Journal of Computer Science 3 (7): 499-505, 2007
ISSN 1549-3636
© 2007 Science Publications

Dependencies Management in Dynamically Updateable Component-Based Systems

'Saleh Alhazbi andAman Jantan
Computer Science Department, Qatar University, DQlzdar
School Of Computer Science, Universiti Sains Makys1800, Penang, Malaysia

Abstract: This paper discusses dependencies analysis sgmificwhen updating component-based
system dynamically. It presents a service-basedimatodel and nested graph as approaches to
capture components' dependencies; it discusseg dependencies analysis for safe dynamic updating
in component-based software systems; we advocatg gervice-based dependencies rather than
component-based which refelect accurate effechdudiynamic reconfiguration.

Key Words: Component-based software, dependencies analysiandy updating.

INTRODUCTION time without service interruption. In componentdxs
software systems, dynamic updating includes adding,
Component-based software systems are those builemoving, and replacing a component on the fly.
by assembling pre-exiting components, which pravide Updating the system dynamically requires explotimeg
high flexibility and reusability. The major work thi effects of this modification on the rest of sysem'
component-based development (CBD) is componentomponents in order not to lead the system to
integrating rather than writing code and developinginconsistent state.
everything from scratch. In conventional software Dependency between components can be defined
development, the concept of complexity is relatethe as the reliance of a component on other(s) to sugpo
difficulty to analyze source code, modify, and ntaim specific functionality; therefore, we consider
its modules. However, this concept is differentdB dependency as binary relationship between two
systems because the maintenance and reconfigurati@omponents: antecedent, and depended [
only involves replacing, adding, and deleting Antecedent is the free component that has an effect
components rather than source code changeshe dependent one if it is removed or modified,tlom
Therefore, in CB systems, the complexity residethén other hand, dependent component is the one theedel
dependencies among components, which is captured by its antecedents where changes in them might lead
the system architecture [1]. In this paper, we usc dependent to malfunction or fail (see Fig. .1).
managing components' dependencies in our framewol
(Dynamic Protocol-based Component-based Software
DPICS) [2], which supports building software system
by wiring software components. In DPICS, the Antecedent Dependent
functionality of the system is accomplished throug
protocol-based interaction between components doute
by soft bus. DPICS aims to support updating théesys Fig .1: Dependency Relationship
during runtime. Traditionally, software modificati®
require shutting down the system, update the system Formally, Larsson and Crnkovic4][define a
and restarting it. This approach is not suitable fo relation-> called "depend on", where
critical systems that require 24/ 7/365 availapilguch C;-2C; means that compone@t is the dependent and it
as banking or telecommunications systems, or systentequires correct operation df; (the antecedent) in
that are critical-mission systems such as airitraff order to function correctly. For a component-based
controllers. Therefore, such systems require dyaamisystem that has a set of componeftshe set of all
updating which means modifying the system at rundependencies is defined as

Corresponding Author: Saleh Alhazbi, Computer Science Department, Qamarersity, Doha, Qatar

499

J. Computer Sci., 3 (7): 499-505, 2007

D={(Ci, Cj): Ci ,Cj 1 S\ Ci=>Cj
{(Ci, Cj) j i} Con'=(S',D')
According to this, the current configuration is séall

component and their dependencies The difference between original configuratiGon and

the new oneCon'is the new components and new
Con=(S,D) dependencies which can be defined foramll as
following

Requirements for Dependency Analysis The new componer@..,] Sy and $=S[ds—

Dependences analysis is fundamental task for

understanding, maintaining, and updating softwarelhe new dependency is the set

systems §,6]. Traditionally, dependence analysis was Dnew ={ (CaewC): Crew>C} LI {(C,Crew): C2Chev}

based on investigating the source program to find

dependencies such control and data flow relatigsshi When deleting an existing components. Before

among program variables and functions in order taleleting a component from the system, dependencies

optimize compilation process [7]. In component-lthse management is necessary to understand the effect of

system, dependency management is essential part tfmoving that component. Removing a component

system configuration [6,8]. Moreover, updating syst might not only have effect on its direct dependdnit

at runtime lacks the test phase when developingnight affect others transitively, which requireacing

software which makes such updating more risky, thushese dependencies from a component to other. Such

analyzing dependencies between components imanagement of dependency is important for system

necessary in order to safely keep the system rgnninsafety as removing a required component might tead

continuously and not crash the system. In thisi@ect sSystem to crash which is not accepted with contislyo

we discuss the significance of analyzing therunning systems. When removing a component from

dependencies when dynamically updating the system. the system, dependency analysis should answer the
following questions:

