating system and database 
correlation: In a computing system the hard ware, 
operating system and the database software are 
completely independent of each other. The designers of 
each of these make their internal structure and 
functionality transparent and only provide interfaces 
through which others can avail the services. Each 
subsystem optimizes its performance within itself. But 
when combined together to form a larger system the 
final throughput may not be the optimal. In such cases 
optimality could be achieved by trying to manipulate 
the parameters of the other correlated subsystem in 
some way. In other words, the possibility of inter 
subsystem optimization should be explored.  This 
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paper makes one such attempt to improve the 
performance of the R-Tree that belongs to the database 
system by manipulating the parameters of hard disk 
system that is managed by the operating system. This 
attempt has greater importance in the context of 
distributed and heterogeneous database systems where 
the requirement of the maintenance of independence 
between storage model and logical model is 
imperative. 
 
 Motivation for this work: As discussed above the 
research literature has abundant ramification of R-Tree. 
Every diversified method tries to improve the 
performance of the R-Tree by repeatedly manipulating 
the parameters of the logical model of the R-Tree. But 
ultimately the R-Tree is stored in the secondary storage 
medium which has its own performance parameters. 
The issues regarding (i) physical organization, (ii) 
mapping between logical organization and physical 
organization and (iii) preserving the independence 
between the two organizations of the indexing tree 
structures are seldom addressed in the research 
literature. However, the commercial database software 
developers and users place high emphasis on these 
issues. The importance of these issues are discussed in 
the context of ‘performance tuning’ and are well 
documented in commercial database literature It is 
evident from these documents that the commercial 
software are still working on B-Trees and not on other 
tree based indexing structures. But of late they are 
adopting indexing structures such as R-Tree, quad-tree, 
etc., instead of B-Trees for indexing multidimensional 
data. This has motivated the authors to come out with a 
model for efficient physical organization of R-Tree and 
its sequel.  

In short, the objective of this work is to come 
out with a method that would improve the performance 
of a R-Tree by manipulating the ‘data transfer unit’ of 
the storage medium and would still preserve the 
independence between the logical model and the 
storage model of the R-Tree. ‘Clustering’ has been 
chosen as the method to achieve the objective. 
Attempting to cluster the R-Tree nodes into the data 
transfer units is not straight forward and gives rise to 
lot of technical and implementation issues. This paper 
proposes a new ‘Controlled duplication’ method to 
handle these issues. The details are given in the 
subsequent sections. 

 
OBJECTIVES OF NODE CLUSTERING 

 
Let s1, s2, … sn be the n steps required to 

access the smallest addressable input-output unit of the 
storage organization. Let s1 be the first step and sn be 

the last step. Let ti be the average time taken to execute 
the ith step. Let t1 � t2 � .. � tn.   

Let R be the given R-Tree; L be the number of 
levels of the tree; Nj be the number of nodes in jth level; 
Let p be the number of input-output units occupied by 
a node. If the number of bytes in a node is less than the 
number of bytes in an input-output unit, then p is 1. 
The time taken to retrieve any node from the storage 
organization is given by  

1

n

i i
i

T p c t
=

= �
 

 
   (1) 

where ci is a constant for the ith step. Let Tot be the 
time taken to access all the nodes of the tree. Then, Tot 
is given by 

1

( * )
L

i
i

Tot N T
=

=�
 

       
(2) 

The above formula is also applicable to any 
sub tree of the given tree. Now, the objective of 
retrieval is to minimize Tot, which is possible if some 
method can be devised that reduces T. The following 
discussion forms the basis of the methodology 
proposed in this paper for improved physical 
organization of the R-Tree that minimizes Tot. 

