
Journal of Computer Science 3 (6): 436-440, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Angelina Geetha, Department of Information Technology, B.S.A. Crescent Engineering College,
Seethakathi Estate, Vandalur, Chennai - 600 048. TAMIL NADU, INDIA

436

Enhancement of Search Results Using Dynamic Document Seed Reranking Algorithm

1Angelina Geetha and 2A. Kannan

1Department of Information Technology, B.S.A. Crescent Engineering College, Anna University, India
2Department of Computer Science and Engineering, Guindy College of Engineering,

Anna University, India

Abstract: We proposed an algorithm to improve the precision of top retrieved documents by re-
ordering the retrieved documents in the initial retrieval. To re-order the documents, we first
automatically extract key terms and key phrases from top N retrieved documents and generate a
document index for each document. Using the standard similarity metrics, a document similarity
matrix is generated for these documents. The document similarity matrix is considered as an adjacency
matrix, where the nodes are documents and the distances are their similarity measures. The objective
of this algorithm is, to rerank the documents so as to minimize the similarity mean absolute distance
between them. Moreover, the user can choose a document of interest as the seed document and initiate
the reranking algorithm by which documents are reranked based on is similarity distance from the seed
document. From the experimental results, it is demonstrated that the algorithm reduces the mean
absolute difference. Further it is proved that the proposed reranking algorithm minimizes the mean
absolute distance between the top N results obtained from search engines and helps users to rerank
documents based on any seed document as a query.

Key words: Search result reranking, Similarity metric, Document retrieval

INTRODUCTION

The problem of searching on the World Wide

Web (WWW), which is the process of discovering
pages that are relevant to a given query. The commonly
used tool to search on the web is a search engine. The
process of determining the relevance ranking of search
results based on a given query is still a challenge. The
discomfort faced by users of search engines is two fold.
One is the users feel they are unable to clearly specify
what they need to search in the form of a query. Second
is that though the query is given, the search results
given by a search engine, is not well ranked. The
objective of this paper is to address these two problems.
When a user initiates a search process often he himself
is not clear about what exactly he needs from that
search process. The user refines his search query based
on the initial search results. The user given query is the
beginning for the process of searching on the web. Jon.
M. Kleinberg[1] has classified queries in the following
types.

 Specific queries. Example “ Database support by
Java using JDBC”

 Broad Topic queries. Example “ Find information
about Database connectivity”

 Similar queries. Example “Find pages ‘similar’ to
java.sun.com”

The difficulty in handling specific queries is
centered roughly, around what could be called the
scarcity problem. There are very few pages that contain
the required information, and it is often difficult to
determine the identity of these pages. For broad topic
queries, on the other hand, one expects to find many
thousand relevant pages on the web, which may be
generated by variants of term matching. The
fundamental difficulty lies in what could be termed as
‘Abundance problem: The number of pages that could
reasonably be returned as relevant is far too large for a
human user to digest’. For the third type of query, the
challenge is to extract the features of a given page and
then initiate the search. The user may feel a particular
web document closer to his search and may look for
documents similar to it. This can be achieved by

J. Computer Sci., 3 (6): 436-440, 2007

 437

document reranking based on the features of the
selected document. In our work we have developed an
algorithm where the user can dynamically choose a
particular web document and present it as a seed. The
key features of this seed document are heuristically
extracted to create an index for that document.
Similarly document index is created for all the search
result documents. Based on the similarity measure
between the seed document and all the other
documents, the algorithm reranks the remaining search
results in order to minimize the similarity mean
absolute distance between them. Most similar
documents are ranked higher than the dissimilar
documents.

The objective of a ranking function is to match the
documents in a text collection against a query and order
them in descending order of their predicted relevance.
The similarity between a query and a document can be
calculated by the widely used cosine measure given by
Salton[2]. Documents are then ordered by decreasing
values of this measure. In the vector space model, these
weights are commonly measured by their statistical
properties or statistical features. For example, one of
the most widely used statistical features in term
weighting strategy is term frequency (TF), which
measures how many times the term has appeared in the
document or query[2]. Another commonly used feature
is the inverse document frequency (IDF), which can be
calculated by log (N/DF), where N is the total number
of documents in the text collection and DF is another
feature that measures the number of documents in
which the term has appeared in the document
collection.

Rorvig[3] studied the impact of ranking / similarity
functions on visual information retrieval (IR). In visual
IR, not only the similarity between query and
document, but also the relationships among documents
need to be visualized. Rorvig used multidimensional
scaling to visualize document similarities using five
different similarity functions. A key finding in all of
these studies is that a single ranking function cannot
work well for all contexts.