When adding a new Component: Before the new

component can be added to the system, it is neteded Q3) What are the components in the system that will

understand its relationships with other components ~ get affected by removing this component directly or

its roles as dependent and antecedent. As dependdfnsitively?

component, components that would provide servioes t))

this new one should be recognized and checkeckjf th Q4) What is the order of updating the dependents on

are already among systems' components or needssl to '€moved one ?

loaded. As antecedent, the added component wir off Formally, the deleted component

new services to others components; this might requi Cremovedl] Sy and $=s(1S'

creating new dependencies or might require adding o

replacing other components that could be dependentdremoved{(C, Cremoved: C 2 Cremoved

on this one. More specifically, when adding a new

component, dependency analysis should answer th&/Nen replacing a component: Dependency analysis
following questions is required when replacing a component with a new

version in order to evaluate the effect of this

modification and take the proper action. The action
depends on the relation between old component and
new version. Regarding the effect on its depengents
replacing a component with a new version can be
categorized into two types:

Q2) What are the new dependencies (direct and- !mplementation updating: In this case, the new

indirect) if this new component will depend on pre- Version has the same interface as old one.
existed ones (dependent role)? Therefore, it has no effect on its dependents as it

still provides the same services with same
interfaces.

Interface updating: in this type, the new version
has different interfaces comparing to old one's.

Q1) If there are components in the system nealtals
be updated in order to benefit of the services iplexy

by this new one (antecedent role), what is the roode
updating those components safely ?

Formally, we can define the configuration of theteyn
after adding a new component safely as

500

J. Computer Sci., 3 (7): 499-505, 2007

This includes adding, deleting, or/and modifying Fig. 2 describes the direct dependency where
an interface(s). Adding new service while D={(A,B), (B,A), (B, D), (C, D), (C, B), (E, B),
continuing provide old ones would not affect other(E,D)}
old component. But in order to benefit from the To represent components’ dependencies using
extra services provided by the new version, eitheadjacency matrix, a matrid , , ,is used, where each
other components required to be updated or anoth@omponent is represented by a column and a row. If
new component(s) might be added to use themComponentC; depends orC; then MD ;=1 , and in
Modifying and missing services in the new versiongeneral.
will affect components depend on those services,
thus dependencies analysis should answer thAccording to this the previous dependency descrihed
following questions: Fig. 3 can be represented using adjacent matrix as
depicted in Fig. 3
Q5) What are the components in the system that will
get affected by replacing this component directty o A B C D
transitively?

Q6) If this replacement requires updating other
components, what is the order of those updates?

Ol | |O
O |Oo|Oo|Oo
O |o|r|O
oljlo|o|o|m

Formally, modifying a component can be viewed as
series of deleting and adding new component. so
generally Cpodified LIsas the set of components doesn't
changed

m|O|0|m|>
ROk |o|-

0 0 1 0
Fig. 3: Adjacent Matrix representation for direc
component dependencies

Obviously, CDDG and adjacent matrix above only
describe direct dependency between components. On

Dependency Representation: Managing and analyzing the o.tr_]er hand, updating.a c_omponent can affeersth
transitively, for example in Fig. 3.2 depends orB,

dependency efficiently requires a good modeling to

represent the dependencies among the com onenf”lndB on its twrn depends dn, thus updatindd might
P P 9 P affect B and consequently might affeét In order to

This representation should offer answers for thederive indirect decencies, a transitive closure is

questions above when updating the system. Commonlyyicyjated to produce component dependency graph
direct graph and adjacency matrix is used to remites (CDG), Fig. 3. which has the same components, it

the dependencies between components [9, 8,10]. includes direct and indirect dependencies.
The Component Direct Dependency Gr@bDG)

