
Journal of Computer Science 3 (7): 506-514, 2007
ISSN 1549-3636
© 2007 Science Publications

506

Efficient Physical Organization of R-Trees Using Node Clustering

F.Sagayaraj Francis and P.Thambidurai

Department of Computer Science & Engineering and Information Technology
Pondicherry Engineering College, Puducherry, India

Abstract: R-Tree is a multidimensional indexing structure that forms basis for all the
multidimensional indexing structures based on data partitioning. A number of attempts have been
made in the past to improve the performance of R-Tree by manipulating the tree parameters and
the data parameters. But hardly any attempt had been made to use external parameters such as disk
parameters to enhance the performance. This work attempts to improve the performance of R-Tree
by efficiently clustering the nodes into input-output units of the hard disk with in the constraint
that the independence between the logical and physical organization of the R-Tree should be
preserved. Moreover, to preserve the structural and functional properties of R-Tree at any point in
the process of clustering, this paper introduces a concept called ‘controlled duplication’. Extensive
experiments were conducted and the results are tabulated. The improvements are significant and
open more avenues for exploration.

Key Words: multidimensional indexing, R-Tree, physical organization, clustering, hard disk,
organizational independence, controlled duplication

INTRODUCTION

Any computer based solution has broadly two

sides to itself – the software side and the hardware side.
Even if the solution on one side is good, if the solution
on the other side is not equally good, the entire purpose
of the solution is lost. Moreover with the technology
growing horizontally and vertically on either side
almost independent of each other, the above said
solutions too are required to maintain the independence
between both sides for accommodating the
advancement of the technologies and hence prolonging
the longevity of the solution. One of the very few fields
where this parlance has more significance and
relevance is databases.

Database applications are input-output
intensive applications and hence their performance is
determined by the performance of input-output devices.
Since input and output from and to the secondary and
peripheral devices are the one of the slowest operations
that are done in a computer system, any input-output
intensive application that needs to give a better
performance should reduce the number of inputs and
outputs done by the application without compromising
the desired results. Even if the design of logical
components of the databases such as in-core data
structures, schemas, tables, indexes, procedures and
triggers are good, the desired results cannot be obtained

if the designs of physical components such as physical
storage data structures and buffering are not equally
good. The design of the physical side of the solution
components should aim at reducing the number of
inputs and outputs.

Apart from traditional database applications,
spatial database applications have become more and
more important in different industries and research
areas. In the areas of geography, engineering designs,
and conceptual information management, it is not rare
to have applications involving spatial data. Example
applications are urban planning, geographic information
system, computer aided design, multimedia information
system, etc. New applications are also emerging as
well. Here the objects whose data have to be stored and
processed are essentially multidimensional. Even
though strong and proven data storage and processing
methods are available for single dimensional point data,
they are not scalable to higher dimensions. One such
case is indexing. B-Trees and their ramifications that
work well for single dimensional data are not scalable
to multidimensional data simply because of their
inability to maintain spatial proximity which is very
essential for efficient answering of spatial or
multidimensional queries. A lot of work has been done
in the past to efficiently index spatial or
multidimensional data and R-Tree is one of the
foremost and has a lot of sequels.

Corresponding Author: F.Sagayaraj Francis, Assistant Professor, Department of Computer Science and
Engineering, Pondicherry Engineering College, Puducherry, India, 605008.

J. Computer Sci., 3 (7): 506-514, 2007

 507

 R-Tree has been chosen for the purpose of
proving the efficiency of the method. R-Tree has been
chosen for two reasons. (i) It is the basis of all
multidimensional spatial indexing techniques that use
data partitioning and (ii) Every sequel to the trees in
the R-Tree family has preserved the conceptual
abstraction of the trees. Hence whatever that is
applicable to the conceptual abstraction of the R-Tree
is also applicable to its sequels.