Many methods have been proposed to rerank
documents. In the literature, Lee et al [4] proposed a
document reranking method based on document
clusters. They build a hierarchical cluster structure for
the whole document set and use the structure to rerank
the documents. In the works of Balinski [5] a document
reranking method was proposed, that uses the distance
between documents to modify initial relevance weights.
Crouch et al [6] used the unstemmed words in the
queries to reorder the documents. Xu et al [7] made use

of global and local information to do local context
analysis and then use the information acquired to rerank
documents. Manually built thesaurus was also used to
rerank retrieved documents[8]. Each term in a query
topic is expanded with a group of terms in the
thesaurus. Bear et al [9] used manually crafted grammars
for topics to reorder documents by matching grammar
rules in some segments of an article. Kamps [10]
proposed a reranking method based on assigned,
controlled vocabularies. Yang et al [11] used query terms
that occurred in both query and top N (N<=30)
retrieved documents to rerank documents.

For a given query q, we first obtain a set of
documents retrieved and ranked by an external search
engine. We propose a document reranking algorithm
where the user selects a document as the seed for the
reranking procedure. The similarity weightage is
calculated based on the importance of query key term
weightage, document term frequency and document
distance as in the case of vector model[2]. But the
importance are not calculated globally for entire search
result documents but only for its subset whose members
are relevant to the given query q. Consequently, the
implementation depends on the search engine used. We
have considered Google web search engine for the
purpose of our research.

Our algorithm initially accepts a query from the
user, extracts the key terms from the query. The top N
search results are acquired from any search engine. The
dynamic reranking algorithm generates a distance
matrix for the top N documents.

Once the user selects a particular document as
the seed, based on the document distance metrics, the
search results are reranked, in such a way that
documents similar to the given document appears
closer. The objective of the algorithm is to minimize the
similarity mean absolute distance between the
documents.

SYSTEM ARCHTECTURE

Figure 1 depicts the system architecture. Initially
the user gives a query to search for. This query is given
to the search system. The stop words are removed from
the query and the key terms are given to any external
search engine to search the Internet. From these results
the user can browse and choose the seed document.

The Document Index Generator generates the
index vector for every web document. The key features
are extracted and stored as an index vector for each
document. When the user selects a seed document and
requests reranking, the Dynamic seed reranker
algorithm is initiated. The various similarity metrics as

J. Computer Sci., 3 (6): 436-440, 2007

 438

discussed below are applied and the documents are
reranked based on their similarity to the selected seed
document. Thus reranked results are given to the user.
The user can choose again a new seed and request for
reranking again or the user may opt for rephrasing the
query itself.

U

S

E

R

Q u e r y t o
i n i t i a t e
s e a r c h

S e e d
s e l e c t i o n

S e a r c h
S y s t e m

D o c u m e n t
i n d e x

G e n e r a t o r

D y n a m i c
R e r a n k e r

R e r a n k e d
S e a r c h R e s u l t s

I n i t i a l
S e a r c h
R e s u l t s

F i g . 1 : S y s t e m A r c h i t e c t u r e

Search System: Keywords are extracted from the given
query. The extracted keywords are converted into a
string by placing ’+’ symbol between them and this is
given to an external search engine (say Google) and the
search is triggered. The results from the search engine
are captured and the system stores the URLs of the
search result documents in a database for further use by
the index generator.

Document Index Generator :In this module, the URLs
of the search result documents are retrieved from the
database. Every web document is retrieved and
detagged. We have restricted our work to only web
documents of HTML format and text format. The task
of feature extraction focuses on the key term extraction.
All the stop words are removed. Stemming of words is
also considered. For example ‘network’, ‘networking’,

networked’ are considered alike. The following three
parameters are calculated.

The term frequencies of the key terms are
tabulated. Term frequency (TF) is how many times a
particular key term has occurred in the document or
query[1]. For similarity measure we define a heuristic
technique which states the density of key term
distribution reflects on the importance of that term in
the document. Hence the Term Density measure is also
calculated. Term Density Measure (TDM) is the mean
distance between the successive occurrences of the
term. Let x1, x2, x3... xn be the occurrences of the
keyword x in the document. Then the mean distance is
calculated as

 TF-1
TDM = Σ dist (xi, xi+1) / (TF-1)
 i=1

Where, dist (xi, xi+1) is the number of words in
between the successive occurrences of a particular key
term. The maximum inter term distance measure is
limited to a cutoff value, in our case it is set as 8. For
documents with TF=1, TDM is set to zero. The lesser
the TDM, the closer they appear in the document.
Hence for every document a term index is generated
with terms whose TDM is below the cutoff value.