=(S,D) is a direct graph wher8 is a finite nonempty
set vertices represent system's components, aied D
set of edges between two vertices such ¢aat) L] D
meansa=> b, andD [I(S X S)

D modified Dremoved L] Dnew

Fig. 4: Component Dependency Graph

In Fig. 4, when calculating transitive closurelf se
Fig. 2: Component Direct Dependency Graphdependency is excluded as the component is the lmodu

501

J. Computer Sci., 3 (7): 499-505, 2007

of updating and our concern here is the interConsidering only component level dependencyCyf

components dependencies. got updated; bothC, and C; are considered to be

Correspondin_gly, ind_irect depeqdency can beaffected, which might not be completely true. Assum
represented in a matrix by calculating the travisiti

using Warshall's algorithm showed in Fig. 5. Thelhat serym@l n thg NEW version dT; has no changes
algorithm uses the matrix represents directcOMParing to that in old version, a8, has changed,

dependencieMann to produce the matriMAnxn then Only ComponenC2 will be affected with this
replacement. Therefore, component level of

dependency is not enough to trace effects of coenton

frls <nad updating. On the other hand, service level of
fd 1<:.r <N dependency will help understand more detail aboeit t
T Npr,i]=1 then consequence of component modification.
fa 1_<:k¢n ® Moreover, service dependency can be used to discove
if kr then

all true direct and indirect components dependancie
For example, in Fig. 3.8 service S11 in compor@nt
depends on service S21 in Componéht and C2
Fig.5: Warshall's algorithm to calculate the traivei closure depends on C3 where C2 has a service, S22, which
depends on service S31 in C3. Taking into acconlyt o
component level of dependend®; would depend on

C3 indirectly, but with more details through seevic

Mir,K :=Npr,K o Npi,K

Fig. 6 shows the matirdlA which represents direct
and indirect component dependencies.

A B c D E dependencyC,; does not depend on C3.
AlO 1 0 1 0
B|1 0 0 1 0 C1
2

Cl1 1 0 1 0 c3

D|O 0 0 0 0

E|1 1 0 1 0
Fig. 6 Adjacent Matrix direct and indirect componentpéledencies
Service Level of Dependencies: Normally, when a Fig. 8: Service Level Indirect Dependency

component depends on another it relies on somadiut

all of _its ser\{ices [11_]._According to this, during gt what if service S21 depends on S22 (intra-
dynamic updating, modifying an antecedent COmponen(jﬁomponent dependencies) in Fig. 8 ? Likewise what

not necessary to result in inconsistencies with it ervice S31 depends on S32 in Fig. 7. As atesul
dependents. For example, in Fig. 7, C1 depends3n : . . ;
hat, with service dependencies, intra-component

where its service S11 requires S31 in order toe endencies (dependencies between components
accomplish its functionality. C2 depends also on C PE P i P
services) play a rule when calculating components

where its service S21 requires S32 from C3. dependencies
C2 C1 P '

Service Level Dependencies Representation: Using
graph and adjacent matrix are sufficient to model
dependencies in component-based system as

component level, but that is not enough to trace
component dependencies accurately. Hence, instead o
C3 using simple graph to represent component

dependencies, nested graph is used to model

dependencies at service level, which gives moraildet

of components relationships.

The Service Level Dependency Grg@iL.DG)=(C,S,A)

is a nested graph where C is a finite nonempty set
Fig. 7: Service Level Dependencies vertices represent system's components, S isite fin

502

J. Computer Sci., 3 (7): 499-505, 2007

nonempty set of inner vertices represent compaent Al (a2 a3 Bl B B3 €1 D1 D1 El

services, and A is set of edges between twq!
vertices(inner vertices) such th@, S) [l D means |4
S-S, wheres, § LJ(CilJ) andD [1(S X S). a3

Bl

Bl

B3

Cl

D1

D2
El

oA o o A = —| o = = =
oA o of A = o of o o o
oA o of A = o o = = =
— o g A = = H = =] =
of = g o = = A = = =
o A A = o A o o =
of o o o = = A = = =
— o o A = o A = o =
- o o A = o A o] o A
o o of o = = =f = = =

