
Journal of Computer Science 3 (5): 281-288, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Parvinder Singh Sandhu, Assistant Professor, Department of Computer Science and Engineering,
Guru Nanak Dev Engineering College, Ludhiana(Punjab)- 141 0006 India. Tel: 9855532004

281

Intelligence System for Software Maintenance Severity Prediction

1Parvinder Singh Sandhu, 2Sunil Kumar and 3Hardeep Singh

1Department of Computer Science and Engineering, Guru Nanak Dev Engineering College,
Ludhiana, Punjab, India

 2Department of Computer Science and Engineering Lala Lajpat Rai Institute of Engineering
and Technology, Moga, India

3Department of Computer Science and Engineering Guru Nanak Dev University, Amritsar, Punjab, India

Abstract: The software industry has been experiencing a software crisis, a difficulty of delivering
software within budget, on time, and of good quality. This may happen due to number of defects
present in the different modules of the project that may require maintenance. This necessitates the need
of predicting maintenance urgency of the particular module in the software. In this paper, we have
applied the different predictor models to NASA five public domain defect datasets coded in C, C++,
Java and Perl programming languages. Twenty one software metrics of different datasets and Java
Classes of thirty five algorithms belonging to the different learner categories of the WEKA project
have been evaluated for the prediction of maintenance severity. The results of ten fold cross validation
are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE)
for different project datasets. The results show that logistic model Trees (LMT) and Complimentary
Naïve Bayes (CNB) based Model provide a relatively better prediction consistency compared to other
models and hence, can be used for the maintenance severity prediction of the software. The developed
system can also be used for analysis and to evaluate the influence of different factors on the
maintenance severity of different software project modules.

Key words: Prediction Models, Metrics, Accuracy, Maintenance Severity, MAE, RMSE

INTRODUCTION

Software maintenance is defined as the process of
modifying existing operational software after delivery
to the customer to correct faults, to improve
performance, and/or to adapt the product to a changed
environment. Maintenance is inevitable for almost any
kind of product. However, most products need
maintenance due to the wear and tear caused by use. On
the other hand, software products do not need
maintenance on this count, but need maintenance to
correct errors, enhance features, port to new platforms
etc. Maintenance requests[1] can be of corrective,
perfective, adaptive, user support and preventive types.
The software maintenance life cycle (SMLC) concept
recognizes four stages [2, 3] in the life of an application
software system: introduction, growth, maturation, and
decline.
 The software industry has been experiencing a
software crisis, a difficulty of delivering software
within budget, on time, and of good quality. At the
same time, the industry has experienced a dramatic
increase in the software life cycle costs of maintenance.
Pigoski [4] illustrates that the percentage of the
industry’s expenditures used for maintenance purposes
was 40 percent in the early 1970s, 55 percent in the
early 1980s, 75 percent in the late 1980s, and 90

percent in the early 1990s. Given its dominance in the
industry, the study of software maintenance is
increasingly prudent. It has also been noted [5] that over
50% of programmer effort is dedicated to maintenance.
According to Mall [12] the effort of development of a
typical software product to its maintenance effort is
roughly in the 40:60 ratios. Given this high cost, some
organizations are beginning to look at their
maintenance processes as areas for competitive
advantage.
 With real-time systems becoming more complex
and unpredictable, partly due to increasingly
sophisticated requirements, traditional software
development techniques might face difficulties in
satisfying these requirements. Future real-time software
systems may need to dynamically adapt themselves
based on the run-time mission-specific requirements
and operating conditions. This involves dynamic code
synthesis that generates modules to provide the
functionality required to perform the desired operations
in real-time. However, this necessitates the need to
develop a real-time assessment technique that classifies
these dynamically generated systems as being faulty /
maintenance free [6].
 A variety of software maintenance predictions
techniques have been proposed, but none has proven to
be consistently accurate. These techniques include

