
Journal of Computer Science 3 (7): 499-505, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Saleh Alhazbi, Computer Science Department, Qatar University, Doha, Qatar

499

Dependencies Management in Dynamically Updateable Component-Based Systems

1Saleh Alhazbi and 2Aman Jantan

Computer Science Department, Qatar University, Doha, Qatar
School Of Computer Science, Universiti Sains Malaysia, 11800, Penang, Malaysia

Abstract: This paper discusses dependencies analysis significance when updating component-based
system dynamically. It presents a service-based matrix model and nested graph as approaches to
capture components' dependencies; it discusses using dependencies analysis for safe dynamic updating
in component-based software systems; we advocate using service-based dependencies rather than
component-based which refelect accurate effect during dynamic reconfiguration.

Key Words: Component-based software, dependencies analysis, dynamic updating.

INTRODUCTION

Component-based software systems are those built
by assembling pre-exiting components, which provides
high flexibility and reusability. The major work with
component-based development (CBD) is component
integrating rather than writing code and developing
everything from scratch. In conventional software
development, the concept of complexity is related to the
difficulty to analyze source code, modify, and maintain
its modules. However, this concept is different in CB
systems because the maintenance and reconfiguration
only involves replacing, adding, and deleting
components rather than source code changes.
Therefore, in CB systems, the complexity resides in the
dependencies among components, which is captured by
the system architecture [1]. In this paper, we discuss
managing components' dependencies in our framework
(Dynamic Protocol-based Component-based Software–
DPICS) [2], which supports building software systems
by wiring software components. In DPICS, the
functionality of the system is accomplished through
protocol-based interaction between components routed
by soft bus. DPICS aims to support updating the system
during runtime. Traditionally, software modifications
require shutting down the system, update the system,
and restarting it. This approach is not suitable for
critical systems that require 24/ 7/365 availability, such
as banking or telecommunications systems, or systems
that are critical-mission systems such as air-traffic
controllers. Therefore, such systems require dynamic
updating which means modifying the system at run-

time without service interruption. In component-based
software systems, dynamic updating includes adding,
removing, and replacing a component on the fly.
Updating the system dynamically requires exploring the
effects of this modification on the rest of system's
components in order not to lead the system to
inconsistent state.

Dependency between components can be defined
as the reliance of a component on other(s) to support a
specific functionality; therefore, we consider
dependency as binary relationship between two
components: antecedent, and dependent [3] .
Antecedent is the free component that has an effect on
the dependent one if it is removed or modified, on the
other hand, dependent component is the one that related
to its antecedents where changes in them might lead
dependent to malfunction or fail (see Fig. .1).

Fig .1: Dependency Relationship

Formally, Larsson and Crnkovic [4] define a

relation � called "depend on", where
Ci����Cj means that component Ci is the dependent and it
requires correct operation of Cj (the antecedent) in
order to function correctly. For a component-based
system that has a set of components S, the set of all
dependencies is defined as

J. Computer Sci., 3 (7): 499-505, 2007

 500

D={(Ci, Cj): Ci ,Cj Λ∈ S Ci����Cj}

According to this, the current configuration is set of all
component and their dependencies

Con=(S,D)

Requirements for Dependency Analysis:
Dependences analysis is fundamental task for
understanding, maintaining, and updating software
systems [5,6]. Traditionally, dependence analysis was
based on investigating the source program to find
dependencies such control and data flow relationships
among program variables and functions in order to
optimize compilation process [7]. In component-based
system, dependency management is essential part of
system configuration [6,8]. Moreover, updating system
at runtime lacks the test phase when developing
software which makes such updating more risky, thus
analyzing dependencies between components is
necessary in order to safely keep the system running
continuously and not crash the system. In this section,
we discuss the significance of analyzing the
dependencies when dynamically updating the system.