In this algorithm we have considered the key
phrases also. Considering the time delay we have
restricted our key phrases to a length of two words
only. If there are n key terms a Key Phrase Matrix
(KPM) of size n x n is generated, and the frequency of
the occurrences of the key phrases are computed and
stored in this matrix.

KPM (i,j) =x

indicates that key terms words i and j occur

next to each other x times. We have considered KPM
(i,j) as equal to KPM (j,i). For example the phrase
‘Programming in network’ is considered as the same
key phrase as ‘network and programming’. Hence the
upper diagonal matrix alone has to be calculated. KPM
(i,i) is ignored. Though the key terms are very high, we
found that the KPM is highly sparse and does not need
very high memory storage, since we considered storing
only the nonzero elements of the matrix.

Document Seed reranking Metrics: The key features
of each document are indexed by the index generator.
The following metrics are applied and the overall
similarity measure of each document with respect to the
given seed document is calculated. The vector of key
terms of seed document is taken as X. Y is the vector of

J. Computer Sci., 3 (6): 436-440, 2007

 439

the document (from the rest N-1 documents) to which
the similarity to the seed document is to be calculated.
Matching Coefficient (MC):

The Matching Coefficient is a simple vector based
approach which counts the number of terms,
(dimensions), on which both vectors are non zero. So
for vector set X of document A and vector set Y of
document B, the matching coefficient is |X & Y|. This
can be seen as the vector based count of co-referent
terms. For this the position of occurrence of terms is not
taken into account. Hence for any two documents A and
B, the Matching coefficient (MC) based on terms is
denoted as MCt(A,B)
Dice Coefficient (DC):

Dice coefficient is a term based similarity measure
(0-1) whereby the similarity measure is defined as twice
the number of terms common to compared entities
divided by the total number of terms in both tested
entities. For any two documents A and B, the Dice
coefficient (DC) based on terms is denoted as DCt(A,B)
Jaccard Similarity (JS):

Jaccard Similarity uses word sets from the
comparison instances to evaluate similarity. The
Jaccard similarity penalizes a small number of shared
entries (as a portion of all non-zero entries) more than
the Dice coefficient. Each instance is represented as a
Jaccard vector similarity function.

The Jaccard similarity between two vectors X and
Y is

(X*Y) / (|X||Y|-(X*Y))

Where (X*Y) is the inner product of X and Y, and

|X| = (X*X)^1/2, i.e. the Euclidean norm of X. The
Jaccard similarity between two documents A and B
denoted by term vectors X and Y respectively is
denoted by JSt(A,B). For key phrase similarity, it is
denoted as JSkp(A,B).

Document Seed Reranking Algorithm: The similarity
between two documents are measured based on term
similarity (TS) and key phrase similarity (KPS) as
given below. The overall document similarity metric is
computed by giving additional weightage for term
similarity over key phrase similarity

TS(A,B)= ((MCt(A,B) + DCt(A,B) + JSt(A,B))/3) * 100
KPS(A,B) = JSkp(A,B) * 100
DocSim(A,B) = (3*TS(A,B) + KPS(A,B)) / 4

Based on this, a document similarity (DS) matrix

of size NxN is generated, where N is the number of
documents considered. DS(A,B) indicates the cell

denoted by the Ath row and Bth column which specifies
the similarity between two documents A and B. Note
that DS(A,B) is not same as DS(B,A). For a seed
document D, the Dth column of the matrix, a linear
array x1 to xN is extracted from the matrix. The
documents are reranked in descending order of their
closeness of similarity with the seed document D. This
ordering minimizes the overall similarity mean absolute
distance (MAD) between documents. The similarity
mean absolute distance (MAD) between documents for
a given query Q and N search result documents, is
defined as,

MADQ = [∑ │(xi+1 – xi)│ for 1≤i≤(N-1)] / N

where, x denotes the similarity distance between
two successive documents.
Algorithm: Initiate the search process using the query
given by the user.
For the top N search result documents
Compute the document index consisting of
terms based on TF and TDM
 Generate the key phrase matrix (KPM)
For each web document (i = 1 to N) do
 Let A = i
 For each web documents
 (j = 1 to N) AND (j != i) do
 Let B = j
 Compute SimVal(A,B)
 TS(A,B)= (MCt(A,B) + DCt(A,B) + JSt(A,B)) / 3
 KPS(A,B) = JSkp(A,B)
 DocSim(A,B) = (3*TS(A,B) + KPS(A,B)) / 4
Fill the Document Similarity (DS) matrix (i,j) with
DocSim(A,B)
End for
End for
Accept the seed document S, extract the linear array of
S from DS
Rerank in decreasing order of their similarity distance.

