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Abstract: We proposed an algorithm to improve the precision of top retrieved documents by re-
ordering the retrieved documents in the initial retrieval. To re-order the documents, we first 
automatically extract key terms and key phrases from top N retrieved documents and generate a 
document index for each document. Using the standard similarity metrics, a document similarity 
matrix is generated for these documents. The document similarity matrix is considered as an adjacency 
matrix, where the nodes are documents and the distances are their similarity measures. The objective 
of this algorithm is, to rerank the documents so as to minimize the similarity mean absolute distance 
between them.  Moreover, the user can choose a document of interest as the seed document and initiate 
the reranking algorithm by which documents are reranked based on is similarity distance from the seed 
document. From the experimental results, it is demonstrated that the algorithm reduces the mean 
absolute difference. Further it is proved that the proposed reranking algorithm minimizes the mean 
absolute distance between the top N results obtained from search engines and helps users to rerank 
documents based on any seed document as a query. 
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INTRODUCTION 

 
The problem of searching on the World Wide 

Web (WWW), which is the process of discovering 
pages that are relevant to a given query. The commonly 
used tool to search on the web is a search engine. The 
process of determining the relevance ranking of search 
results based on a given query is still a challenge. The 
discomfort faced by users of search engines is two fold. 
One is the users feel they are unable to clearly specify 
what they need to search in the form of a query. Second 
is that though the query is given, the search results 
given by a search engine, is not well ranked. The 
objective of this paper is to address these two problems. 
When a user initiates a search process often he himself 
is not clear about what exactly he needs from that 
search process. The user refines his search query based 
on the initial search results. The user given query is the 
beginning for the process of searching on the web. Jon. 
M. Kleinberg[1] has classified queries in the following 
types. 

 Specific queries. Example “ Database support by 
Java using JDBC” 

 Broad Topic queries. Example “ Find information 
about Database connectivity” 

 Similar queries. Example “Find pages ‘similar’ to 
java.sun.com” 

The difficulty in handling specific queries is 
centered roughly, around what could be called the 
scarcity problem. There are very few pages that contain 
the required information, and it is often difficult to 
determine the identity of these pages. For broad topic 
queries, on the other hand, one expects to find many 
thousand relevant pages on the web, which may be 
generated by variants of term matching. The 
fundamental difficulty lies in what could be termed as 
‘Abundance problem: The number of pages that could 
reasonably be returned as relevant is far too large for a 
human user to digest’. For the third type of query, the 
challenge is to extract the features of a given page and 
then initiate the search. The user may feel a particular 
web document closer to his search and may look for 
documents similar to it. This can be achieved by 
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document reranking based on the features of the 
selected document. In our work we have developed an 
algorithm where the user can dynamically choose a 
particular web document and present it as a seed. The 
key features of this seed document are heuristically 
extracted to create an index for that document. 
Similarly document index is created for all the search 
result documents. Based on the similarity measure 
between the seed document and all the other 
documents, the algorithm reranks the remaining search 
results in order to minimize the similarity mean 
absolute distance between them. Most similar 
documents are ranked higher than the dissimilar 
documents.  

The objective of a ranking function is to match the 
documents in a text collection against a query and order 
them in descending order of their predicted relevance. 
The similarity between a query and a document can be 
calculated by the widely used cosine measure given by 
Salton[2]. Documents are then ordered by decreasing 
values of this measure. In the vector space model, these 
weights are commonly measured by their statistical 
properties or statistical features. For example, one of 
the most widely used statistical features in term 
weighting strategy is term frequency (TF), which 
measures how many times the term has appeared in the 
document or query[2]. Another commonly used feature 
is the inverse document frequency (IDF), which can be 
calculated by log (N/DF), where N is the total number 
of documents in the text collection and DF is another 
feature that measures the number of documents in 
which the term has appeared in the document 
collection. 