RELATED WORK AND BACKGROUND

Logical Model of R-Tree: The R-tree proposed by
Guttman A[1] and its variations are one of the most
popular multidimensional indexing methods based on
data partitioning. R-Tree is a multilevel and dynamic
indexing structure like a B-Tree. While B-Tree is used
for indexing single dimensional data, R-Tree is used
for indexing multidimensional data. A sample 2-
dimensional data set and the corresponding R-Tree is
shown in Fig. 1. If d is the dimensionality of the space
whose objects are indexed, then R-Tree uses a d-
dimensional Minimum Bounding Rectangles (MBRs)
to cover the objects. In Fig. 1 MBR with identity R3
demonstrates the coverage of an object by a MBR.
These MBRs are grouped together in leaf nodes
according to their spatial proximity, which are then
recursively grouped in higher levels up to the root.

Every leaf node of the R-Tree contains
between m and M index records unless it is the root. M
is the order of the R-Tree that specifies the maximum
number of entries that will be fit in one node and m �
M/2. For each index record (I, tuple-identifier) in a leaf
node, I is the smallest rectangle that spatially contains
the d-dimensional data object represented by the
indicated tuple. In every non-leaf entry (I, child-
pointer) in a non-leaf node, I is the smallest rectangle
that spatially contains the rectangles in the child node.
The root node has at-least two children unless it is a
leaf. All leaves appear on the same level. tuple-
identifier refers to a tuple in a database and I is d-
dimensional rectangle which is the bounding object of
spatial object indexed I = (I0, I1… Id-1)... MBRs as well
as Partitions of R-Trees overlap each other. The space
occupied by a node is called as ‘node region’.

When searching for a suitable node to insert
an object, one out of three cases may occur. (i) The
object is contained in exactly one node region. In this
case, the corresponding node is used. (ii) The object is
contained in several different node regions. In this
case, the node region with the smallest volume is used
and (iii) No node region contains the object. In this
case, the region which yields the smallest volume
enlargement is chosen. If several such regions yield
minimum enlargement, the region with the smallest

volume among them is chosen. The insert algorithm
starts with the root and chooses in each step a child
node by applying the rules above. Page overflows are
handled by splitting the page. Four different algorithms
have been published for the purpose of finding the right
split dimension (also called split axis) and the split
hyper plane. They are distinguished according to their
time complexity with varying page capacity C. They
are (i) quadratic algorithm (ii) linear algorithm (iii)
exhaustive algorithm and (iv) Greene’s algorithm. The
quadratic split uses the distance to select the seed nodes
for splitting. The linear and Greene's algorithm select a
split axis by finding the normalized maximum
separation along each axis. The performance efficiency
of R-Tree with respect to various algorithms are widely
discussed in the literature and do not have a greater
significance in the context of the work presented in this
paper.

Fig 1: A sample 2-dimensional data set and the

corresponding R-Tree

Measuring the performance of R-Tree: The
efficiency of any modification suggested to various
structural and functional aspects of R-Tree is expressed
in terms of number of nodes accessed to answer a
query. Any modification that gives less number of node
accesses for answering the queries is deemed to be a
better modification. There are a wide variety of queries
that can be posed on R-Tree. Delving into those
categories is beyond the scope of this work. A ‘query’
in this paper refers to a ‘window query’. A window
query is one that retrieves all the nodes of an R-Tree in
which at least one MBR intersects the given query
MBR. In Fig. 1 the query window Q retrieves the root
and the child of R12. Based on this a lot of
modifications were made that resulted in a long list of
sequel to the R-Tree.

