
Journal of Computer Science 3 (7): 494-498, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Mansoor Al-A'ali, Department of Computer Science, College of Information Technology,
University of Bahrain, P.O. Box 32038, Sakheer Campus, Kingdom of Bahrain

494

Removing Useless Productions of a Context Free Grammar through Petri Net

Mansoor Al-A'ali and Ali A Khan

Department of Computer Science, College of Information Technology, University of Bahrain
P.O. Box 32038, Sakheer Campus, Kingdom of Bahrain

Abstract: Following the proposal for a Petri Net (PN) representation of the Context Free Grammar
(CFG)[1], we propose in this paper, an algorithm to eliminate the useless productions of CFG. First the
CFG is represented by a PN. Then, based on the reachability, an algorithm is developed to eliminate
Useless-productions. The algorithm is analyzed and implemented in Pascal using examples of a CFG.
The proposed algorithm is better than the existing techniques in the sense that PN model is easy to
understand and requires fewer computations and easily implemented on computers.

Key words: Formal methods, context- free grammar, useless productions, petri net

INTRODUCTION

 Considerable interest has been shown in Petri Nets
(PNs) as suitable models for representing and studying
concurrent systems because of its potential advantages.
The major use of Petri Net has been the modeling of
systems in which it is possible for some events to occur
concurrently and or sequentially. They have been found
to be useful for describing and analyzing many systems
such as production, automatic control, communication
protocol, circuit analysis, physics and systems
involving human activity such as management and
office information systems, legal systems, teaching and
knowledge representation[2-6]. In order to allow easy
verification and hierarchical decomposition of the
system, the reduction method of PNs without changing
the properties has also been studied[7]. However, there
are still some areas where either this versatile model
has not been used at all or used to a very limited extent.
Formal languages and automata theory is one of such
areas. Algorithms to minimize the context free
grammars using the Petri net concept have been
published[1,8,9] in which a petri net representation of the
CFG has been given and techniques to eliminate λ and
unit- productions have been provided. The object of this
paper is to exploit this PN model to remove Useless-
productions of a Context-Free Grammar (CFG). We
assume that λ- and unit- productions have already been
removed. First the CFG is represented by a PN. Then
algorithm is developed to eliminate Useless-
productions. The algorithm is analyzed and
implemented in Pascal. using examples of a CFG . The
proposed technique is novel in the sense that it provides

a better representation and understanding of the
problem. It is simple, requires less computation and is
easily implemented on computers. Another technique
proposed in[3] in which a given finite or infinite labeled
transition graphs defined by a graph grammar, in which
an algorithm decides whether this graph is isomorphic
to the reachable state graph of some finite unlabeled
Petri net. The algorithm aims to produce a minimal net
realizing the graph. In[10] the Petri net models are
established for right linear grammar, expression
grammar and property tree formal grammar. The
structure algorithms of these models are given and the
properties of models are discussed. It is aimed at
generating a language process based on Petri net
models. These models are intuitional and dynamic

Petri net: A Petri net is an abstract, formal model of
information flow[6]. PNs are composed of two basic
components: a set of places, P and a set of transitions,
T. The relationship between the places and the
transitions are defined by the input and the output
functions. The input function I defines, for each
transition tj, the set of input places for the transition
I(tj). The output function O defines, for each transition
tj, the set of output places for the transition O(tj).
 Formally, a Petri net C is defined as the four-tuple
C = (P, T, I, O), where
P = { p1, p2,......, pn} is a finite set of places

T = { t1, t2,, tm} is a finite set of transitions, P∩ T

= ∅,
 I = P → T,
O = T → P.

J. Computer Sci., 3 (7): 494-498, 2007

 495

 A Petri net graph is commonly used for better
illustration. It consists of two types of nodes: a circle
which represents a place and a bar which represents a
transition. The input and output functions are
represented by directed arcs from the places to the
transitions and from the transitions to the places. An arc
is directed from a place pj to a transition ti if the place
is an input of the transition. Similarly, an arc is directed
from a transition tj to a place pi if the place is an output
of the transition.
 To give a dynamic structure to PN, a marking µ is
an assignment of tokens (represented by small solid
dots inside the circles) to places. A Petri net executes
by firing transitions. A transition is enabled to fire if
each of its input places has at least one token in it. A
transition fires by removing one token from each of its
input places and depositing one token into each of its
output places. Firing a transition will in general change
the marking µ of the Petri net to a new marking µ′.