When adding a new Component: Before the new
component can be added to the system, it is needed to
understand its relationships with other components and
its roles as dependent and antecedent. As dependent
component, components that would provide services to
this new one should be recognized and checked if they
are already among systems' components or needed to be
loaded. As antecedent, the added component will offer
new services to others components; this might require
creating new dependencies or might require adding or
replacing other components that could be dependents
on this one. More specifically, when adding a new
component, dependency analysis should answer the
following questions

Q1) If there are components in the system need also to
be updated in order to benefit of the services provided
by this new one (antecedent role), what is the order of
updating those components safely ?

Q2) What are the new dependencies (direct and
indirect) if this new component will depend on pre-
existed ones (dependent role)?

Formally, we can define the configuration of the system
after adding a new component safely as

Con'=(S',D')

The difference between original configuration Con and
the new one Con' is the new components and new
dependencies which can be defined foramll as
following
The new component Cnew∈ Sd and Sd=SI S'

The new dependency is the set
Dnew ={ (Cnew,C): Cnew����C}∪ {(C,Cnew): C����Cnew}

When deleting an existing components: Before
deleting a component from the system, dependencies
management is necessary to understand the effect of
removing that component. Removing a component
might not only have effect on its direct dependents but
might affect others transitively, which requires tracing
these dependencies from a component to other. Such
management of dependency is important for system
safety as removing a required component might lead the
system to crash which is not accepted with continuously
running systems. When removing a component from
the system, dependency analysis should answer the
following questions:

Q3) What are the components in the system that will
get affected by removing this component directly or
transitively?

Q4) What is the order of updating the dependents on
removed one ?
Formally, the deleted component
Cremoved ∈ Sd and Sd=SI S'

Dremoved={(C, Cremoved): C� Cremoved}

When replacing a component: Dependency analysis
is required when replacing a component with a new
version in order to evaluate the effect of this
modification and take the proper action. The action
depends on the relation between old component and
new version. Regarding the effect on its dependents,
replacing a component with a new version can be
categorized into two types:
1. Implementation updating: In this case, the new

version has the same interface as old one.
Therefore, it has no effect on its dependents as it
still provides the same services with same
interfaces.

2. Interface updating: in this type, the new version
has different interfaces comparing to old one's.

J. Computer Sci., 3 (7): 499-505, 2007

 501

This includes adding, deleting, or/and modifying
an interface(s). Adding new service while
continuing provide old ones would not affect other
old component. But in order to benefit from the
extra services provided by the new version, either
other components required to be updated or another
new component(s) might be added to use them.
Modifying and missing services in the new version
will affect components depend on those services,
thus dependencies analysis should answer the
following questions:

Q5) What are the components in the system that will
get affected by replacing this component directly or
transitively?

Q6) If this replacement requires updating other
components, what is the order of those updates?

Formally, modifying a component can be viewed as
series of deleting and adding new component. so
generally Cmodified ∈S as the set of components doesn’t
changed

D modified= Dremoved ∪ Dnew

Dependency Representation: Managing and analyzing
dependency efficiently requires a good modeling to
represent the dependencies among the components.
This representation should offer answers for the
questions above when updating the system. Commonly,
direct graph and adjacency matrix is used to represent
the dependencies between components [9, 8,10].
 The Component Direct Dependency Graph(CDDG)
=(S,D) is a direct graph where S is a finite nonempty
set vertices represent system's components, and D is
set of edges between two vertices such that (a,b) ∈ D
means a� b, and D ⊆ (S X S)

Fig. 2: Component Direct Dependency Graph

Fig. 2 describes the direct dependency where
D={(A,B), (B,A), (B, D), (C, D), (C, B), (E, B),

(E,D)}
To represent components' dependencies using
adjacency matrix, a matrix M n x n is used, where each
component is represented by a column and a row. If
Component Ci depends on Cj then MD i,j=1 , and in
general.