Sequel to R-Tree: R-Tree has a wide variety of sequel,
each one trying to improve the performance of the base
model by manipulating one or two parameters.
Beckmann N., Kriegel H.-P. and Schneider R., Seeger

R1

R2

R3

R4
R11

R12

Q

 R2 R1

 R12 R11

 R4 R3

2-d object

query window

J. Computer Sci., 3 (7): 506-514, 2007

 508

B[2] suggested R*-Tree that focused on efficient
splitting and forced reinsertion. I.Kamel and
C.Faloutsos[5] attempted to efficiently handle the
spatial proximity of the data by using the Hilbert
ordering of special objects. C.Aggarwal, J.Wolf, P.Wu
and M.Epelman[7] bounded the spatial objects with
Minimum Bounding Spheres (MSB) instead of MBRs.
Katayama N., and Satoh S[3]., tried a combination of
both MBRs and MBSs. Yasushi Sakurai, Masatoshi
Yoshikawa et al,[6] proposed A-Trees that attempted at
consuming minimum bytes to store objects.
S.Berchtold, D.A.Keim and H.P.Kriegel[8] delayed the
splits till a splitting threshold was reached. Lin, K.-I.,
Jagadish, H., and Faloutsos, C[14] proposed TV-Trees
that ignored the less significant dimensions.
F.Sagayaraj Francis, P.Thambidurai and others[4] used
polygons to bind the spatial objects to reduce the
influence of dead spaces in processing. While some of
these trees behaved well with point data, others
behaved well with non-point objects. Their efficiency
and applicability are well documented and discussed in
the literature.

While the above category of trees attempted to
improve the R-Tree performance by manipulating data
characteristics, another category of trees attempted the
same by manipulating the tree characteristics.
T.Brinhhoff, H.Horn, H.-P.Kriegel and
R.Schneuder[10], S.Leutenegger and M.Lopez[12] and
S.Leutenegger, J.M.Edgington and M.A.Lopez[13] tried
to improve the performance of the R-Tree by working
on the node size, fan out, packing density and tree
heights. I.Kamel and C.Faloutsos[11] proposed Packed
R-Trees that proposed methods to improve storage
utilization of the R-Tree. But this tree and the
ramifications of this tree did not prove their efficiency
when it came to the point of answering queries.

F.Sagayaraj Francis, P.Thambidurai, and
Others[9] tried to take a middle path between the above
said approaches. The trees were allowed to follow the
concepts of earlier category of trees, but during
reindexing the objectives of the later category were
tried to be fulfilled.

But none of these approaches to improve the
performance of R-Trees established the desired
relationship between tree parameters, data parameters
and query parameters. In other words, there exists no
model into which all the parameters can be fit in and
optimized for an objective.

 Disk Organization: A hard disk is a direct access
storage device with large capacity. It is ubiquitous and
part of every present day computing system. A ‘sector’
is the smallest addressable storage unit in a hard disk.
This means, any storage object in the system takes at

least one sector to get stored. This also implies that the
data transfer between hard disk and the main memory
is done sector by sector. But in present day computers
transfer of data is done at a much higher volume and
the term ‘cluster’ is used to mention the storage unit. A
cluster is a group of pre-defined number of sectors and
is constant for a system. In this paper ‘input-output
unit’ and ‘storage unit’ are used instead of cluster to
avoid the confusion between R-Tree clusters and disk
clusters. A ‘track’ in a surface has many clusters in it.
All the ith tracks in all the surfaces form the ith
‘cylinder’ of the hard disk. The organization of a hard
disk is given in Fig. 2. With one read/write head for
each surface of every ‘platter’, all the tracks of a
cylinder can be read in one go after positioning the
head at the required cylinder. The time taken to move
the head from one cylinder to another cylinder is called
as the ‘seek’ time. Bringing the required cluster under
the read/write head requires the rotation of the disk and
the time taken for it is called ‘latency’ time.
‘Read/write’ time refers to the actual time taken to
transfer data between a cluster and main memory. Each
cluster in the hard disk can now be identified with
hierarchical address cylinder#.surface#.cluster #

Fig. 2: Hard Disk Organization

The hard disk, operating system and database
correlation: In a computing system the hard ware,
operating system and the database software are
completely independent of each other. The designers of
each of these make their internal structure and
functionality transparent and only provide interfaces
through which others can avail the services. Each
subsystem optimizes its performance within itself. But
when combined together to form a larger system the
final throughput may not be the optimal. In such cases
optimality could be achieved by trying to manipulate
the parameters of the other correlated subsystem in
some way. In other words, the possibility of inter
subsystem optimization should be explored. This

J. Computer Sci., 3 (7): 506-514, 2007

 509

paper makes one such attempt to improve the
performance of the R-Tree that belongs to the database
system by manipulating the parameters of hard disk
system that is managed by the operating system. This
attempt has greater importance in the context of
distributed and heterogeneous database systems where
the requirement of the maintenance of independence
between storage model and logical model is
imperative.

