
Journal of Computer Science 3 (5): 318-322, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Ahmad A. Al-Rababah, Faculty of IT, Al-Ahliyyah Amman University, P.O. Box 252,19328,
Amman, Jordan

318

Module Management Tool in Software Development Organizations

1Ahmad A. Al-Rababah and 2Mohammad A. Al-Rababah
1Faculty of IT, Al-Ahliyyah Amman University, P.O.Box 252,19328, Amman, Jordan

2Faculty of Science, Jerash Private University, Jordan

Abstract: Module management is an important task at developers’ level in software development
organizations. So we consider in this paper software as collection of several modules. Also we study a
method of clustering of modules of a large software system. The need of doing such clustering is
justified to be an important part of software management in the software development organizations.
An algorithm of maintenance and modifications is presented for doing the clustering by the developers
in the respective development organizations, whose complexity is calculated. The method will be very
much helpful, as an essential tool, at the developer level in software development organizations for
module management.

Key words: Link graphs, link matrix, MC, updated link matrix, coupling matrix

INTRODUCTION

 The software architect devotes best effort for
deriving an overall structural model of the system as a
collection of several modules[1], as far as possible by
retaining loose links. This helps the developers to
modify the modules almost independently, irrespective
of the codes of other modules. But in reality, it is not
always feasible to develop any system as a collection of
only mutually independent modules. Module
management[2-4] is a very important job at the
developers surface to improve the process visibility and
the overall cost effectiveness. In object oriented model,
modules are objects with private state and defined
operations on that states. In the data flow models,
modules are functional transformations. In both cases,
module may be implemented as sequential components
or as processes. An object-oriented model of a system
architecture structures the system into a set of loosely
coupled objects with well-defined interface [5,6].

Modules and link graphs: Among these modules, a
pair of modules may be mutually independent (ideal
situation), or may have link. If a flow of data (or a flow
of control) exists between these two modules, we say
that they are linked, they are not independent. Thus,
there are three types of link possible to be existing
between a pair of modules:
* mo link, (if the modules are mutually independent)
* one link, (if there exists a flow of data or control

from any one module to other, but not both ways).

* two links (if there exists a flow of data or control
both ways).

Module

Module
Module

Module

Fig. 1: Software

 We ignore the trivial case of the existence of link
of one module with itself. Thus, between a pair of
modules, there could be at most two links (according to
our concept of link as stated above). Consider a system
S constituted of n modules developed under object
oriented paradigm. Suppose that the modules are
numbered from 1 to n. Consider two modules module-i
and module-j.

i j

Fig. 2: No link graph between two modules

J. Computer Sci., 3 (5): 318-322, 2007

 319

Fig. 3: and

Fig.4: One-link graphs (directed)

Fig. 5: Two-link graph (directed)

 Let us assume that any two modules are linked
with some weight W (number of links) such that
Wij = weight of the link between module-i and
module-j
Then,
Wij = 0, if no link
 = 1, if one link
 = 2, if two links.
Clearly, Wij is commutative with respect to its indices i
and j. i.e. Wij = Wji.
 Then the link graph of the system S will be an
undirected graph as shown bellow:
For n=1

Fig. 6: S

For n=2

Fig. 7:

For n=3

W13

W12

W23

1 2

3

Fig. 8: W

For n=4

W23 W13 W24

W34

W14

W12

1 2

3 4

Fig. 9: and so on.

Link matrix and the integer set Zr: Now, let us
divide each element Wij into two parts such that
* Wij = lij + lji ,
* lij = 1, if module-i has to send a deliverable to

module-j
 = 0, if module-i will not have to send any

deliverable to module-j. (and same type of
definition is also true for every lij, i≠j).

 We assume that lii = D
or 0

 (don’t care symbol), (or
the number 0) ignoring the cases of deliverables which
are internal only. Obviously, mij and mji are not
necessarily equal. They are one way link values only.
Then the Link matrix of the system S is defined as the
square matrix L = [lij]
 In the link matrix L, each row could be viewed as
the modules to perform the role of suppliers and each
column could be viewed as modules to perform the role
of consumers.

Example of a link matrix: Consider a system S with 4
modules 1, 2, 3 and 4

=

0100
1001
0100
0110
4321

4
3
2
1

L

 In this link matrix, the data l23 = 1 means that the
module-2 will send a deliverable to module-3, whereas
the data l32 = 0 means that module-3 will not. The data
l14 =0 and l41= 0 combined signifies that module-1 and
module-4 are mutually independent, because W14 will
be zero in this case. If numbers of 1’s are more in the
matrix L, it implies that there are many modules linked
with each other. The ideal situation under object
oriented paradigm is that the number of 0’s in non-
diagonal positions of L should be more and more.

i j

i j

One
Module

W12

1 2

i j

J. Computer Sci., 3 (5): 318-322, 2007

 320

Fig. 10: Link-graph of S (Undirected)

 1 2

34

Fig. 11: Link-graph of S (Directed)

Integer-Set Zr: Let
+

∈ Ir . We define integer-set Zr as
the set of all non negative integer less than or equal to r.
Thus, Z2= {0, 1, 2}, Z5= {0, 1, 2, 3, 4, 5} etc.