Let x1, x2, …, xz be z nodes of R to be retrieved. 
Let j< n. If the first j steps are common for the retrieval 
of x1, x2, …, xz, then the time taken to retrieve the nodes 
is  

1 1

1* *
j n

k k q q
k q j

c t z c t
= = +
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� �

 
Since t1 � t2 � .. � tn,, the above formula always gives a 
lesser value than  

1

*
n

k k
k

z c t
=
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� �
�

 
Obviously,  

 

    
 

(3) 

where z1, z2, .., zn-1 are less than z and zc, 1�c�n-1 is the 
number of nodes that require the step c to be 
performed. The above equation considers the fact that 
at least one step is not common for all the nodes that 
are required to be retrieved (Step n in the equation) 

From the above discussion it is clear that, if a 
suitable method can be found out that group those 
nodes that would reduce the number of retrieval steps, 
a higher performance of the system could be achieved. 
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Each group of nodes is called as a ‘cluster’. The result 
of the clustering is a ‘cluster graph’. The ‘successors’ 
of a cluster in a cluster graph are the collection of all 
the clusters that have the children of all the nodes in 
that cluster. The ‘predecessors’ of a cluster in a cluster 
graph are the collection of all the clusters that have the 
parents of all the nodes in that cluster. A ‘cluster tree’ 
is a cluster graph whose clusters do not have more than 
one parent. A ‘cluster access cycle’ is defined as the set 
of steps to access a complete cluster and ‘cluster access 
time’ is the time taken to complete a cluster access 
cycle.  

By equation 3, we expect the cluster access 
time to be less than the total time taken if the nodes are 
accessed separately. A cluster is accessed whenever a 
node in that cluster is required. Hence during 
clustering, the prime objectives would be to cluster the 
nodes in such a way (i) to reduce the number of times 
each cluster is accessed during a database operation 
and (ii) that the initial steps are not repeated for every 
node of the tree.  
Consider the R-Tree given in Fig. 3a. Figure 3b gives 
one of the possible clustering and the corresponding 
cluster graph that is based on in-order traversal of 
nodes. Figure 3c gives another possible clustering and 
the possible cluster graph. This clustering results in a 
tree structure. Comparing Fig. 3b and Fig. 3c, it is 
evident that if clustering results in a cluster tree then 
every cluster is accessed only once during searches. 
This is due to fact that any vertex has only one path to 
any of its descendants in a tree. On the other hand, if 
clustering results in a graph then any node with 
multiple predecessors has to be retrieved more than 
once during search. Hence it is desirable that clustering 
ends up in a cluster tree rather than a cluster graph. An 
implication that is worth mentioning would be that 
there is a chance for the formation of a cluster graph if 
there is more than one tree in a cluster, but not always.  

 
Fig 3a: A skeletal R-Tree 
 
Clusters: (HDI) (BJE) (KAL) (FMC) (NGO) 

 
Fig. 3b: Clustering of R-Tree in Fig. 3a based on 
              in-order traversal of nodes 

 
Clusters: (ABC) (DHI) (EJK) (FCM) (NGO). 

 
Fig. 3c: Clustering of R-Tree in Fig. 3a that  
              maintains a tree structure 
 
IMPLEMENTATION ISSUES OF CLUSTERING 

 
With the discussions of the previous section in 

the background, this section proposes a new method to 
efficiently organize the R-Tree in the permanent 
storage device that would minimize the access time of 
the nodes of the R-Tree.   