RESULTS AND DISCUSSION

For the search result obtained from Google for the
query “data structures and algorithms”, we have
generated the Document Similarity matrix for top 10
search results. Considering the first search result
document as the seed document, the reranking based on
this seed document is given in graph 1. Table 1 gives
the computation of MAD before reranking and table 2
gives the computation of MAD after reranking. By
applying our algorithm, it is found that, there is
significant improvement in mean document distance.

J. Computer Sci., 3 (6): 436-440, 2007

 440

Table 1: MAD without reranking
Document links Measure

of
similarity

| Xi - Xi+1 |

1-2 5.55
1-3 3.79 1.76
1-4 2.87 0.92
1-5 4.19 1.32
1-6 27.77 23.53
1-7 3.78 23.99
1-8 7.8 4.02
1-9 14.13 6.33
1-10 18.49 4.36
MADQ = [∑ │(xi+1 – xi)│ for
1≤i≤(N-1)] / N

6.623

Table 2: MAD with reranking

Document links Measure of
similarity

| Xi - Xi+1 |

1-6 27.77
1-10 18.49 9.28
1-9 14.13 4.36
1-8 7.8 6.33
1-2 5.55 2.25
1-5 4.19 1.36
1-3 3.79 0.4
1-7 3.78 0.1
1-4 2.87 0.91
MADQ = [∑ │(xi+1 – xi)│ for
1≤i≤(N-1)] / N

2.499

Reranking using Doucment Seed
Similarity Measure

0
5

10
15
20
25
30

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10

Documents of Comparison

%
 o

f s
im

ila
ri

ty

before reranking after reranking

Fig. 1: Similarity between documents before and after reranking

CONCLUSIONS

 Search engines are enhancing their search
algorithms so as to answer the queries of the user.
Various ranking and reranking algorithms focus on
similarity between the user query and the search results.
In this paper we have developed an algorithm which
accepts a web document as seed document extracts the

features from the search result documents and reranks
the documents based on their degree of similarity with
the seed document. This is useful for users who are not
very specific about their search process and would like
to explore from the initial search documents. The future
work is focused on implementing an algorithm which
lists the features of the seed document and the user can
choose the features of his interest to initiate the
reranking process. The work can be extended for
multiple document seeds.

REFERENCES

1. Kleinberg J. M., 1999. Authoritative Sources in a

Hyperlinked Environment. Journal of the ACM, 46
(5) : 604 - 632.

2. Salton, G., and Buckley, C., 1988. Term-Weighting
Approaches in Automatic Text Retrieval.
Information Processing and Management, 24 (5) :
513-523.

3. Rorvig M., 1999. Images of Similarity: A Visual
Exploration of Optimal Similarity Metrics and
Scaling Properties of TREC Topic-document Sets.
Journal of the American Society for Information
Science, 50 (8) : 639-651.

4. Lee K., Park Y., Choi K. S., 2001. Re-ranking
Model Based on Document Clusters. Information
Processing and Management, 37 (1) : 1-14.

5. Balinski J., Danilowicz C., 2005. Reranking
Method Based on Inter Document Distance.
Information Processing and Management, 41 (4):
759-775.

6. Crouch C., Crouch D., Chen Q., Holtz S., 2002.
Improving the Retrieval Effectiveness of Very
Short Queries. Information Processing and
Management, 38 (1) : 1-36.

7. Xu J, Croft W. B., 2002. Improving the
Effectiveness of Information Retrieval with Local
Context Analysis. ACM Transactions on
Information Systems, 18 (1) : 79-112.

8. Qu, Y. L., Xu, G. W., and Wang, J. 2000. Rerank
method based on individual thesaurus. In
Proceedings of the NTCIR Workshop 2, pp 151 –
161.

9. Bear J, Israel D., Petit J, Martin D., 1997. Using
Information Extraction to Improve Document
Retrieval. In Proceedings of the Sixth Text
Retrieval Conference (TREC-6), pp 376-378.

10. Kamps J., 2004. Improving Retrieval Effectiveness
by Reranking Documents Based on Controlled
Vocabulary. Advances in Information Reranking
Documents Based in Conference on IR Research
(ECIR 2004), Volume 2997 of Lecture Notes in
Computer Science, pp 283-295.

11. Yang L. P., Ji D. H., Zhou G. D., Nie Y., 2005.
Improving Retrieval Effectiveness by Using Key
Terms in Top Retrieved Documents. In
Proceedings of the 27th European Conference on
Information Retrieval, pp 169-184.