Clustering of modules: By grouping together the
modules which interact with each other very closely,
it’s certainly possible to reduce the efforts in the
software maintenance[3,7]. Two or more closely related
modules, if grouped as one object, forms a module-
cluster (MC).

 MC

Module

Module

Module

Module

Fig. 12: Software system

 Now, we study how to group two modules to form
a cluster and then how to update the link-matrix of the
system after completing each clustering. Consider the
system S as chosen in example earlier.
 Suppose that we like to group module-1 and
module-2 to form a new cluster MC.

Module-1

Module-2

Fig. 13: One Cluster C1

 For this we consider the sub matrix L1 of L
corresponding to row-1, row-2 and column-1, column-2
given by

L1 =

00
10

2
1

21

 Now this new cluster C1 is to be treated as good as
one bigger module, say module-1 (specified by bold
one). Thus, at present the system S consists of one
cluster (the new created module-1), module-3 and
module-4. The total number of deliverables from this
cluster to module-i, (for i=2, 3) is clearly equal to the
sum of the numbers of deliverables from module-1 and
module-2 to module-i. The link values will now be
changed accordingly, and thus our updated link-matrix
for the system S will be as below:

 L =

010
101
021

3
2
1

321

 It’s to be noticed that in this updated link matrix L,
l11 is not zero but 1, which is clear from the submatrix
L1, and the updated link matrix L is still a square
matrix. Also in the initial link matrix L of the system S,
the matrix-elements ∈Z1. In the first updated link
matrix L, the elements ∈ Z2. We will see next that in
the pth updated link matrix L of the system S, the
elements ∈ Zp+k where k≥ 1. Thus, after this
clustering, the software system S will be apparently as
shown in Fig. 13 to the developers’ eyes. The method
could be generalized to group together two clusters to
form a bigger cluster of clusters. For example, the
following two figures can be seen:
* New cluster (by grouping one cluster and one

module)

 Cluster Module

Fig. 14: Cluster

2 1

2

0

1

1 2

34

0

J. Computer Sci., 3 (5): 318-322, 2007

 321

* New cluster (by grouping two clusters)

Cluster Cluster

Fig. 15: Cluster

Couplingmatrix M: Each module could be viewed as a
trivial cluster initially. However, if we consider two
clusters Cr and Cs, then these are two parameters which
we shall consider now. The parameters are:
* maximum number (m) of possible links between Cr

and Cs
* actual number (a) of links existing between Cr and

Cs

 Clearly, the ratio

m
a will be a member in the

closed interval [0, 1]. This number (collectively for
every pair of clusters) constitutes the coupling matrix M
of a system S. For example, at the initial stage of the
system S when each cluster contains exactly one
module, the number a ∈ Z2 and m =2.

 Thus,

m
a ∈ {0, ½, 1}. The elements of the

coupling matrix MC= [mij] are defined now as below.
(There are three different cases):

Case 1: Suppose that both of the clusters contains
single module only.

 MC Ci MC Cj
Fig. 16:

 In this case, a = wij = lij+lji and m = 2 where lij, lji
are elements of the current link matrix L of the system
S.

Thus,
22

jiijij
ij

llwm +
== Clearly, mij ∈ [0, 1].

Case 2: Suppose that a cluster Ci contains ni number of
modules and another cluster Cj contains only one
module module-j.

 In this case, mij = ,
2 i

jiij

n
ll +

 because m = 2ni here.

Clearly mij ∈ [0,1].

Module

Module

Module-j

MC Ci MC Cj

Fig. 17: Modules

Case 3: Suppose that a cluster Ci contains ni number of
modules and another cluster Cj contains nj number of
modules.

MC Cj MC Ci

Fig. 18: MCCi

In this case, m = 2ninj, and mij = ,
2 jinn

ll jiij +

 Where lij and lji are the elements of the last updated
link matrix of the software system S. In this case also,
mij ∈ [0, 1]. Clearly, the coupling matrix M is a square
and a symmetric matrix. If mij =0, it indicates that the
two clusters Ci and Cj are mutually independent. If mij
is a low value, it indicates that the two clusters Ci and
Cj are loosely coupled and if it’s a high value (close to
1) then it indicates that the two clusters are strongly
coupling. At every stage we shall look at the coupling
matrix M to watch which pair of clusters is most
strongly coupling and in the next step we will group
these two clusters to form a new cluster. This is the
main paradigm of clustering in our work here. Such pair
of clusters is called Strongly Coupled Clusters (SCC).
 The task of clustering by this method is continued
until we reach at a single cluster (which is equivalent to
the complete software system S). But it’s most
preferable to stop once a small number of meaningful
and low-coupling clusters have been reached upon.The
final number of clusters should be optimal in the
context of maintenance and modifications to be done by
the developers in the respective development
organizations. We shall not cluster Ci and Cj into one
cluster if mij = 0, or very close to zero. For this the
Developers (or the Software Development

Module-i Module-j

J. Computer Sci., 3 (5): 318-322, 2007

 322

Organization) choose a threshold value µ which is
very close to zero. Now, we present an algorithm for
the above task of clustering.

