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Abstract: In determining the electromagnetic properties of magnetic materials, hysteresis modeling is 
of high importance. Many models are available to investigate those characteristics but they tend to be 
complex and difficult to implement. A new qualitative hysteresis model for ferromagnetic core 
presented, based on the function approximation capabilities of adaptive neuro-fuzzy inference system 
(ANFIS). The proposed ANFIS model combined the neural network adaptive capabilities and the 
fuzzy logic qualitative approach can restored the hysteresis curve with a little RMS error. The model 
accuracy was good and can be easily adapted to the requirements of the application by extending or 
reducing the network training set and thus the required amount of measurement data. 
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INTRODUCTION 
 
Analysis of electrical machines requires a 
computationally efficient hysteresis model describing 
the nonlinear relation between the magnetic induction 
and the magnetic field strength in the ferromagnetic 
core of the machine. However, there exist many 
approaches to develop a mathematical model to 
describe the hysteretic relationship between the 
magnetization M and the magnetic field H. the first 
approach was the hysteresis model of Preisach invented 
in the 1935[1] and the second is the Jiles-Atherton (JA) 
model[2]. Artificial intelligence has also been applied to 
the modeling of magnetic hysteresis and parameters 
identification of these models such as neural network 
and genetic algorithm[3,4,5,6,7,8,9,10,11,12,13]. Like neural 
networks, fuzzy logic can be conveniently used to 
approximate any arbitrary functions[14,15,16]. Neural 
networks can learn from data, but knowledge learned 
can be difficult to understand. Models based on fuzzy 
logic are easy to understand, but they do not have 
learning algorithms; learning has to be adapted from 
other technologies. A Neuro-Fuzzy model can be 
defined as a model built using a combination of fuzzy 
logic and neural networks. Recently, there has been a 
remarkable advance in the development of Neuro-
Fuzzy models, as it is described in[17,18,19]. One of the 
most popular and well documented Neuro-Fuzzy 
systems  is  ANFIS,   which has a good software 

support [20]. Jang[21,22,23] present the ANFIS architecture 
and application examples in modeling a nonlinear 
function, dynamic system identification and a chaotic 
time series prediction. Given its potential in building 
fuzzy models with good prediction capabilities, the 
ANFIS architecture was chosen for modeling magnetic 
hysteresis in this work. In the following sections 
information is given about adaptive neuro-Fuzzy 
modeling, the JA model for magnetic material testing 
system, the selection of ways to modeling the hysteresis 
phenomena with neuro-Fuzzy modeling, results and 
conclusions. 

 
JILES-ATHERTON HYSTERESIS MODEL 

 
Formulation: The Jiles-Atherton model is a physically 
based model that includes the different mechanisms that 
take place at magnetization of a ferromagnetic material. 
The magnetization M is represented as the sum of the 
irreversible magnetization Mirr due to domain wall 
displacement and the reversible magnetization Mrev due 
to domain wall bending [2]. The rate of change of the 
irreversible part of the magnetization is given by. 
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The anhysteretic magnetization Man in (1) follows the 
Langevin function [3], which is a nonlinear function of 
the effective field: 
He=H+αM               (2) 
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The rate of change of the reversible component is 
proportional to the rate of the difference between the 
hysteretic component and the total magnetization [4]. 
Consequently, the differential of the reversible 
magnetization is: 
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Combining the irreversible and reversible components 
of magnetization, the differential equation for the rate 
of change of the total magnetization is given by: 
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Before using the J-A model, five parameters must be 
determined: 

 α:  a mean field parameter defining the 
magnetic coupling between domains in the 
material, and is required to calculate the 
effective magnetic field, He (2) composed by 
the applied external field and the internal 
magnetization. 

 Ms: magnetic saturation 
 a   : langevin parameter 

These two parameters defined a Langevin function 
needed in the equation describing anhysteretic curve.  

 k   : parameter defining the pinning site 
density of domain walls. It is assumed to be 
the major contribution to hysteresis. 

 c : parameter defining the amount of reversible 
magnetization due to wall bowing and reversal 
rotation, included in the magnetization 
process. 

 δ is a directional parameter and takes  +1 for 
increasing field (dH/dt>0) and -1 for 
decreasing field (dH/dt<0). 