 Motivation for this work: As discussed above the
research literature has abundant ramification of R-Tree.
Every diversified method tries to improve the
performance of the R-Tree by repeatedly manipulating
the parameters of the logical model of the R-Tree. But
ultimately the R-Tree is stored in the secondary storage
medium which has its own performance parameters.
The issues regarding (i) physical organization, (ii)
mapping between logical organization and physical
organization and (iii) preserving the independence
between the two organizations of the indexing tree
structures are seldom addressed in the research
literature. However, the commercial database software
developers and users place high emphasis on these
issues. The importance of these issues are discussed in
the context of ‘performance tuning’ and are well
documented in commercial database literature It is
evident from these documents that the commercial
software are still working on B-Trees and not on other
tree based indexing structures. But of late they are
adopting indexing structures such as R-Tree, quad-tree,
etc., instead of B-Trees for indexing multidimensional
data. This has motivated the authors to come out with a
model for efficient physical organization of R-Tree and
its sequel.

In short, the objective of this work is to come
out with a method that would improve the performance
of a R-Tree by manipulating the ‘data transfer unit’ of
the storage medium and would still preserve the
independence between the logical model and the
storage model of the R-Tree. ‘Clustering’ has been
chosen as the method to achieve the objective.
Attempting to cluster the R-Tree nodes into the data
transfer units is not straight forward and gives rise to
lot of technical and implementation issues. This paper
proposes a new ‘Controlled duplication’ method to
handle these issues. The details are given in the
subsequent sections.

OBJECTIVES OF NODE CLUSTERING

Let s1, s2, … sn be the n steps required to

access the smallest addressable input-output unit of the
storage organization. Let s1 be the first step and sn be

the last step. Let ti be the average time taken to execute
the ith step. Let t1 � t2 � .. � tn.

Let R be the given R-Tree; L be the number of
levels of the tree; Nj be the number of nodes in jth level;
Let p be the number of input-output units occupied by
a node. If the number of bytes in a node is less than the
number of bytes in an input-output unit, then p is 1.
The time taken to retrieve any node from the storage
organization is given by

1

n

i i
i

T p c t
=

= �

 (1)

where ci is a constant for the ith step. Let Tot be the
time taken to access all the nodes of the tree. Then, Tot
is given by

1

(*)
L

i
i

Tot N T
=

=�

(2)

The above formula is also applicable to any
sub tree of the given tree. Now, the objective of
retrieval is to minimize Tot, which is possible if some
method can be devised that reduces T. The following
discussion forms the basis of the methodology
proposed in this paper for improved physical
organization of the R-Tree that minimizes Tot.

Let x1, x2, …, xz be z nodes of R to be retrieved.
Let j< n. If the first j steps are common for the retrieval
of x1, x2, …, xz, then the time taken to retrieve the nodes
is

1 1

1* *
j n

k k q q
k q j

c t z c t
= = +

� �� �
+� �� �

� � � �
� �

Since t1 � t2 � .. � tn,, the above formula always gives a
lesser value than

1

*
n

k k
k

z c t
=

� �
� �
� �
�

Obviously,

(3)

where z1, z2, .., zn-1 are less than z and zc, 1�c�n-1 is the
number of nodes that require the step c to be
performed. The above equation considers the fact that
at least one step is not common for all the nodes that
are required to be retrieved (Step n in the equation)

From the above discussion it is clear that, if a
suitable method can be found out that group those
nodes that would reduce the number of retrieval steps,
a higher performance of the system could be achieved.