J. Computer Sci., 3 (5): 281-288, 2007

 282

statistical method, machine learning methods,
parametric models and mixed algorithms. Therefore,
there is a need to find the best prediction technique for
a given maintenance prediction dataset (MP) to
calculate the maintenance severity. In this paper we
have proposed a prediction model for quantifying the
impact of defects on the overall environment by
predicting maintenance severity.
 The basic hypothesis of software quality prediction
is that a module currently under development has
defects if a module with the similar product or process
metrics in an earlier project (or release) developed in
the same environment had defects [7]. Therefore, the
information available early within the current project or
from the previous project can be used in making
predictions. This methodology is very useful for the
large-scale projects or projects with multiple releases.
 Maintenance managers can apply existing
techniques that have been traditionally been used for
other types of applications. One system is not enough
for prediction purposes. The empirical study detailing
software maintenance for web based java applications
can be performed to aid in understanding and predicting
the software maintenance category and effort [8].
 With the advent of Total Quality Management,
organizations are using metrics to improve quality and
productivity [9]. Software maintenance organizations are
no exception. In 1987, the U.S. Navy established
centralized Software Support Activity (SSA) to provide
software maintenance for cryptologic systems. At that
time two systems were supported and a software
maintenance metrics program was established to
support the goals of the SSA.
 Visual approach [10] can be used to uncover the
relationship between evolving software and the way it
is affected by software bugs. By visually putting the
two aspects close to each other, we can characterize the
evolution of software artifacts.
 Software maintenance is central to the mission of
many organizations. Thus, it is natural for managers to
characterize and measure those aspects of products and
processes that seem to affect cost, schedule, quality,
and functionality of a software maintenance delivery
[13]. The importance o software maintenance in today's
software industry can not be overestimated.
 Statistical, machine learning, and mixed techniques
are widely used in the literature to predict software
defects. Khoshgoftaar [14] used zero-inflated Poisson
regression to predict the fault-proneness of software
systems with a large number of zero response variables.
He showed that zero-inflated Poisson regression is
better than Poisson regression for software quality
modeling. Munson and Khoshgoftaar [15,16] also
investigated the application of multivariate analysis to
regression and showed that reducing the number of
“independent” factors (attribute set) does not
significantly affect the Accuracy of software quality
prediction.

 Menzies, Ammar, Nikora, and Stefano[17]
compared decision trees, naïve Bayes, and 1-rule
classifier on the NASA software defect data. A clear
trend was not observed and different predictors scored
better on different data sets. However, their proposed
ROCKY classifier outscored all the above predictor
models. Emam, Benlarbi, Goel, and Rai [18] compared
different case-based reasoning classifiers and concluded
that there is no added advantage in varying the
combination of parameters (including varying nearest
neighbor and using different weight functions) of the
classifier to make the prediction Accuracy better.
 Bayesian Belief Networks (also known as Belief
Networks, Causal Probabilistic Networks, casual Nets,
Graphical Probability Networks, Probabilistic Cause-
Effect Models, and Probabilistic Influence
Diagrams)[19] have attracted much recent attention as a
possible solution for the problems of decision support
under uncertainty. Although the underlying theory
(Bayesian probability) has been around for a long time,
the possibility of building and executing realistic
models has only been made possible because of recent
algorithms and software tools that implement them.
Clearly defects are not directly caused by program
complexity alone. In reality the propensity to introduce
defects will be influenced by many factors unrelated to
code or design complexity.
 Many modeling techniques have been developed
and applied for software quality prediction. These
include logistic regression, discriminant analysis [20, 21],
the discriminative power techniques, Optimized Set
Reduction, artificial neural network [22-23], fuzzy
classification Bayesian Belief Networks (Fenton &
Neil, 1999), recently Dempster-Shafer Belief Networks.
For all these software quality models, there is a tradeoff
between the defect detection rate and the overall
prediction Accuracy. The software quality may be
analyzed with limited fault proneness data [24].

METHODOLOGY

The following steps are proposed for the prediction of
maintenance severity:
1. Deciding the relevant attributes of software

maintenance prediction and choosing the metric
corresponding to the selected attribute that could
have contribution towards prediction of
maintenance urgency/severity.

2. The Collection of sampled relevant MP data,
analyze and refine metrics data for different
projects.

3. Evaluate different prediction techniques and
selecting the best technique based on Accuracy
Percentage, Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE).

J. Computer Sci., 3 (5): 281-288, 2007

 283

Table 1: Details of the Projects Datasets used in the study

Sr.No Project # of instances # of instances with defects Preprocessing Source Code

1 KC1 2107 293 Missing values removed C++
2 JM1 10878 2102 Missing values removed C
3 PC4 370 178 Missing values removed C
4 KC3 458 29 Missing values removed Java
5 KC4 125 60 Missing values removed Perl

4. Developing an intelligence system using the best

technique as evaluated in the previous step.
5. Testing of the developed system.