Rorvig[3] studied the impact of ranking / similarity 
functions on visual information retrieval (IR). In visual 
IR, not only the similarity between query and 
document, but also the relationships among documents 
need to be visualized. Rorvig used multidimensional 
scaling to visualize document similarities using five 
different similarity functions. A key finding in all of 
these studies is that a single ranking function cannot 
work well for all contexts.  

Many methods have been proposed to rerank 
documents. In the literature, Lee et al [4] proposed a 
document reranking method based on document 
clusters. They build a hierarchical cluster structure for 
the whole document set and use the structure to rerank 
the documents. In the works of Balinski [5] a document 
reranking method was proposed, that uses the distance 
between documents to modify initial relevance weights. 
Crouch et al [6] used the unstemmed words in the 
queries to reorder the documents. Xu et al [7] made use 

of global and local information to do local context 
analysis and then use the information acquired to rerank 
documents. Manually built thesaurus was also used to 
rerank retrieved documents[8]. Each term in a query 
topic is expanded with a group of terms in the 
thesaurus. Bear et al [9] used manually crafted grammars 
for topics to reorder documents by matching grammar 
rules in some segments of an article. Kamps [10] 
proposed a reranking method based on assigned, 
controlled vocabularies. Yang et al [11] used query terms 
that occurred in both query and top N (N<=30) 
retrieved documents to rerank documents.   

For a given query q, we first obtain a set of 
documents retrieved and ranked by an external search 
engine. We propose a document reranking algorithm 
where the user selects a document as the seed for the 
reranking procedure. The similarity weightage is 
calculated based on the importance of query key term 
weightage, document term frequency and document 
distance as in the case of vector model[2]. But the 
importance are not calculated globally for entire search 
result documents but only for its subset whose members 
are relevant to the given query q. Consequently, the 
implementation depends on the search engine used. We 
have considered Google web search engine for the 
purpose of our research.  

Our algorithm initially accepts a query from the 
user, extracts the key terms from the query. The top N 
search results are acquired from any search engine. The 
dynamic reranking algorithm generates a distance 
matrix for the top N documents.   

Once the user selects a particular document as 
the seed, based on the document distance metrics, the 
search results are reranked, in such a way that 
documents similar to the given document appears 
closer. The objective of the algorithm is to minimize the 
similarity mean absolute distance between the 
documents. 

SYSTEM ARCHTECTURE 
 

Figure 1 depicts the system architecture. Initially 
the user gives a query to search for. This query is given 
to the search system. The stop words are removed from 
the query and the key terms are given to any external 
search engine to search the Internet. From these results 
the user can browse and choose the seed document.  

The Document Index Generator generates the 
index vector for every web document. The key features 
are extracted and stored as an index vector for each 
document. When the user selects a seed document and 
requests reranking, the Dynamic seed reranker 
algorithm is initiated. The various similarity metrics as 
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discussed below are applied and the documents are 
reranked based on their similarity to the selected seed 
document. Thus reranked results are given to the user. 
The user can choose again a new seed and request for 
reranking again or the user may opt for rephrasing the 
query itself. 
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Search System: Keywords are extracted from the given 
query. The extracted keywords are converted into a 
string by placing ’+’ symbol between them and this is 
given to an external search engine (say Google) and the 
search is triggered. The results from the search engine 
are captured and the system stores the URLs of the 
search result documents in a database for further use by 
the index generator. 
 
Document Index Generator :In this module, the URLs 
of the search result documents are retrieved from the 
database. Every web document is retrieved and 
detagged. We have restricted our work to only web 
documents of HTML format and text format. The task 
of feature extraction focuses on the key term extraction. 
All the stop words are removed. Stemming of words is 
also considered. For example ‘network’, ‘networking’, 

networked’ are considered alike. The following three 
parameters are calculated. 