Context free grammar: Definition[11]: Let G = (VN,
VT, S, F) be a grammar where VN is a finite set of
variables, VT is a finite set of objects called terminal

symbols, S ∈VN is a special symbol called the start
variable and F is a finite set of productions. Then G is
said to be context-free if productions in P have the form
A → x, where A∈VN and x ∈(VN∪VT)*.

 A context free grammar may have λ production, or
unit productions. These productions make the grammar
odd and difficult to parse. The useless productions have
unnecessary variables and productions. Therefore
eliminating these productions will make the grammar
easier.

Theorem[11]: Let L be a context-free language that
does not contain λ. Then there exists a context-free
grammar that generates L and that does not have any
useless productions.

Removing useless productions[8]: An equivalent
grammar that does not contain any useless variables or
productions can be obtained by first finding those
variables which lead to terminal strings. This is done by
defining the following sets of variables
Ao = {X | X→P ∈ F and P∈VT*}

Ai = Ai-1 ∪ {X| X→W ∈ F and W∈(VT ∪Ai-1)*}
For some k for which Ak-1= Ak, the set of active
variables Ak is obtained.

Then only those variables which can be reached from
starting symbol are obtained by defining and finding
Ro = {S}

Ri = Ri-1 ∪ {Y | X→UYW ∈ F for some X∈Ri-1 and

U, W ∈ (VN ∪ VT)*}
For some m, Rm-1= Rm, the set of reachable variables
Rm is obtained.
 After that we eliminate all variables which do not
belong in Ak ∩ Rm together with all rules in which
they occur. The same process is repeated with the
resulting grammar until we get a non-redundant
grammar.

PN Representation of a CFG[1]: A Context Free
Grammar can be thought of as represented by
interconnections of transitions and places of a PN. The
productions are represented by transitions and the
variables and terminal symbols by places. To include
the order of appearance of variables and symbols on the
right side of a production, the Petri net is modified and
called an Ordered Petri Net (OPN).

Definition[10]: Let G = (VN, VT, S, F) be a Context -
Free Grammar. An Ordered Petri Net is a PN defined to
represent G if and only if it has the following
properties:
* The input place of PN is labeled as S.
* The output places are labeled from VT ∪ {λ}.
* The intermediate places have labels from VN.
* Production rules are represented by transitions. The

input of the transition tj has label A ∈VN and
outputs of tj are (from left to right) labeled as a1 ,
a2,, an if and only if F has a production of the

form A → a1, a2,...., an.

 The string of output places with tokens by reading
from left to right omitting any λ's encountered is called
the yield of OPN.
 It must be noted here that there will be exactly one
input place for any transition. Two or more productions
may have the same variable on the left side. Only one
of these productions can be used in one derivation.
Therefore, the corresponding transitions can not fire
simultaneously. This is guaranteed by having the same
place input to such transitions. To derive a sentence, it
is sufficient to find the sequence of the transitions
which must fire such that the token of the starting
symbol place reaches the required output places of leaf
nodes.

J. Computer Sci., 3 (7): 494-498, 2007

 496

PROPOSED TECHNIQUE FOR REDUCTION OF
USELESS PRODUCTIONS

 Before developing the algorithm, some notations
that require explanation and clear exposition are given
below:
P is the set of places corresponding to the variables and
terminals. |P| = |(VN∪VT)|
PN is the set of places corresponding to the variables.
PT is the set of places corresponding to the terminals.
T is the set of transitions corresponding to the
productions. |T| is the number of productions.
 tio is the set of output places of the transition ti. It

must be noted that the order of the places in tjo is
important and must be in the same sequence in which
they appear in the corresponding production rule.
Further it must be maintained in subsequent operations.
oti is the set of input places of the transition ti.
Obviously this will contain only one element.
pio is the set of output transitions of the place pi
opi is the set of input transitions of the place pi

Po = { p1o , p2o ,..., pno}; oP={ op1 ,op2, ...,opn }

To = { t1o ,t2o ,..., tno}; oT={ ot1 ,ot2, ...,otn }

 There are two types of useless productions; one is
the production having their variables on the left side
which cannot be reached from the starting symbol
variables which do not lead to a terminal string. In the
second type of productions the set of variables U which
lead to terminal strings can be obtained by using
reachability in PN. A place pi is in U iff a marking with
a token in pi only can reach a marking with tokens only
in leaf places by firing transitions. The second type of
productions can be eliminated by finding the set of
variables R which can be reached from starting symbol.
A place pi is in R iff a token in S can reach to pi on
firing transitions. Only those transitions, places given
by a U ∩R along with their interconnections are
included into resulting PN.