A. Parameter Identification      
B.1  Anhysteretic Susceptibility:    
The anhysteretic susceptibility at the origin, can be used 
to define a relationship between Ms, a and α 
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B.2  Initial susceptibility    
The reversible magnetization component is expressed 
via the parameter c in the hysteresis equation (4) 
defined by: 
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B.3 Coercivity   
The hysteresis loss parameter k can be determined from 
the coercivity Hc and the differential susceptibility at 
the coercive point χan (Hc). 
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B.3 Remanence   
The coupling parameter α can be determined 
independently if a is known by using the remanence 
magnetization Mr and the differential susceptibility at 
remanence. 
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ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) 

 
An adaptive Neuro-Fuzzy inference system is a cross 
between an artificial neural network and a fuzzy 
inference system. An artificial neural network is 
designed to mimic the characteristics of the human 
brain and consists of a collection of artificial neurons. 
An adaptive network is a multi-layer feed-forward 
network in which each node (neuron) performs a 
particular function on incoming signals. The form of 
the node functions may vary from node to node. In an 
adaptive network, there are two types of nodes: 
adaptive and fixed. The function and the grouping of 
the neurons are dependent on the overall function of the 
network. . Based on the ability of an ANFIS to learn 
from training data, it is possible to create an ANFIS 
structure from an extremely limited mathematical 
representation of the system. 
 
Architecture of ANFIS:  The ANFIS is a fuzzy 
Sugeno model put in the framework of adaptive 
systems to facilitate learning and adaptation [18]. Such 
framework makes the ANFIS modeling more 
systematic and less reliant on expert knowledge. To 
present the ANFIS architecture, we suppose that there 
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are two input linguistic variables (x, y) and each 
variable has two fuzzy sets (A1, A2) and ( B1,B2) as is 
indicated in fig.1, in which a circle indicates a fixed 
node, whereas a square indicates an adaptive node. 
Then a Takagi-Sugeno-type fuzzy if-then rule could be 
set up as: 
 
Rule i: If (x is Ai) and (y is Bi) then (fi = pix + qiy + ri) 
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Fig. 1: ANFIS architecture 
 
fi are the outputs within the fuzzy region specified by 
the fuzzy rule. pi, qi and ri are the design parameters 
that are determined during the training process.  
Some layers of ANFIS have the same number of nodes, 
and nodes in the same layer have similar functions. 
Output of nodes in layer-l is denoted as 1

iO , where l is 
the layer umber and i is neuron number of the next 
layer. The function of each layer is described as 
follows: 
Layer 1:  In this layer, all the nodes are adaptive nodes. 
The outputs of layer 1 are the fuzzy membership grade 
of the inputs, which are given by: 
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where ai, bi and ci are the parameters of the membership 
function, governing the bell shaped functions 
accordingly.  
 
• Layer 2: Each node computes the firing strengths of 
the associated rules. The output of nodes in this layer 
can be presented as: 
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Layer 3: In this third layer, the nodes are also fixed 
nodes. They play a normalization role to the firing 
strengths from the previous layer. The outputs of this 
layer can be represented as: 
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which are the so-called normalized firing levels. 
 
• Layer 4: The output of each adaptive node in this layer 
is simply the product of the normalized firing level and 
a first order polynomial (for a first order Sugeno 
model). Thus, the outputs of this layer are given by: 
 

( ) 2,14 =++== iryqxpfO iiiiiii ωω     (16) 
 
• Layer 5: Finally, layer five, consisting of circle node 
labeled with S. is the summation of all incoming 
signals. Hence , the overall output of the model is given 
by: 
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From the architecture of ANFIS, we can observe that 
there are two adaptive layers the first and the fourth. In 
the first layer, there are three modifiable parameters {ai, 
bi, ci}, which are related to the input membership 
functions. These parameters are the so-called premise 
parameters. In the fourth layer, there are also three 
modifiable parameters {pi,qi,ri}, pertaining to the first 
order polynomial. These parameters are so-called 
consequent parameters [21-22].  
 