 The real-time defect data sets used in this paper
has been accessed from the NASA’s MDP (Metric
Data Program) data repository. The KC1 data is
obtained from a science data processing project
coded in C++, containing 2107 modules. Out of these
293 modules have defects. The JM1 data is obtained
from a predictive ground system project, written in C,
containing 10878 modules. Out of these 2102
modules have defects. The PC4 data is collected from
a software system coded in C, containing 370
modules. Out of these 178 modules have defects. The
KC3 data is collected from a software system coded
in Java, containing 458 modules. Out of these 29
modules have defects. The KC4 data is collected
from a software system coded in Perl, containing 125
modules. Out of these 60 modules have defects as
shown in Table 1. All these data sets varied in the
percentage of defect modules, with the KC3 dataset
containing the least number of defect modules and
the JM1 dataset containing the largest.
 The Table 2 shows the different types of
predictor software metrics (independent variables)
used in our analysis. These complexity and size
metrics include well known metrics, such as
Halstead, McCabe, line count, operator/operand
count, and branch count metrics. Halstead metrics are
sensitive to program size and help in calculating the
programming effort in months. The different
Halstead metrics include length, volume, difficulty,
intelligent count, effort, error, and error estimate.
McCabe metrics measure code (control flow)
complexity and help in identifying vulnerable code.
The different McCabe metrics include cyclomatic
complexity, essential complexity, design complexity
and lines of code. The target metric (dependent
variable) is the "Severity".

RESULTS AND DISCUSSIONS

The Severity value quantifies the impact of the defect
on the overall environment with 1 being most severe
to 5 being least severe. For, example severity 1 may
imply that the defect caused a loss of functionality
without a workaround where severity 5 may mean
that the impact is superficial and did not cause any
disruptions to the system.

Table 2: Details of the Metrics Group used in the study
Metric
Type Metric Definition

McCabe

v(G)

ev(G)

iv(G)

ELOC

Cyclomatic Complexity
(CC)
Essential Complexity(EC)
Design Complexity(DC)
Lines of Code Executable

Derived
Halstead

N
V
L
D
I
E
B
T

Length
Volume
Level
Difficulty
Intelligent Count
Effort
Effort Estimate
Programming Time

Line
Count

LOCode
LOComment
LOBlank
LOCodeAndComment

Lines of Code
Lines of Comment
Lines of Blank
Lines of Code and
Comment

Basic
Halstead

UniqOp
UniqOpnd
TotalOp
TotalOpnd

Unique Operators
Unique Operands
Total Operators
Total Operands

Branch BranchCount Total Branch Count

Table 3: Maintenance Severity values used in this study

Number of instances having
maintenance severity value S.No Project
1 2 3 4 5

1 KC1 48 207 28 8 2
2 JM1 343 163 1146 64 386
3 PC4 58 40 80 0 0
4 KC3 0 25 3 0 1
5 KC4 3 23 31 0 3

 The Table 3 shows the no of modules with defect
associations of different projects having maintenance
severity value of 1, 2, 3, 4 and 5 respectively. We have
used MATLAB 7.2 and Java Classes of Weka Project [11]
to conduct these experiments. Thirty five algorithms
belonging to the six learner categories of the WEKA
project have been evaluated on five projects for the
prediction of maintenance severity. The ten fold cross
validation results are recorded in terms of Accuracy, MAE
and RMSE for different project as specified earlier. Table

J. Computer Sci., 3 (5): 281-288, 2007

 284

4, Table 5 and Table 6 are derived from Table 7 and
Table 8 by selecting the best algorithm from each
category based on Accuracy, MAE and RMSE. The
detailed tables implementing all the prediction
algorithms on five different projects are shown in the
Appendix section of the paper.

Table 4: Accuracy Percentage for different projects shown by

different prediction algorithms (PA)

Accuracy Percentage for Different Projects Considered
PA

KC1

JM1

KC3

KC4

PC4

CNB 62.4573 53.8535 41.3793 65 52.2472

LWL 69.2833 54.6622 82.7586 55 53.9326

CVR 70.9898 56.5176 86.2069 58.3333 54.4944

LMT 70.3072 55.3283 86.2069 65 58.9888

RBF 66.8942 54.0913 79.3103 53.3333 53.9326

SL 70.3072 54.9001 86.2069 65 57.3034

Table 5: Mean Absolute Error (MAE) for different projects

shown by different prediction algorithms
MAE for Different Projects Considered

PA KC1

JM1

KC3

KC4

PC4

CNB 0.1502 0.1846 0.2345 0.14 0.191

LWL 0.1855 0.2513 0.106 0.2207 0.2329

CVR 0.1784 0.2416 0.1011 0.2255 0.2257

LMT 0.1887 0.246 0.1127 0.2145 0.2242

RBF 0.1833 0.2516 0.0914 0.2147 0.2344
SL 0.1887 0.248 0.1172 0.2145 0.2251

Table 6: Root Mean Squared Error (RMSE) for different projects

shown by different prediction algorithms (PA)