Algorithm
Input: OPN representing CFG with useless productions
Output: A reduced OPN for CFG without useless
productions
Steps:
{Steps 1-4 finds the set of variables U which lead to
terminal strings}

* U0 = ∅;T0 = ∅ ; i = 0

* ∀tj∈ T , if tjo⊆ (Ui ∪ PT) then

 Ui+1 = Ui ∪ otj
 Ti+1 =Ti ∪ { tj}

* If Ui+1 ≠ Ui then go to step 2.

* U = Ui ; T'1 =Ti+1
{Steps 5-8 find the set of variables R which can be
reached from starting symbol}
* R0 ={S}; T0 = ∅ ; i = 0

* ∀tj∈ T'1 if otj⊆Ri then

 Ri+1 = Ri ∪ (tjo∩ PN)

 Ti+1 =Ti ∪ { tj}

* If Ri+1≠ Rii. then go to step 6

* P'N = U ∩Ri ; T'N = Ti+1

* {This finds the reduced OPN} t'i ∈ T' ot'i = tio;
ot'i = tio iff

∀ti ∈ T'N oti = oti ∩ P'N ; tio = tio ∩ (P'N ∪ PT).The

order in tio is to be maintained as before.

The algorithm can easily be shown to be O (T2)
where T is the number of productions.
The algorithm is illustrated with the help of the
following example, example 1.

Example 1: Consider the Grammar G = ({A, B, C, S},
{a, b, c}, S, F), with the following production rules:
S → aB | bC; A → BAc | bSC | a; B → aSB | bBC; C →
SBC | SBc | ac
The Petri net presentation is shown in Fig. 1

t
3

t
1 t

2

t
4

t
5

6
7t t

8 9 10

S

a B b C

cb a c

A

c b a

t t t

Fig. 1: Petri Net presentation

J. Computer Sci., 3 (7): 494-498, 2007

 497

For this example,
PN = {S, A, B, C} ; PT={ a, b, c}; T = {t1, t2, t3, t4, t5,
t6,t7, t8, t9,t10}
ot1 = {S}, t1o = {a, B}
ot2 = {S}, t2o = {b, C}
o t3= {B}, t3o = {a, S, B}
o t4 = {B}, t4o = {b, B, C}
ot5 = {C}, t5o = {a, c}
o t6 = {C}, t6o = {S,B,C}
ot7 = {C}, t7o = {S,B,c}
ot8 = {A}, t8o = {B, A, c}
o t9 = {A}, t9o = {b, S, C}
ot10 = {A}, t10o = {a}

Steps 1-4 gives the following:
U0 = ∅;T0 = ∅ ; i = 0

t1o, t2o, t3o and t4o⊆ (U0 ∪ PT) hence U0 = ∅;T0 =

∅
t5o = {a, c} ⊆ (U0 ∪ PT) hence U1 = {ot5}; U1 =
{C};T1={t5}

t6o, t7o , t8o and t9o ⊆ (U1 ∪ PT) hence U1 =
{C};T1={t5}

t10o = {a}⊆ (U1 ∪ PT) hence U2 = {C,A};T2={t5,t10}

t1o, t2o, t3o and t4o⊆ (U0 ∪ PT)

t1o⊆ (U2 ∪ PT) hence U2 = {C,A};T2={t5,t10}

t2o⊆ (U2 ∪ PT) hence U3 = {C,A};T3={t2,t5,t10}

t3o and t4o⊆ (U3 ∪ PT) hence U3=
{C,A};T3={t2,t5,t10}

t5o⊆ (U3 ∪ PT) hence U4 = {C,A};T4={t2,t5,t10}
t6o, t7o and t8o ⊆ (U4 ∪ PT) hence U4 =
{C,A};T4={t2,t5,t10}

t9o ⊆ (U4 ∪ PT) hence U4 = {C,A,S};T4={t2,t5, t9,
t10}

t10o ⊆ (U4 ∪ PT) hence U5= {C,A,S};T5={t2,t5, t9,
t10}
Since U5= U4 = {C,A,S} hence U= {C,A,S};