J. Computer Sci., 3 (7): 506-514, 2007

 510

Each group of nodes is called as a ‘cluster’. The result
of the clustering is a ‘cluster graph’. The ‘successors’
of a cluster in a cluster graph are the collection of all
the clusters that have the children of all the nodes in
that cluster. The ‘predecessors’ of a cluster in a cluster
graph are the collection of all the clusters that have the
parents of all the nodes in that cluster. A ‘cluster tree’
is a cluster graph whose clusters do not have more than
one parent. A ‘cluster access cycle’ is defined as the set
of steps to access a complete cluster and ‘cluster access
time’ is the time taken to complete a cluster access
cycle.

By equation 3, we expect the cluster access
time to be less than the total time taken if the nodes are
accessed separately. A cluster is accessed whenever a
node in that cluster is required. Hence during
clustering, the prime objectives would be to cluster the
nodes in such a way (i) to reduce the number of times
each cluster is accessed during a database operation
and (ii) that the initial steps are not repeated for every
node of the tree.
Consider the R-Tree given in Fig. 3a. Figure 3b gives
one of the possible clustering and the corresponding
cluster graph that is based on in-order traversal of
nodes. Figure 3c gives another possible clustering and
the possible cluster graph. This clustering results in a
tree structure. Comparing Fig. 3b and Fig. 3c, it is
evident that if clustering results in a cluster tree then
every cluster is accessed only once during searches.
This is due to fact that any vertex has only one path to
any of its descendants in a tree. On the other hand, if
clustering results in a graph then any node with
multiple predecessors has to be retrieved more than
once during search. Hence it is desirable that clustering
ends up in a cluster tree rather than a cluster graph. An
implication that is worth mentioning would be that
there is a chance for the formation of a cluster graph if
there is more than one tree in a cluster, but not always.

Fig 3a: A skeletal R-Tree

Clusters: (HDI) (BJE) (KAL) (FMC) (NGO)

Fig. 3b: Clustering of R-Tree in Fig. 3a based on
 in-order traversal of nodes

Clusters: (ABC) (DHI) (EJK) (FCM) (NGO).

Fig. 3c: Clustering of R-Tree in Fig. 3a that
 maintains a tree structure

IMPLEMENTATION ISSUES OF CLUSTERING

With the discussions of the previous section in

the background, this section proposes a new method to
efficiently organize the R-Tree in the permanent
storage device that would minimize the access time of
the nodes of the R-Tree.

Let an arbitrary cluster contain a node na, and
its children, na1, na2, …, nab. If there exist some nodes
that are not accessed after accessing na, their sub-trees
too will not be accessed and also the clusters
containing them. All na1, na2, …, nab would not be
accessed only if the process ends up in a dead space in
na. Further more once a cluster is accessed, every node
in the cluster is processed and would not be required at
a future time. This implies that this cluster need not be
retrieved once again. If instead of one of the children of
na, a grandchild of na is in the cluster, then possibility
of a cluster graph arise that results in unnecessary
retrieval as in the case of Fig. 3b. It is also desirable to
form clusters using nodes that have a high probability
of retrieval immediately after na. In an R-Tree only a
node’s children have the higher probability of retrieval
immediately after its retrieval. Clustering the parents
and children will result in eliminating a few initial
steps to retrieve these multiple nodes. Obviously,
clustering only one parent and all its children or only
all the children of a parent in a cluster results in another
R-Tree as shown in Fig. 3c. In such a clustering, if the
cluster size matches the input-output unit size the
implementation is straight forward. But the freedom to
choose the input-output unit size is not with database
administrators. This gives rise to very important
implementation issue that has four scenarios. (i) Only
one node of the R-Tree accommodated in one input-
output unit of the hard disk (ii) Exactly M+1 nodes of
the R-Tree accommodated in one input-output unit of
the hard disk (iii) Less than M+1 nodes of the R-Tree
accommodated in one input-output unit of the hard disk
and (iv) More than M+1 nodes of the R-Tree
accommodated in one input-output unit of the hard
disk. Figure 4 gives pictorial overview of the four cases
for M = 4.