According to this the previous dependency described in
Fig. 3 can be represented using adjacent matrix as
depicted in Fig. 3

 A B C D E

A 0 1 0 0 0

B 1 0 0 1 0

C 1 1 0 0 0

D 0 0 0 0 0

E 0 1 0 1 0
 Fig. 3: Adjacent Matrix representation for direct

component dependencies

Obviously, CDDG and adjacent matrix above only
describe direct dependency between components. On
the other hand, updating a component can affect others
transitively, for example in Fig. 3.2, A depends on B,
and B on its turn depends on D, thus updating D might
affect B and consequently might affect A. In order to
derive indirect decencies, a transitive closure is
calculated to produce component dependency graph
(CDG), Fig. 3. which has the same components, it
includes direct and indirect dependencies.

Fig. 4: Component Dependency Graph

In Fig. 4, when calculating transitive closure, self
dependency is excluded as the component is the module

J. Computer Sci., 3 (7): 499-505, 2007

 502

of updating and our concern here is the inter-
components dependencies.
Correspondingly, indirect dependency can be
represented in a matrix by calculating the transitivity
using Warshall's algorithm showed in Fig. 5. The
algorithm uses the matrix represents direct
dependencies MD n x n to produce the matrix MA n x n

For 1 <= i <= n do
for 1 <= r <= n do
if MD[r,i]=1 then

for 1 <= k <= n do
 if k<>r then

MA[r,k] := MD[r,k] or MD[i,k]

Fig.5: Warshall’s algorithm to calculate the transitive closure

Fig. 6 shows the matirxi MA which represents direct
and indirect component dependencies.

 A B C D E

A 0 1 0 1 0

B 1 0 0 1 0

C 1 1 0 1 0

D 0 0 0 0 0

E 1 1 0 1 0
Fig. 6: Adjacent Matrix direct and indirect component dependencies

Service Level of Dependencies: Normally, when a
component depends on another it relies on some but not
all of its services [11]. According to this, during
dynamic updating, modifying an antecedent component
not necessary to result in inconsistencies with its
dependents. For example, in Fig. 7, C1 depends on C3
where its service S11 requires S31 in order to
accomplish its functionality. C2 depends also on C3
where its service S21 requires S32 from C3.

Fig. 7: Service Level Dependencies

Considering only component level dependency, If C3
got updated; both C2 and C3 are considered to be
affected, which might not be completely true. Assume
that service S31 in the new version of C3 has no changes
comparing to that in old version, and S32 has changed,
then only component C2 will be affected with this
replacement. Therefore, component level of
dependency is not enough to trace effects of component
updating. On the other hand, service level of
dependency will help understand more detail about the
consequence of component modification.
Moreover, service dependency can be used to discover
all true direct and indirect components dependencies.
For example, in Fig. 3.8 service S11 in component C1
depends on service S21 in Component C2, and C2
depends on C3 where C2 has a service, S22, which
depends on service S31 in C3. Taking into account only
component level of dependency, C1 would depend on
C3 indirectly, but with more details through service
dependency, C1 does not depend on C3.

Fig. 8: Service Level Indirect Dependency

But what if service S21 depends on S22 (intra-
component dependencies) in Fig. 8 ? Likewise what if
service S31 depends on S32 in Fig. 7. As a result of
that, with service dependencies, intra-component
dependencies (dependencies between component's
services) play a rule when calculating components
dependencies.

Service Level Dependencies Representation: Using
graph and adjacent matrix are sufficient to model
dependencies in component-based system as
component level, but that is not enough to trace
component dependencies accurately. Hence, instead of
using simple graph to represent component
dependencies, nested graph is used to model
dependencies at service level, which gives more details
of components relationships.
The Service Level Dependency Graph (SLDG)=(C,S,A)
is a nested graph where C is a finite nonempty set
vertices represent system's components, S is a finite

J. Computer Sci., 3 (7): 499-505, 2007

 503

nonempty set of inner vertices represent component's
services, and A is set of edges between two
vertices(inner vertices) such that (Si, Sj) ∈ D means
Si�Sj, where Si, Sj ∈ (Ci∪ Cj) and D ⊆ (S X S).