RMSE for Different Projects Considered
PA KC1

JM1

KC3

KC4

PC4

CNB 0.3875 0.4296 0.4842 0.3742 0.437

LWL 0.3085 0.3552 0.2787 0.3548 0.348

CVR 0.3064 0.3506 0.2317 0.3396 0.3425

LMT 0.3076 0.3524 0.2224 0.3285 0.3395

RBF 0.3133 0.3563 0.2588 0.3694 0.3514

SL 0.3076 0.3533 0.2235 0.3285 0.3371

 We have used abbreviations in the tables and
figures to represent different predictive methods and
other terms: Complement Naive Bayes (CNB),
Logistic Model Trees (LMT), Classification via
Regression (CVR), RBFNetwork (RBF), Simple
Logistic (SL), Predictive Algorithm (PA), Mean

Absolute Error (MAE) and Root Mean Squared Error
(RMSE).

Prediction based on Accuracy Percentage: The Fig. 1
derived from Table 4 shows that Classification via
Regression (CVR) performed better for KC1 and JM1
data and LMT performed better for KC4 and PC4 data
sets. For KC3 data sets the both have performed equally.
But, there is very less difference in Accuracy values of
LMT and CVR for KC1 and JM1 as compared to
Accuracy values for KC4 and PC4. Though, CVR
produced good Accuracy results, yet LMT is much better
for maintenance severity analysis based on Accuracy
percentage results.

0
10
20
30
40
50
60
70
80
90

100

KC1 JM1 KC3 KC4 PC4

Projects

A
cc

ur
ac

y
Pe

rc
en

ta
ge CNB

LWL

CVR

LMT

RBF

SL

Fig. 1: Accuracy Percentage vs. Projects with different

prediction techniques

Prediction based on Mean Absolute Error: The Fig. 2
derived from Table 5 shows that Complement Naive
Bayes (CNB) performed better for KC1, JM1, KC4 and
PC4 data sets. For KC3 data sets RBF Network has
performed better. Though, RBF produced good results,
yet CNB is much better for maintenance severity analysis
based on mean absolute error calculations. It suggests the
use of CNB as one of the foremost technique for
maintenance severity prediction

0

0.05

0.1

0.15

0.2

0.25

0.3

KC1 JM1 KC3 KC4 PC4

Projects

M
A

E

CNB

LWL

CVR

LMT

RBF

SL

Fig. 2: MAE vs. Projects Graph with different prediction

techniques

J. Computer Sci., 3 (5): 281-288, 2007

 285

Prediction based on Root Mean Squared Error:
The Fig. 3 derived from Table 6 shows that
Classification via Regression (CVR) performed better
for KC1 and JM1 data, LMT performed better for
KC3 and KC4 data sets and SL performed better for
KC4 and PC4 data sets . For KC4 data sets the LMT
and SL have performed equally. But, LMT has
performed better than SL for KC1, JM1 and KC3
datasets. Also, LMT has performed better than CVR
for PC4 data sets and there is not much difference in
results for KC1 and JM1 data sets. So, LMT is much
better for maintenance severity Prediction based on
RMSE results.

0

0.1

0.2

0.3

0.4

0.5

0.6

KC1 JM1 KC3 KC4 PC4

Projects

R
M

SE

CNB

LWL

CVR

LMT

RBF

SL

Fig. 3: RMSE vs. Projects Graph with different

prediction techniques

CONCLUSION

We have compared different prediction models for
predicting the maintenance urgency of different
projects having modules with defects. We have seen
that there in no particular predicting technique that
performed the best for all the data sets based on
Accuracy, Mean Absolute Error (MAE) and Root
Mean Squared error (RMSE). However,
Classification via Regression (CVR) and Logistic
Model Trees (LMT) are the better methods that
showed relatively better result consistency in
predicting Accuracy percentage and RMSE value.
CNB has shown better result consistency in

predicting MAE value. But, logistic model Trees (LMT)
and Complimentary Naïve Bayes (CNB) based Model
provide a relatively better prediction consistency
compared to other models and hence, can be used for the
maintenance severity prediction of the software.
 So, the predicted model can be used to automate the
calculation of maintenance severity of defective modules
.We can also prioritize that which module should be
maintained first based on predicted maintenance severity
value and this will reduce the amount of effort required to
maintain that particular module. Hence, the productivity
and ease of use of the software will be increased. In
Future, the developed system can also be used for analysis
and to evaluate the influence of different factors on the
maintenance severity of different software project
modules.