Let an arbitrary cluster contain a node na, and 
its children, na1, na2, …, nab. If there exist some nodes 
that are not accessed after accessing na, their sub-trees 
too will not be accessed and also the clusters 
containing them. All na1, na2, …, nab would not be 
accessed only if the process ends up in a dead space in 
na. Further more once a cluster is accessed, every node 
in the cluster is processed and would not be required at 
a future time. This implies that this cluster need not be 
retrieved once again. If instead of one of the children of 
na, a grandchild of na is in the cluster, then possibility 
of a cluster graph arise that results in unnecessary 
retrieval as in the case of Fig. 3b. It is also desirable to 
form clusters using nodes that have a high probability 
of retrieval immediately after na. In an R-Tree only a 
node’s children have the higher probability of retrieval 
immediately after its retrieval. Clustering the parents 
and children will result in eliminating a few initial 
steps to retrieve these multiple nodes. Obviously, 
clustering only one parent and all its children or only 
all the children of a parent in a cluster results in another 
R-Tree as shown in Fig. 3c. In such a clustering, if the 
cluster size matches the input-output unit size the 
implementation is straight forward. But the freedom to 
choose the input-output unit size is not with database 
administrators. This gives rise to very important 
implementation issue that has four scenarios. (i) Only 
one node of the R-Tree accommodated in one input-
output unit of the hard disk (ii) Exactly M+1 nodes of 
the R-Tree accommodated in one input-output unit of 
the hard disk (iii) Less than M+1 nodes of the R-Tree 
accommodated in one input-output unit of the hard disk 
and (iv) More than M+1 nodes of the R-Tree 
accommodated in one input-output unit of the hard 
disk. Figure 4 gives pictorial overview of the four cases 
for M = 4. 
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Among the four cases, case 1 is trivial and 
would result in a typical R-Tree. Figure 4b 
demonstrates case1 for the two sub trees of an R-Tree 
given in Fig. 4a. Case 2 does not create any significant 
implementation issue as discussed earlier and is 
demonstrated in Fig. 4c. Case 3 requires some 
innovation during implementation. Case 4 may be 
treated as a special case of case 3 or combination of 
case 2 and case 3. Figure 4e demonstrates this case. 
Hence the implementation issues of case 3 are 
discussed in detail here.  

     
Fig. 4a: Two sub-trees of the same parent 
 

 
Fig. 4b: Clustering of one R-Tree node in one disk  
              input-output unit 
 

  
Fig. 4c: Clustering of M+1 R-Tree nodes in one disk  
              input-output unit 
 

 
Fig. 4d: Clustering of less than M+1 R-Tree nodes in  
              one disk input-output unit  
 

  
Fig. 4e: Clustering for more than M+1 nodes in one  
              disk input-output unit 

    
 
Fig. 4f: Elimination of node created during ‘controlled  
             duplication’  
 
The discussions in the previous sections suggest that, 
optimal performance is obtained only when (i) 
clustering should end up in a structure similar to an R-
Tree and (ii) M should only be as big as allowing M+1 
nodes into an input-output unit. With the independence 
of database software and the operating system in place, 
satisfying both is not possible. Hence to achieve this 
we allow ‘controlled duplication’ of nodes during 
growing and shrinking phases of the R-Tree. 
Controlled duplication necessarily preserves the R-Tree 
structure both inside clusters and across clusters. 
Consider a cluster size of three nodes as in Fig. 4d. The 
cluster size is less than M+1, for M = 4. In the 
clustered R-Tree, nodes A and F would be duplicated 
and available in two clusters as shown. These 
duplications are controlled in the sense; the duplicates 
remain in the tree only as long as the necessities for 
them to be split arise. Consider the case of node A. If 
one of the nodes among B, C, D and E overflow, then 
A would also overflow. In such a case a new node has 
to be created and the MBRs in the overflowing node A, 
must be distributed among them. Now, the duplicate of 
A in an appropriate cluster may be renamed and used 
as a new node instead of creating a new one. This 
results in the elimination of one of the duplicates of 
node A that was previously created. The new scenario 
that appears when A is split due to the overflowing of 
E is given in Fig. 4f. In the figure, E splits into E and 
E′ while A splits into A and A′. The figure also shows 
how the realignment of nodes takes place when the tree 
grows upward by one level.  

During realignment, if the number of levels in 
the tree is odd, the clusters that hold the leaves will not 
have their parents in them. These clusters only become 
forests of leaves.  The clusters that hold the 
intermediate nodes become forests of trees with two 
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levels. On the other hand, if the number of levels is 
even, every cluster contains forests of trees with two 
levels. Figure 4 provides examples for both cases.  

Insertion and Deletion now are two step 
processes. The initial processing is at the node level 
and the subsequent processing is at the cluster level.  