Fig.11: Adjacent Matrix representation for direntla
indirect service-based dependencies

Now from the matrix in Fig. 11, we can map the
service back to its components so we can have clear
picture about real direct dependencies between
components, for example, from Fig. 3.11, we cad fi
that services belongs to component E has neithmectdi
.) o nor indirect dependencies with services in compbnen
Fig. 9 is another description of the example prigk A, so updating A will have no effect on E, which is
in Fig. .2. To compute the transitive closure, anagainst Fig. 6 indication.
adjacency matrix is required to capture such graph.

Similarly, with component dependencies, twoApplying Dependencies Analysis during Dynamic

dimensional matrixS, x mis used to represent services Updating: When a component is updated dynamically,
dependencies, whera is the number of all services in ItS dependencies with other components in the syste
all components. Likewise matrix in Fig. .35.,=1 if should be checked in order to keep the system mgnni

ice X d q ‘¥ Fi 310 depi without fail. Adjacent matrix representation of \gee-
service £ depends on Service. Hg. 2.10 epicts 4 pased dependencies is a good computational approach
matrix that represent services dependencies describig snswer the questions above raised when adding,

Fig. 9: Service Level Dependency Graph

in Fig. 9, removing, or modifying a component.

Al | A2 | A3 | B1|B2|B3|Cl1|Dl1|D2|El| \When adding a new component: Adding a new
2; 8 8 8 2 8 8 8 8 8 8 component to the system has no effect on existing
23170 To 1o 1o 1o To o To To To components' dependencie_s but this requires reglacin
BL1o 10 10 1o o 1 1o 11 1o |0 some of old components in order to use the new one.
B2|1 |o |0 o |o o o |o |o |o To answer question 1, regarding the order of
B3[0 [o [o [o o [o [o Jo Jo JoO components updating , first the new component shoul
ci[o Jo [1 [o Jo [1 Jo [o Jo Jo be added first then starting update the comportbats
b0 (o (06 |0 |0 |0 |0 |O |O |0 will benefit of this new one (its dependents) [12].
b2/0 0 10 J0 JO0 JO |O |0 J|O |0 Replacing those components requires analysis
Er [0 Jo Jo J1 Jo Jo Jo J1 Jo Jo

- - - - . dependencies related to component replacement which
Fig. 10: Adjacent Matrix representation for direct discussed in 4.3. The adjacent matrix will be miedif

service-based dependencies in order to reflect the changes in dependencies

structure, new rows and columns are added to reptes

The transitive closure also can be calculated usinghe direct dependencies added between the new
Warshall's algorithm described in Fig. 5. Fig. 11component's services and other components. Also,
depicts the matrix resulted of computing transitiveusing Warshall's algorithm, the matrix will be chad
closure, which represents the direct and indirectise ~ when computing new indirect dependencies added with
dependencies. the new component (question 2).

503

J. Computer Sci., 3 (7): 499-505, 2007

When removing an existing component: Removing a Many research tackled dependencies analysis in
component while system is running might lead thecomponent-based systems from different aspecisuin
system to inconsistent state and result in crastiieg work[1], dependencies analysis was used to measure
system. In order to find all affect components bythe complexity of system's architecture which iatks
removing componentC, we search for non-zero the effort needed to maintain the system. Li in [Jed
elements in columns corresponding to its services iadjacent matrix model to capture components'
Fig. 11. The no-zero elements indicate direct omdependencies and applied to system maintenance,
indirect service dependencies, therefore, thdesting, and evolution. Li used matrix-based maddy
components of those services are dependant€.on for component level of dependencies which-as we
Consequently, those components will be affectednwhediscussed above- not describe the dependencies
removingC (Question 3). accurately. In [12], the authors focused on typketga

In order to keep the system running safely wherwhen updating a class dynamically and investigated
removing a component, the dependents of thatlifferent cases when updating two depending
components need to be updated before removing theomponents, their focus was mostly on the direct

component. The goal of updating its dependents islependencies.

either to delete those services were depending on
services of deleted one or to modify them so thagkn
the changes. For example in Fig. 9, if component D

would be removed from the system, then according té/pdating
11, either component B replaced andequires analyzing dependencies between components

matrix in Fig.