Learning algorithm of ANFIS: The task of training 
algorithm for this architecture is tuning all the 
modifiable parameters to make the ANFIS output 
match the training data. Note here that ai, bi and ci 
describe the sigma, slope and the center of the bell 
MF’s, respectively. If these parameters are fixed, the 
output of the network becomes: 
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Substituting Eq. (15) into Eq. (18) yields: 

2211 fff ωω +=     (19) 
Substituting the fuzzy if-then rules into equation (19), it 
becomes:  

( ) ( )22221111 ryqxpryqxpf +++++= ωω       (20) 
After rearrangement, the output can be expressed as: 
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This is a linear combination of the modifiable 
parameters. For this observation, we can divide the 
parameter set S into two sets: 
 
S=S1⊕  S2 
S=set of total parameters,  
S1=set of premise (nonlinear) parameters,  
S2=set of consequent (linear) parameters  
⊕  : Direct sum 
For the forward path (see Fig 1), we can apply least 
square method to identify the consequent parameters. 
Now for a given set of values of S1, we can plug 
training data and obtain a matrix equation: 
 

yA =Θ         (22) 
where Θ contains the unknown parameters in S2. This is 
a linear square problem, and the solution for Θ, which 
is minimizes yA =Θ , is the least square estimator: 

( ) yAAA TT 1−∗ =Θ     (23) 
we can use also recursive least square estimator in case 
of on-line training. For the backward path (see Fig. 1), 
the error signals propagate backward. The premise 
parameters are updated by descent method, through 
minimising the overall quadratic cost function 
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in a recursive manner with respect Θ(S2). The update of 
the parameters in the ith node in layer Lth layer can be 
written as: 

)(ˆ
)()1(ˆ)(ˆ

k
kEkk

L
i

L
ii

Θ∂

∂
+−Θ=Θ

+
η    (25) 

where η is the learning rate and the gradient vector 
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iLz ,ˆ∂  being the node’s output and iL,ε  is the 
backpropagated error signal. Fig.2 presents the ANFIS 
training algorithm for adjusting production rules 
parameters. 
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Fig. 2:  ANFIS training algorithm for adjusting 

production rules parameters 
 

APPROXIMATING MAGNETIC HYSTERESIS 
 
Simulation: The differential equation (5), which in its 
original form has derivatives with respect to H , was 
reformulated into a differential equation in time by 
multiplying the left and the right sides by dtdH , thus 
resulting in: 
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This reformulation allows for the determination of 
magnetization by use of Runge Kutta method in Matlab 
environment. 
To calculate the magnetic flux density B from M and H, 
the following constitutive law of the magnetic material 
property is used. 

( )MHHHB r +=== 00. µµµµ    (28)   
Where µ0=4.π.10-7 (H/m) is the permeability of free 
space and µr is the relative permeability. 
The B(H) curve result of simulation of the Jiles-
Atherton model will be used as ‘experimental data’ to 
be approximate by proposed Neuro-Fuzzy model. 



J. Computer Sci., 3 (6): 399-405, 2007 
 

 403

Proposed model: In this section, the learning ability of 
ANFIS is verified by approximating a hysteresis of 
magnetic material. The data set used as input/output 
pairs for Anfis was generated by Jiles Atherton model 
for ferrite core described in [24] with sinusoidal 
magnetic field as an input H(t) and magnetic field B(t) 
as output Fig. (3.a & b).  
 

 
(a)

 
(b) 
Fig.3:  a- Normalized magnetic field and magnetic versus 

time b- Normalized magnetic induction versus time 
 
Our purpose is to predict the magnetic hysteresis cycles 
using 12 candidate inputs to ANFIS :  B(t-i) for i=1 :5, 
and H(t-j) for j=1 :7. Converted from the original data 
sets containing 353 [H(t) B(t)]  pairs. 
In the first time, we suppose that there are two inputs 
for ANFIS and we have to construct 35 ANFIS models 
(5x7) with various input combinations, and then select 
the one with the smallest training error for further 
parameter-level fine tuning. In table.I we can see that 
the ANFIS with B4 and H1 (in red) as inputs has the 
smallest training error, so it is reasonable to choose this 
ANFIS for further parameter tuning. Note that each 
ANFIS has four rules, and the training took only one 
epoch each to identify linear parameters. Let us note 
that the computing time for selecting the good model is 
3.6250s.  