The term frequencies of the key terms are 
tabulated. Term frequency (TF) is how many times a 
particular key term has occurred in the document or 
query[1]. For similarity measure we define a heuristic 
technique which states the density of key term 
distribution reflects on the importance of that term in 
the document. Hence the Term Density measure is also 
calculated. Term Density Measure (TDM) is the mean 
distance between the successive occurrences of the 
term. Let x1, x2, x3... xn be the occurrences of the 
keyword x in the document. Then the mean distance is 
calculated as  

            TF-1 
TDM = Σ dist (xi, xi+1) / (TF-1) 
            i=1 

Where, dist (xi, xi+1) is the number of words in 
between the successive occurrences of a particular key 
term. The maximum inter term distance measure is 
limited to a cutoff value, in our case it is set as 8. For 
documents with TF=1, TDM is set to zero. The lesser 
the TDM, the closer they appear in the document.  
Hence for every document a term index is generated 
with terms whose TDM is below the cutoff value.  

In this algorithm we have considered the key 
phrases also. Considering the time delay we have 
restricted our key phrases to a length of two words 
only. If there are n key terms a Key Phrase Matrix 
(KPM) of size n x n is generated, and the frequency of 
the occurrences of the key phrases are computed and 
stored in this matrix.  

 
KPM (i,j) =x  
 
indicates that key terms words i and j occur 

next to each other x times. We have considered KPM 
(i,j) as equal to KPM (j,i). For example the phrase 
‘Programming in network’ is considered as the same 
key phrase as ‘network and programming’. Hence the 
upper diagonal matrix alone has to be calculated. KPM 
(i,i) is ignored. Though the key terms are very high, we 
found that the KPM is highly sparse and does not need 
very high memory storage, since we considered storing 
only the nonzero elements of the matrix. 
 
Document Seed reranking Metrics: The key features 
of each document are indexed by the index generator. 
The following metrics are applied and the overall 
similarity measure of each document with respect to the 
given seed document is calculated. The vector of key 
terms of seed document is taken as X. Y is the vector of 
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the document (from the rest N-1 documents) to which 
the similarity to the seed document is to be calculated.  
Matching Coefficient (MC): 

The Matching Coefficient is a simple vector based 
approach which counts the number of terms, 
(dimensions), on which both vectors are non zero. So 
for vector set X of document A and vector set Y of 
document B, the matching coefficient is |X & Y|. This 
can be seen as the vector based count of co-referent 
terms. For this the position of occurrence of terms is not 
taken into account. Hence for any two documents A and 
B, the Matching coefficient (MC) based on terms is 
denoted as MCt(A,B) 
Dice Coefficient (DC): 

Dice coefficient is a term based similarity measure 
(0-1) whereby the similarity measure is defined as twice 
the number of terms common to compared entities 
divided by the total number of terms in both tested 
entities. For any two documents A and B, the Dice 
coefficient (DC) based on terms is denoted as DCt(A,B) 
Jaccard Similarity (JS): 

Jaccard Similarity uses word sets from the 
comparison instances to evaluate similarity. The 
Jaccard similarity penalizes a small number of shared 
entries (as a portion of all non-zero entries) more than 
the Dice coefficient. Each instance is represented as a 
Jaccard vector similarity function.  

The Jaccard similarity between two vectors X and 
Y is  

(X*Y) / (|X||Y|-(X*Y)) 
 
Where (X*Y) is the inner product of X and Y, and 

|X| = (X*X)^1/2, i.e. the Euclidean norm of X.  The 
Jaccard similarity between two documents A and B 
denoted by term vectors X and Y respectively is 
denoted by JSt(A,B).  For key phrase similarity, it is 
denoted as JSkp(A,B).  
 