 
EXPERIMENTAL RESULTS AND ANALYSIS 

 
The performance of an R-Tree depends on the 

number of input-output operations that are done from 
and to hard disk during insertion, deletion, updating 
and searching. The number of input-output operations 
can be significantly reduced by efficiently clustering 
the nodes an R-Tree.  

For the experiments, an input-output unit with 
eight sectors was chosen i.e., 4K bytes. A node size in 
the R-Tree was fixed at eight MBRs. Six different 2-
dimensional MBR sets with 25K, 50K, 75K, 100K, 
125K and 150K MBRs in each set was generated for 
the experiments. Uniform location distribution and 
uniform length distribution were followed for both axes 
of the MBRs. The MBRs were generated in a unit 
space (0, 1]. The maximum length of the MBRs was 
fixed at 0.2 units. Since the values were stored in 
character mode, each MBR entry took 60 bytes in the 
disk. Apart from MBR entries, each node also had 
other necessary entries for the management of the R-
Tree. 

Clustered R-Trees were constructed for every 
set of MBRs by changing the number of nodes in a 
cluster from 1 to 32. If a node takes more than one 
input-output unit, they were chosen in a way that would 
minimize the total time taken to access all the input-
output units together instead of one by one, i.e., the 
seek time and rotation time are constant for all the 
input-output units in the cluster. The number of input-
output units taken for various cluster sizes is tabulated 
in Table 1. When the cluster size is one, a trivial R-
Tree is constructed. In such a case the maximum space 
taken by a node/cluster in an input-output unit is 510 
bytes. The remaining space goes waste. By clustering 
nodes into input-output units more space utilization is 
obtained. This is shown in Fig. 5a. As more and more 
R-Tree nodes are packed into input-output units better 
space utilization is achieved. The number of clusters 
formed for varying number of nodes in a cluster for 

various data sets are given in Fig. 5b. It has been well 
established in the previous sections that time taken to 
retrieve a cluster is much smaller than the sum of times 
taken to retrieve each node of a cluster individually. 
The graph in Fig. 5b gives a sense of the amount of 
time that could be saved by clustering. 
 
Table 1. Number of disk input-output units taken for 
various cluster sizes 

Cluster size No. of disk input-output 
units taken 

1 1 
2 1 
4 1 
8 1 

16 2 
32 4 
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Fig. 5c: Time taken to traverse trees after clustering 
With the space efficiency of the clustered R- 
 
Tree improved, the R-Tree’s performance for 

time efficiency was also explored by computing the 
time taken to traverse the trees. The times taken for 
traversing the clustered R-Trees for varying number of 
cluster sizes for various datasets are given in Fig. 5c. 
As the size of the clusters increase, the time taken to 
process the tree becomes less. 

 
CONCLUSION AND FUTURE WORK 

  
 R-Tree is a multidimensional data partitioning 
indexing structure that has become the basis of all the 
indexing techniques in the future that used data 
partitioning. While a lot of research had gone into the 
improvement of this structure from data characteristics, 
and tree characteristics view points, few attempts have 
been made from physical storage view point. This work 
basically attempted at improving the performance of R-
Trees from physical storage view point and has come 
out successfully. The methods and algorithms proposed 
here are applicable for every ramification of R-Tree. 
Moreover we reckon that the methods and algorithms 
provide here are also applicable to indexing techniques 
based on space partitioning and experiments are 
underway to verify and prove the claim. 
 All along this work, the basic and very 
important constraint of maintaining the independence 
between logical and physical organization of the R-
Tree was given due focus and every result provided is 
within this important constraint. This independence 

gives the designers and administrators of databases 
complete freedom to design the logical solutions 
without any hindrance from the physical design of the 
system and vice- versa.  
 The authors of this paper are currently 
attempting to study the performance of the R-Tree by 
considering the internal parameters of the R-Tree such 
as packing density along with the cluster parameters. 
An improvement in this front would enhance the 
performance of centralized and homogeneous 
databases. 
 This work is likely to give impetus to refine 
the existing models that predict the performance of R-
Trees for various categories of multidimensional 
queries such as range queries, directional queries, join 
queries and nearest neighbor queries.  
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