ABC

DHI EJK FCM NGO

HDI BJE KAL FMC NGO

A

B C

D E G F

H I J O K L M N

J. Computer Sci., 3 (7): 506-514, 2007

 511

Among the four cases, case 1 is trivial and
would result in a typical R-Tree. Figure 4b
demonstrates case1 for the two sub trees of an R-Tree
given in Fig. 4a. Case 2 does not create any significant
implementation issue as discussed earlier and is
demonstrated in Fig. 4c. Case 3 requires some
innovation during implementation. Case 4 may be
treated as a special case of case 3 or combination of
case 2 and case 3. Figure 4e demonstrates this case.
Hence the implementation issues of case 3 are
discussed in detail here.

Fig. 4a: Two sub-trees of the same parent

Fig. 4b: Clustering of one R-Tree node in one disk
 input-output unit

Fig. 4c: Clustering of M+1 R-Tree nodes in one disk
 input-output unit

Fig. 4d: Clustering of less than M+1 R-Tree nodes in
 one disk input-output unit

Fig. 4e: Clustering for more than M+1 nodes in one
 disk input-output unit

Fig. 4f: Elimination of node created during ‘controlled
 duplication’

The discussions in the previous sections suggest that,
optimal performance is obtained only when (i)
clustering should end up in a structure similar to an R-
Tree and (ii) M should only be as big as allowing M+1
nodes into an input-output unit. With the independence
of database software and the operating system in place,
satisfying both is not possible. Hence to achieve this
we allow ‘controlled duplication’ of nodes during
growing and shrinking phases of the R-Tree.
Controlled duplication necessarily preserves the R-Tree
structure both inside clusters and across clusters.
Consider a cluster size of three nodes as in Fig. 4d. The
cluster size is less than M+1, for M = 4. In the
clustered R-Tree, nodes A and F would be duplicated
and available in two clusters as shown. These
duplications are controlled in the sense; the duplicates
remain in the tree only as long as the necessities for
them to be split arise. Consider the case of node A. If
one of the nodes among B, C, D and E overflow, then
A would also overflow. In such a case a new node has
to be created and the MBRs in the overflowing node A,
must be distributed among them. Now, the duplicate of
A in an appropriate cluster may be renamed and used
as a new node instead of creating a new one. This
results in the elimination of one of the duplicates of
node A that was previously created. The new scenario
that appears when A is split due to the overflowing of
E is given in Fig. 4f. In the figure, E splits into E and
E′ while A splits into A and A′. The figure also shows
how the realignment of nodes takes place when the tree
grows upward by one level.

During realignment, if the number of levels in
the tree is odd, the clusters that hold the leaves will not
have their parents in them. These clusters only become
forests of leaves. The clusters that hold the
intermediate nodes become forests of trees with two

B

Cluster 2

D

E

F

Cluster 3

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10

A B C D

F G H I

I J

F

Cluster 2

A A′

R

B C D E E′
Cluster 1

B E D C

A

G H

F
Cluster 1

I J

F

Cluster 4
G H

F

Cluster 3
D E

A

Cluster 2
B C

A

Cluster 1

G J I H

F

Cluster 2 B E D C
Cluster 1

G J I H

F

B E D C

A

A

C

E

J

J. Computer Sci., 3 (7): 506-514, 2007

 512

levels. On the other hand, if the number of levels is
even, every cluster contains forests of trees with two
levels. Figure 4 provides examples for both cases.

Insertion and Deletion now are two step
processes. The initial processing is at the node level
and the subsequent processing is at the cluster level.

EXPERIMENTAL RESULTS AND ANALYSIS

The performance of an R-Tree depends on the

number of input-output operations that are done from
and to hard disk during insertion, deletion, updating
and searching. The number of input-output operations
can be significantly reduced by efficiently clustering
the nodes an R-Tree.