F

Fig. 9: Service Level Dependency Graph

Fig. 9 is another description of the example presented
in Fig. .2. To compute the transitive closure, an
adjacency matrix is required to capture such graph.
Similarly, with component dependencies, two
dimensional matrix Sm x m is used to represent services
dependencies, where m is the number of all services in
all components. Likewise matrix in Fig. .3, Sx,y=1 if
service X depends on service Y. Fig. 3.10 depicts a
matrix that represent services dependencies described
in Fig. 9,

E1 D2 D1 C1 B3 B2 B1 A3 A2 A1
0 0 0 0 0 0 0 0 0 0 A1
0 0 0 0 0 0 1 0 0 0 A2
0 0 0 0 0 0 0 0 0 0 A3
0 0 1 0 1 0 0 0 0 0 B1
0 0 0 0 0 0 0 0 0 1 B2
0 0 0 0 0 0 0 0 0 0 B3
0 0 0 0 1 0 0 1 0 0 C1
0 0 0 0 0 0 0 0 0 0 D1
0 0 0 0 0 0 0 0 0 0 D2
0 0 1 0 0 0 1 0 0 0 E1

Fig. 10: Adjacent Matrix representation for direct
service-based dependencies

The transitive closure also can be calculated using
Warshall’s algorithm described in Fig. 5. Fig. 11
depicts the matrix resulted of computing transitive
closure, which represents the direct and indirect service
dependencies.

Fig.11: Adjacent Matrix representation for direct and
indirect service-based dependencies

Now from the matrix in Fig. 11, we can map the

service back to its components so we can have clear
picture about real direct dependencies between
components, for example, from Fig. 3.11, we can find
that services belongs to component E has neither direct
nor indirect dependencies with services in component
A, so updating A will have no effect on E, which is
against Fig. 6 indication.

Applying Dependencies Analysis during Dynamic
Updating: When a component is updated dynamically,
its dependencies with other components in the system
should be checked in order to keep the system running
without fail. Adjacent matrix representation of service-
based dependencies is a good computational approach
to answer the questions above raised when adding,
removing, or modifying a component.

When adding a new component: Adding a new
component to the system has no effect on existing
components' dependencies but this requires replacing
some of old components in order to use the new one.
To answer question 1, regarding the order of
components updating , first the new component should
be added first then starting update the components that
will benefit of this new one (its dependents) [12].
Replacing those components requires analysis
dependencies related to component replacement which
discussed in 4.3. The adjacent matrix will be modified
in order to reflect the changes in dependencies
structure, new rows and columns are added to represent
the direct dependencies added between the new
component's services and other components. Also,
using Warshall's algorithm, the matrix will be changed
when computing new indirect dependencies added with
the new component (question 2).

J. Computer Sci., 3 (7): 499-505, 2007

 504

When removing an existing component: Removing a
component while system is running might lead the
system to inconsistent state and result in crashing the
system. In order to find all affect components by
removing component C, we search for non-zero
elements in columns corresponding to its services in
Fig. 11. The no-zero elements indicate direct or
indirect service dependencies, therefore, the
components of those services are dependants on C.
Consequently, those components will be affected when
removing C (Question 3).
In order to keep the system running safely when
removing a component, the dependents of that
components need to be updated before removing the
component. The goal of updating its dependents is
either to delete those services were depending on
services of deleted one or to modify them so they mask
the changes. For example in Fig. 9, if component D
would be removed from the system, then according to
matrix in Fig. 11, either component B replaced and
modified services B1,B3 so they can mask this update
and not depend on D1,D2 anymore, or remove those
service from B which in its turn requires updating its
dependents before that. Note in Fig. 9, we have circular
dependency. In this case, both components should be
updated together[12] (question 4).