T'1=T5={t2,t5, t9, t10}

Steps 5-8 gives the following:
R0 ={S}; T0 = ∅ ; i = 0; T'1 ={t2, t5, t9, t10} PN = {S,
A, B, C}
ot2={S}⊆R0 hence R1 = R0∪(t2o∩PN)

= {S}∪ ({b, C}∩ {S, A, B, C})={S,C}
T1 ={ t2}
ot5⊆R1 hence R2 = R1∪(t5o∩PN)

= {S,C}∪ ({a, c}∩ {S, A, B, C})={S,C}
T2 ={t2, t5}
ot9 and ot10⊆R2 ; R2={S,C}; T2 ={t2, t5}

Since R2 = R1 hence P'N = U ∩Ri ={S,C} and T'N =
Ti+1={t2, t5}

Step 9 gives:
∀ti ∈ T'N ={t2, t5}
ot2 = ot2 ∩ P'N = {S} ∩{S,C}={S};

t2o = t2o ∩ (P'N ∪ PT) = {b, C} ∩ ({S,C} ∪{ a, b,
c}) = {b,C}
ot5 = ot5 ∩ P'N = {C} ∩{S,C}={C}

t5o = t5o ∩ (P'N ∪ PT) = {a,c} ∩ ({S,C} ∪{ a, b, c})
= {a,c}
Reduced Petri net is shown in Fig. 2 and the
corresponding reduced grammar is
S → bC; C → ac

S

C

a c

t2

t5

b

Fig. 2: Reduced Petri net

CONCLUSION

 In this paper an algorithm to eliminate the useless
productions of CFG was given. It is based on the PN
representation of a CFG and reachability concept of
PN. The technique has been analyzed and implemented.
The proposed algorithm is better than the existing
techniques in the sense that PN model is easy to
understand, requires less computations and easily
amenable on computers. The algorithm accepts the
required PN form of a CFG without λ and unit-

J. Computer Sci., 3 (7): 494-498, 2007

 498

productions, removes the useless productions and gives
the result in PN form. The automated translation of a
CFG into PN has not been provided, only a technique
has been given.

REFERENCES

1. Khan, A.A., M. Al-A’ali and N. Al-Shamlan, 1996.

Simplification of Context- Free Grammar Through
Petri Net. Computers & Structures, 58: 1055-1058.

2. Peterson, J.L., 1981. Petri Net Theory and the
Modeling of Systems. Prentice Hall Inc.

3. Rennes, D.P., 2001. On the Petri net realization of
context-free graphs. Theoretical Computer Sci.,
258: 573-98.

4. Tilak, A., 1979. Putting Petri Nets to Work. IEEE
Computer, pp: 85-94.

5. Yan, C., 1999. Petri Net models of grammars and
its structure algorithm. J. Appl. Sci., 17: 58-63.

6. Esparza, J., 1997. Petri Nets, Commutative
Context-Free Grammars and basic Parallel
Processes. Fundamental Informaticae, 31: 13-25.

7. Lee K.-H. and F. Joel, 1985. Hierarchical
Reduction: Method for Analysis and
Decomposition of Petri Nets. IEEE Trans. on
Systems, Man and Cybernetics, SMC-15: 272-280.

8. Darondeau, P., 2001. On the Petri net realization of
context-free graphs. Theor. Computer Sci., 258:
573-598.

9. Erqing, X., 2004. A Pr/T-Net model for context-
free language parsing, Fifth World Congress on
Intelligent Control and Automation (IEEE Cat.
No.04EX788), pt. 3, 1919-22, Vol.3.

10. de Lara, J., 2004. Defining visual notations and
their manipulation through meta-modeling and
graph transformation. J. Visual Languages and
Computing, 15: 309-30.

11. Linz, P., 1990. An Introduction To Formal
Languages And Automata, D.C. Heath and
Company.