For the experiments, an input-output unit with
eight sectors was chosen i.e., 4K bytes. A node size in
the R-Tree was fixed at eight MBRs. Six different 2-
dimensional MBR sets with 25K, 50K, 75K, 100K,
125K and 150K MBRs in each set was generated for
the experiments. Uniform location distribution and
uniform length distribution were followed for both axes
of the MBRs. The MBRs were generated in a unit
space (0, 1]. The maximum length of the MBRs was
fixed at 0.2 units. Since the values were stored in
character mode, each MBR entry took 60 bytes in the
disk. Apart from MBR entries, each node also had
other necessary entries for the management of the R-
Tree.

Clustered R-Trees were constructed for every
set of MBRs by changing the number of nodes in a
cluster from 1 to 32. If a node takes more than one
input-output unit, they were chosen in a way that would
minimize the total time taken to access all the input-
output units together instead of one by one, i.e., the
seek time and rotation time are constant for all the
input-output units in the cluster. The number of input-
output units taken for various cluster sizes is tabulated
in Table 1. When the cluster size is one, a trivial R-
Tree is constructed. In such a case the maximum space
taken by a node/cluster in an input-output unit is 510
bytes. The remaining space goes waste. By clustering
nodes into input-output units more space utilization is
obtained. This is shown in Fig. 5a. As more and more
R-Tree nodes are packed into input-output units better
space utilization is achieved. The number of clusters
formed for varying number of nodes in a cluster for

various data sets are given in Fig. 5b. It has been well
established in the previous sections that time taken to
retrieve a cluster is much smaller than the sum of times
taken to retrieve each node of a cluster individually.
The graph in Fig. 5b gives a sense of the amount of
time that could be saved by clustering.

Table 1. Number of disk input-output units taken for
various cluster sizes

Cluster size No. of disk input-output
units taken

1 1
2 1
4 1
8 1

16 2
32 4

Space Utilization

0

20

40

60

80

100

1 2 4 8 16 32

No. Of Nodes in a Cluster

U
til

iz
at

io
n

%

Fig. 5a: Space utilization for various cluster sizes

Node Count Vs. Cluster Count

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 4 8 16 32
No Of Nodes in a Cluster

N
o.

 o
f C

lu
st

er
s

25K MBRs 50KMBRs 75KMBRs
100K MBRs 125K MBRs 150K MBRs

Fig. 5b: Number of clusters formed for various cluster
 sizes

J. Computer Sci., 3 (7): 506-514, 2007

 513

Traversal Time

0

100

200

300

400

500

600

1 2 4 8 16 32

No Of Nodes in a Cluster

T
im

e
in

 S
ec

on
ds

25K M BRs 50K M BRs 75K M BRs
100K M BRs 125K M BRs 150K M BRs

Fig. 5c: Time taken to traverse trees after clustering
With the space efficiency of the clustered R-

Tree improved, the R-Tree’s performance for

time efficiency was also explored by computing the
time taken to traverse the trees. The times taken for
traversing the clustered R-Trees for varying number of
cluster sizes for various datasets are given in Fig. 5c.
As the size of the clusters increase, the time taken to
process the tree becomes less.

CONCLUSION AND FUTURE WORK

 R-Tree is a multidimensional data partitioning
indexing structure that has become the basis of all the
indexing techniques in the future that used data
partitioning. While a lot of research had gone into the
improvement of this structure from data characteristics,
and tree characteristics view points, few attempts have
been made from physical storage view point. This work
basically attempted at improving the performance of R-
Trees from physical storage view point and has come
out successfully. The methods and algorithms proposed
here are applicable for every ramification of R-Tree.
Moreover we reckon that the methods and algorithms
provide here are also applicable to indexing techniques
based on space partitioning and experiments are
underway to verify and prove the claim.
 All along this work, the basic and very
important constraint of maintaining the independence
between logical and physical organization of the R-
Tree was given due focus and every result provided is
within this important constraint. This independence