When replacing an existing component: The effect of
replacing a component dynamically depends on the
relation between new version of the component and old
one. If the new component still provides the same
services as the old version, then no dependents will be
affected by this updating.
If there are services removed in the new version, then
from adjacent matrix in Fig. 11, in the columns
represent those service, non-zero elements indicates
dependent services which means their components will
be affected (question 5).
If the component has extra service comparing to old
version, then this new component should be replaced
first, then updating its direct depends in order to use its
new services, and this also might require again updating
the dependents in the second level, this tracing can be
found from direct matrix in Fig. 10 (question 6).
If the component has some services missing, this case is
like the one when removing a component, either to
update its dependents in some level to mask such
modification or to delete those depended services from
all components (updating) starting from outer level (
components that have no dependents) toward the
components.(question 6).

Many research tackled dependencies analysis in
component-based systems from different aspects. In our
work[1], dependencies analysis was used to measure
the complexity of system's architecture which indicates
the effort needed to maintain the system. Li in [7], used
adjacent matrix model to capture components'
dependencies and applied to system maintenance,
testing, and evolution. Li used matrix-based model only
for component level of dependencies which-as we
discussed above- not describe the dependencies
accurately. In [12], the authors focused on type safety
when updating a class dynamically and investigated
different cases when updating two depending
components, their focus was mostly on the direct
dependencies.

CONCLUSION

Updating component-based system dynamically
requires analyzing dependencies between components
in order to inspect affected components and take the
proper action so the system continues running
consistently. Service-based matrix representation is an
appropriate model to capture components'
dependencies; computationally, this matrix can be used
to analysis dependencies when a component is added,
removed, or replaced and according to that, other
components might require adaptation in a specific
order.

REFERENCE

1. Alhazbi S., 2004. Measuring the complexity of

component-based system architecture, in Proc. of
the 1st IEEE Intl. Conference on Information and
Communication Technologies: From Theory to
Applications (ICTTA-04), Damascus, Syria, IEEE
Computer Society.

2. Alhazbi S. ,Jantan A. ,2007. A Framework for
Dynamic Updating in Component-based Software
Systems, Accepted for Conference on Information
Technology Research & Application (CITRA)
,Selangor- Malaysia.

3. Hasselmeyer Peer, 2001. Managing Dynamic
Service Dependencies,12th International Workshop
on Distributed Systems: Operations &
Management (DSOM), Nancy, France.

4. Larsson M., and Crnkovic I., 2001. Configuration
management for component-based systems. In
Proceedins of the Tenth International Workshop on
Software Configuration Management, Toronto,
Canada.

J. Computer Sci., 3 (7): 499-505, 2007

 505

5. Zhao J,. 1997. Using Dependence Analysis to
Support Software Architecture Understanding,
New Technologies on Computer Software, pages
135–142.

6. Stafford J.A. and Wolf A.L., 1998. Architecture-
Level Dependence Analysis in Support of Software
Maintenance. In Proceedings of the Third
International Software Architecture Workshop,
pages 129–132.

7. Horwitz S., Reps T.,Binkley D., 1990.
Interprocedural slicing using dependence graphs.
ACM Transactions on Programming Languages
and Systems 12, 1, pp: 26-60.

8. Li B., 2003. Managing Dependences in
Component-Based Systems Based on Matrix
Mode, Net. Objectdays(NODE) conference, Erfurt,
Germany.

9. Cui Y. and Nahrstedt K.,2001. Qos-aware
dependency management for component-based
systems. In International Symposium on High
Performance Distributed Computing 2001. San
Francisco, CA, August 2001.

10. Larsson M.,2000. Applying Configuration
Management Techniques to Component-Based
System, MRTC Report, IT Licentiate thesis,
Uppsala University

11. Tansalarak N. and Claypool K., 2003. CGC: An
Architecture to support Better and Faster
Component Evolution In Second International
Workshop on Unanticipated Software Evolution,
Warsaw, Poland.

12. Murarka Y., Bellur U., Joshi R., 2006. Safety
Analysis for Dynamic Update of Object Oriented
Programs APSEC-2006, 13th Asia Pacific
Software Engineering Conference, Bangalore.