CONCLUSION

component-based system dynamically

modified services B1,B3 so they can mask this updatin order to inspect affected components and take th

and not depend on D1,D2 anymore, or remove thosproper
consistently. Service-based matrix representatoani
appropriate

service from B which in its turn requires updatiitsg
dependents before that. Note in Fig. 9, we haneilair

action so the system continues running

model to capture = components'

dependency. In this case, both components should Btependencies; computationally, this matrix can edu

updated together[12] (question 4).

to analysis dependencies when a component is added,

removed, or replaced and according to that, other

When replacing an existing component: The effect of

components might require adaptation in a specific

replacing a component dynamically depends on the@rder.

relation between new version of the component ddd o
one. If the new component still provides the same
services as the old version, then no dependentdevil
affected by this updating.

If there are services removed in the new versibant
from adjacent matrix in Fig. 11, in the columns
represent those service, non-zero elements indicate
dependent services which means their components wil
be affected (question 5).

If the component has extra service comparing to ol

version, then this new component should be replaced
first, then updating its direct depends in ordeuge its

new services, and this also might require agairatipd

the dependents in the second level, this tracimgbea
found from direct matrix in Fig. 10 (question 6).

If the component has some services missing, tlss
like the one when removing a component, either to

update its dependents in some level to mask such

modification or to delete those depended servioa® f

all components (updating) starting from outer lefve
components that have no dependents) toward the
components.(question 6).

504

REFERENCE

Alhazbi S., 2004. Measuring the complexity of
component-based system architecture, in Proc. of
the 1st IEEE Intl. Conference on Information and
Communication Technologies: From Theory to
Applications (ICTTA-04), Damascus, Syria, IEEE
Computer Society.

Alhazbi S. ,Jantan A. ,2007. A Framework for
Dynamic Updating in Component-based Software
Systems, Accepted for Conference on Information
Technology Research & Application (CITRA)
,Selangor- Malaysia.

Hasselmeyer Peer, 2001. Managing Dynamic
Service Dependencies,12th International Workshop
on Distributed Systems: Operations &
Management (DSOM), Nancy, France.

Larsson M., and Crnkovic I., 2001. Configuration
management for component-based systems. In
Proceedins of the Tenth International Workshop on
Software Configuration Management, Toronto,
Canada.

J. Computer Sci., 3 (7):

Zhao J,. 1997. Using Dependence Analysis tdd.
Support Software Architecture Understanding,
New Technologies on Computer Software, pages
135-142.

Stafford J.A. and Wolf A.L., 1998. Architecture- 14
Level Dependence Analysis in Support of Software
Maintenance. In Proceedings of the Third
International Software Architecture Workshop,
pages 129-132.

Horwitz S., Reps T.Binkley D., 1990.
Interprocedural slicing using dependence graphs.
ACM Transactions on Programming Languages
and Systems 12, 1, pp: 26-60. 12.
Li B., 2003. Managing Dependences in
Component-Based Systems Based on Matrix
Mode, Net. Objectdays(NODE) conference, Erfurt,
Germany.

11.

505

499-505, 2007

Cui Y. and Nahrstedt K.,2001. Qos-aware
dependency management for component-based
systems. In International Symposium on High
Performance Distributed Computing 2001. San
Francisco, CA, August 2001.

Larsson M.,2000. Applying Configuration

Management Techniques to Component-Based
System, MRTC Report, IT Licentiate thesis,

Uppsala University

Tansalarak N. and Claypool K., 2003. CGC: An
Architecture to support Better and Faster
Component Evolution In Second International

Workshop on Unanticipated Software Evolution,

Warsaw, Poland.

Murarka Y., Bellur U., Joshi R., 2006. Safety

Analysis for Dynamic Update of Object Oriented

Programs APSEC-2006, 13th Asia Pacific

Software Engineering Conference, Bangalore.