gives the designers and administrators of databases
complete freedom to design the logical solutions
without any hindrance from the physical design of the
system and vice- versa.
 The authors of this paper are currently
attempting to study the performance of the R-Tree by
considering the internal parameters of the R-Tree such
as packing density along with the cluster parameters.
An improvement in this front would enhance the
performance of centralized and homogeneous
databases.
 This work is likely to give impetus to refine
the existing models that predict the performance of R-
Trees for various categories of multidimensional
queries such as range queries, directional queries, join
queries and nearest neighbor queries.

REFERENCES

1. Guttman A., 1984, “R-trees: A Dynamic Index

Structure for Spatial Searching”, Proc. ACM
SIGMOD Int. Conf. on Management of Data,
Boston, MA, 47-57

2. Beckmann N., Kriegel H.-P., Schneider R., Seeger
B., 1990. “R*-tree: An Efficient and Robust
Access Method for Points and Rectangles”, Proc.
ACM SIGMOD Int. Conf. on Management of
Data, Atlantic City, NJ, 322-331

3. Katayama N., Satoh S., 1997, “The SR-tree: An
Index Structure for High-Dimensional Nearest
Neighbor Queries”, Proceedings of the ACM
SIGMOD International Conference on
Management of Data, 517-542.

4. F.Sagayaraj Francis, P.Thambidurai and others,
2004, “Polygon Tree: A High Performance
Indexing Technique for Spatial Objects”,
Proceedings of the 12th International Conference
on Advanced Computing (ADCOM).

5. I.Kamel and C.Faloutsos, 1994, “Hilbert R-Tree –
an Improved R-tree Using Fractals”, Proceedings
20th VLDB Conference, Santiago, Chile, 500-509.

6. Yasushi Sakurai, Masatoshi Yoshikawa et al,
2000, “The A Tree: An index structure for high-
dimensional spaces using relative approximation”,
Proceedings of the 26th VLDB conference, Cairo,
Egypt.

7. C.Aggarwal, J.Wolf, P.Wu and M.Epelman, 1997,
“The S-tree – an Efficient Index for
Multidimensional Objects”, Proceedings 5th SSD
Conference, Berlin, Germany, 350-373.

8. S.Berchtold, D.A.Keim and H.P.Kriegel, 1996,
“X-tree – an Index Stucture for High Dimensional
Data”, Proceedings 22 VLDB Conference,
Bombay, India, 28-39.

J. Computer Sci., 3 (7): 506-514, 2007

 514

9. F.Sagayaraj Francis, P.Thambidurai, and Others,
2005, “Reindexing of Multidimensional Indexing
Structures”, Proceedings of the 13th International
Conference on Advanced Computing (ADCOM).

10. T.Brinhhoff, H.Horn, H.-P.Kriegel and
R.Schneuder, 1993, “A Storage and Access
Architecture for Efficient Query Processing in
Spatial Database Systems”, Proceedings 3rd SSD
Symposium, Singapore. 357-376.

11. I.Kamel and C.Faloutsos, 1993, “On Packing R-
Trees”, Proceedings 2nd CIKM Conference,
Washington DC, 490-499.

12. S.Leutenegger and M.Lopez, 1996, “A Buffer
Model for Evaluating the Performance of R-Tree
Packing Algorithms”, Proceedings ACM
SIGMETRICS Conference, Philadelphia, PA. 264-
265.

13. S.Leutenegger, J.M.Edgington and M.A.Lopez,
1997, “STR – a Simple and Efficient Algorithm
for R-Tree Packing”, Proceedings 13th IEEE ICDE
Conference, Birmingham, England, 497-506.

14. Lin, K.-I., Jagadish, H., and Faloutsos, C., 1994,
“The TV-tree: An index structure for high
dimensional data” VLDB Journal, 3, 4, 517-543.