Table 1: Training And Checking Error For All Models 
Model Training error Checking error 
B1 H1 0.00003501930205 0.00005237387113 
B1 H2 0.01007440714157 0.00800225277619 
B1 H3 0.01752470640605 0.01198431179800 
B1 H4 0.02426970100209 0.01536326214534 
B1 H5 0.03081731046969 0.01927371816614 
B1 H6 0.03748876601555 0.02457067414985 
B1 H7 0.04436386215981 0.03166533456145 
B2 H1 0.00003762707899 0.00004451505598 
B2 H2 0.01376365775729 0.01540601381771 
B2 H3 0.01934001717874 0.01439440856647 
B2 H4 0.02538261513892 0.01671041089325 
B2 H5 0.03139732428427 0.02005410243223 
B2 H6 0.03756279016798 0.02477985332016 
B2 H7 0.04401096250169 0.03141151576432 
B3 H1 0.00003246300868 0.00003736685372 
B3 H2 0.01067960934829 0.01890881385189 
B3 H3 0.02674500025744 0.02918359625911 
B3 H4 0.02785874502310 0.01994937304432 
B3 H5 0.03281732981992 0.02186208656381 
B3 H6 0.03831184619918 0.02609472281251 
B3 H7 0.04411128584929 0.03227491110643 
B4 H1 0.00002571202168 0.00003254290855 
B4 H2 0.00948091974762 0.01022982236350 
B4 H3 0.02157909185014 0.03958605040899 
B4 H4 0.03886365068660 0.04253883911318 
B4 H5 0.03576665521093 0.02568298961189 
B4 H6 0.04004473971704 0.02826405796018 
B4 H7 0.04507868818210 0.03399955457224 
B5 H1 0.00003396289474 0.00003924291522 
B5 H2 0.00910245284031 0.00666069608720 
B5 H3 0.01676944380416 0.01102022047559 
B5 H4 0.02386189227013 0.01483177779224 
B5 H5 0.03077981552004 0.01932591344086 
B5 H6 0.03774316641094 0.02536369036347 
B5 H7 0.04473822577434 0.03453095956642 

 
After selection of the good and adapted model, we 
made train the network 100 epochs, for this purpose we 
have used 173 pairs as training data and 173 pairs for 
checking, shown in fig.3.  

 
Fig.4 : Data distribution 
 
The number of MFs assigned to each input of the 
ANFIS was set to two bell type, so the number of rules 
is 04. The training was run for 100 iterations, the 
network performance were evaluated on the checking 
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set after every iteration, by calculating the root-mean-
square errors (RMSE): 
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Where k is the pattern number, k=1,…K. The RMSE 
was also evaluated on training data set in every 
iteration. The optimal number of iteration was obtained 
when checking RMSE has reached its minimum value 
0.0069 after 11 epochs. See fig.5. 

 
Fig.5: Error curves 
 
Fig.6 depicts the initial and final membership functions 
for each input variable. The anfis used here contains a 
total of  24. fitting parameters, of which 12  are 
presmise (nonlinear) parameters and 12 are consequent 
(linear) parameters. Table.II summarize all 
characteristics of the network used. 
 
 
 
 
 
 
 
 
a/ Initial and final MFs on x 
 
 
 
 
 
 
 
 
 
 
b/ Initial and final MFs on y 
 
Fig. 6:  Initial and  final generalized bell-shaped membership 

function of input 1 and 2 for the Best model. 

Table 2: ANFIS Caracteristics 
Number of nodes 21 
Number of linear parameters 12 
Number of nonlinear parameters 12 
Total number of parameters 24 
Number of training data pairs 173 
Number of checking data pairs 173 
Number of fuzzy rules 04 

 
The ANFIS shown in Fig.1 was implemented by using 
MATLAB software package ( MATLAB version 6.5 
with fuzzy logic toolbox), it uses 346 training data in 
100 training periods and the step size for parameter 
adaptation had an initial value of 0.1. The steps of 
parameter adaptation of the ANFIS are shown in Fig.7.  

 
Fig.  7: Adaptation of parameter steps of ANFIS 

 
The obtained ANFIS network was evaluated on, the 
complete data set using Ts=0.76 s and resulted in a 
good prediction (fig.8) with RMSE= 0.0026. 

 
 

Fig. 8 : Hysteresis curves 
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CONCLUSION 
 
We have successfully developed, implemented and 
tested a neurofuzzy system for predicting the magnetic 
hysteresis of ferromagnetic core. It is clear that the 
system output closely approximates the required 
hysteresis output by Jiles-Atherton model.  
The proposed model is an alternative and less 
complicated approach in determining the magnetic 
properties of ferromagnetic materials with good 
accuracy. The collection of well-distributed, sufficient, 
and accurately measured input data is the basic 
requirement to obtain an accurate model. The adequate 
functioning of ANFIS depends on the sizes of the 
training set and test set. Simulation result revealed that 
neuro-fuzzy model was capable of closely reproducing 
the optimal performance. In the future studies, we will 
incorporate this model on the finite element procedure 
for modeling electromagnetic devices. 
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