Algorithm for module clustering: Here, we present an
algorithm for module clustering which is an improved
version of the existing algorithms[7]. At each iteration in
this algorithm, two clusters with strongest coupling-
value are merged to form a new cluster and the link
matrix is updated immediately. Since the coupling
matrix M is a symmetric matrix, the elements of its
uppers triangular region are sufficient for us to
consider. The algorithm uses an important data
structure which is an array N = < N1, N2, …, Nn > of n
elements, where Ni is number of modules present in the
ith cluster.
Clearly, at the initial stage, Ni = 1, ∀ i = 1 , 2, 3,……,n.

Module-clustering Algorithm
Step 1: Calculate the initial link matrix L and the

upper triangular portion of the coupling
matrix M, (i.e. ∀ i and ∀ j where 1≤ i ≤ j
≤ n)

Step 2: Repeat step-3 through step-6, (n-1) times.
Step 3: Find the pair of SCC with coupling value

more than µ . (if more than one pair exists,
chose any one arbitrarily) which are Ci’ and
Cj’

 where 1 ≤ i’ ≤ j’≤ n (this inequality
which can be assumed with no loss of
generality). Calculate mi’j’ = max {mij}, 1≤
i ≤ j≤ n

Step 4: Merge Ci’ and Cj’ to form a new cluster Ci’.
Step 4.1: Ni’ ← Ni’ + Nj’
Step 4.2: Update ith column (ith row) of the link

matrix such that
 ∀ k=1, 2, …n

 where, k ≠ i’,j’
 li’k← li’k + lik
 li’k← 0
Step 5: Ignore now the cluster j’, and set Nji← 0.
Step 6: Update the coupling matrix M.
Step 6.1: Update the i’th row of M by doing:

 ∀ k=1, 2, …n
 where k ≠ i’
 mkj’ ← mki’
Step 6.2: Update i’th column of M by doing:

 ∀ k=1, 2, …n
 where k ≠ i’
 mj’k ← mi’k
Step 7: Stop.

Complexity of the algorithm: To calculate the
complexity T(n) of the module clustering algorithm we
see that:

In step-1, there will be computation of nC2 elements of
the coupling matrix M. The complexity of this step is
O(n2)
Step-3 involves a sorting algorithm, in worst-case
which will consume O(n2) amount of time (in case the
developers seeks alternative SCC from the sorted
clusters). All other steps from 4 to 6 have the
complexity O(n) respectively. Thus, the portion from
step-3 through step-6 has the complexity = O(n2) +
O(n) = O(n2).
 But, due to the repetition of this computation for
(n-1) times (because of step 2), we have the total
complexity of the algorithm given by
T(n) = O(n2) + (n-1) * O(n2)
 = O(n3)
Thus, we see that the algorithm is a P-class algorithm.

CONCLUSION

 We have studied here a methodology for module
clustering in a huge type of software system which has
been developed with a large number of modules. The
need of doing such clustering is justified to be an
important part of software management in the software
development organizations. We present a polynomial
time algorithm for module clustering and the method
can be well applicable especially for the large software
systems developed with object oriented approach. The
final number of clusters should be optimal in the
context of maintenance and modifications to be done by
the developers in the respective development
organizations.

REFERENCES

1. Gao, J.Z. and H.S.J. Tsao, 2006. Testing and

Quality Assurance for Component-Based Software.
Artech House Publishers.

2. Berczuk, S. and B. Appleton, 2002. Software
Configuration Management Patterns: Effective
Teamwork. Addison-Wesley.

3. Pullum, L.L., 2001. Software Fault Tolerance
Techniques and Implementation, Norwood, MA:
Artech House.

4. Summerville, I., 2002. Software Engineering,
Pearson Education Asia. New Delhi.

5. Kartashev, S., 1990. Supercomputing Systems:
Architectures, Design and Performance. New
York.

6. Zedan, H.S.M. and A. Cau, 1999. Object-Oriented
Technology and Computing Systems Re-
Engineering. Horwood Publishing Limited.

7. Councill, W. and G.T. Heineman, 2003. Definition
of a Software Component and its Elements.
Addison-Wesley.