Document Seed Reranking Algorithm: The similarity 
between two documents are measured based on term 
similarity (TS) and key phrase similarity (KPS) as 
given below. The overall document similarity metric is 
computed by giving additional weightage for term 
similarity over key phrase similarity    

 
TS(A,B)= ((MCt(A,B) + DCt(A,B) + JSt(A,B) )/3) * 100 
KPS( A,B) = JSkp(A,B)  * 100 
DocSim(A,B) = ( 3*TS(A,B) + KPS(A,B) ) / 4 

 
Based on this, a document similarity (DS) matrix 

of size NxN is generated, where N is the number of 
documents considered. DS(A,B) indicates the cell 

denoted by the Ath row and Bth column which specifies 
the similarity between two documents A and B. Note 
that DS(A,B) is not same as DS(B,A).  For a seed 
document D, the Dth column of the matrix, a linear 
array x1 to xN is extracted from the matrix. The 
documents are reranked in descending order of their 
closeness of similarity with the seed document D. This 
ordering minimizes the overall similarity mean absolute 
distance (MAD) between documents. The similarity 
mean absolute distance (MAD) between documents for 
a given query Q and N search result documents, is 
defined as, 

 
MADQ = [∑ │(xi+1 – xi)│ for 1≤i≤(N-1)]  /  N 
 

where, x denotes the similarity distance between 
two successive documents.   
Algorithm: Initiate the search process using the query 
given by the user. 
For the top N search result documents 
Compute the document index consisting of                           
terms based on TF and TDM 
    Generate the key phrase matrix (KPM) 
For each web document (i = 1 to N) do 
     Let A = i 
     For each web documents  
               ( j = 1 to N) AND  (j != i )  do 
    Let B = j 
    Compute SimVal(A,B)  
    TS(A,B)= ( MCt(A,B) + DCt(A,B) + JSt(A,B) ) / 3 
    KPS( A,B) = JSkp(A,B) 
    DocSim(A,B) = ( 3*TS(A,B) + KPS(A,B) ) / 4  
Fill the Document Similarity (DS) matrix (i,j) with 
DocSim(A,B) 
End for 
End for 
Accept the seed document S, extract the linear array of 
S from DS 
Rerank in decreasing order of their similarity distance. 
  

RESULTS AND DISCUSSION  
 

For the search result obtained from Google for the 
query “data structures and algorithms”, we have 
generated the Document Similarity matrix for top 10 
search results. Considering the first search result 
document as the seed document, the reranking based on 
this seed document is given in graph 1. Table 1 gives 
the computation of MAD before reranking and table 2 
gives the computation of MAD after reranking. By 
applying our algorithm, it is found that, there is 
significant improvement in mean document distance. 
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Table 1: MAD without reranking 
Document links Measure 

of 
similarity 

|  Xi -  Xi+1 | 

1-2 5.55  
1-3 3.79 1.76 
1-4 2.87 0.92 
1-5 4.19 1.32 
1-6 27.77 23.53 
1-7 3.78 23.99 
1-8 7.8 4.02 
1-9 14.13 6.33 
1-10 18.49 4.36 
MADQ = [∑ │(xi+1 – xi)│ for 
1≤i≤(N-1)]  /  N 

6.623 

  
Table 2: MAD with reranking 

Document links Measure of 
similarity 

|  Xi -  Xi+1 | 

1-6 27.77  
1-10 18.49 9.28 
1-9 14.13 4.36 
1-8 7.8 6.33 
1-2 5.55 2.25 
1-5 4.19 1.36  
1-3 3.79 0.4 
1-7 3.78 0.1  
1-4 2.87 0.91 
MADQ = [∑ │(xi+1 – xi)│ for 
1≤i≤(N-1)]  /  N 

2.499 
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Fig. 1: Similarity between documents before and after reranking 

 
CONCLUSIONS  

 
 Search engines are enhancing their search 
algorithms so as to answer the queries of the user. 
Various ranking and reranking algorithms focus on 
similarity between the user query and the search results. 
In this paper we have developed an algorithm which 
accepts a web document as seed document extracts the 

features from the search result documents and reranks 
the documents based on their degree of similarity with 
the seed document. This is useful for users who are not 
very specific about their search process and would like 
to explore from the initial search documents. The future 
work is focused on implementing an algorithm which 
lists the features of the seed document and the user can 
choose the features of his interest to initiate the 
reranking process. The work can be extended for 
multiple document seeds. 
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