APPENDIX

Appendix has two tables: Table 7 and Table 8. The Table
7 shows the results of prediction algorithms on KC1, JM1
and KC3 projects datasets. The Table8 shows the results
of prediction algorithms on KC4 and PC4 projects
datasets. The name of all the 35 algorithms are BayesNet
(BN) , Complement Naive Bayes (CNB), Naive Bayes
(NB), Naive Bayes Multinomial (NBM), IB1, IBk, KStar,
LWL, AdaBoostM1 (ABM1), Attribute Selected
Classifier (ASC), Bagging, Decorate, Classification Via
Regression (CVR), CVParameter Selection (CVPS),
FilteredClassifier (FC), LogitBoost (LB), MultiBoostAB
(MBAB), Ordinal Class Classifier (OCC), Raced
Incremental LogitBoost (RILB), MultiClass Classifier
(MCC), Random Committee (RC), HyperPipes (HP),
VFI, J48, Decision Stump (DS), LMT, NBTree,
RandomForest (RF), RandomTree (RT), REPTree,
RBFNetwork (RBF), Logistic, Multilayer Perceptron
(MP), Simple Logistic (SL), SMO. They all belong to the
six categories Bayes, Function, Lazy, Meta,
Miscellaneous and Trees.

J. Computer Sci., 3 (5): 281-288, 2007

 286

Table 7: Accuracy and Errors shown by different models on predicting maintenance severity
KC1 Statistics after 10 fold

Cross-Validation

JM1 Statistics after 10 fold

Cross-Validation

KC3 Statistics after 10 fold

Cross-Validation

Classification

/ Prediction

Algorithm Accuracy MAE RMSE Accuracy MAE RMSE Accuracy MAE RMSE

BN 69.9659 0.1904 0.3078 32.3977 0.2726 0.4692 86.2069 0.1198 0.2291

CNB 62.4573 0.1502 0.3875 53.8535 0.1846 0.4296 41.3793 0.2345 0.4842

NB 15.6997 0.336 0.5653 22.0742 0.3109 0.5471 48.2759 0.2069 0.4549

NBM 12.2867 0.3511 0.5922 20.5519 0.3183 0.5622 37.931 0.2483 0.4967

IB1 59.0444 0.1638 0.4047 46.5271 0.2139 0.4625 72.4138 0.1103 0.3322

IBk 58.0205 0.1698 0.4024 46.7174 0.214 0.4606 72.4138 0.144 0.311

KStar 54.6075 0.1844 0.4041 46.8126 0.2226 0.4262 65.5172 0.1351 0.3595

LWL 69.2833 0.1855 0.3085 54.6622 0.2513 0.3552 82.7586 0.106 0.2787

ABM1 69.9659 0.212 0.321 54.5195 0.2522 0.3557 86.2069 0.1287 0.255

ASC 70.6485 0.1857 0.3047 53.3302 0.2363 0.3738 86.2069 0.1006 0.2279

Bagging 69.6246 0.1836 0.3051 55.7088 0.2375 0.3488 86.2069 0.1101 0.2324

Decorate 62.7986 0.1794 0.3393 54.9477 0.2239 0.3573 72.4138 0.1275 0.2752

CVR 70.9898 0.1784 0.3064 56.5176 0.2416 0.3506 86.2069 0.1011 0.2317

CVPS 70.6485 0.1882 0.3048 54.5195 0.2544 0.3565 86.2069 0.1359 0.233

FC 70.6485 0.1857 0.3047 54.6622 0.2466 0.355 86.2069 0.1006 0.2279

LB 69.6246 0.1736 0.3082 55.471 0.244 0.3516 72.4138 0.1096 0.3195

MBAB 69.9659 0.212 0.321 54.5195 0.2522 0.3557 82.7586 0.0806 0.2675

OCC 64.8464 0.1915 0.3352 52.8069 0.2411 0.3674 72.4138 0.1418 0.3239

RILB 70.6485 0.1882 0.3048 54.6147 0.2423 0.3579 86.2069 0.1359 0.233

MCC 66.8942 0.3032 0.38 55.0428 0.3113 0.3896 72.4138 0.2972 0.3731

RC 63.8225 0.1773 0.3307 54.6147 0.2191 0.3579 75.8621 0.1269 0.3026

HP 20.1365 0.3017 0.385 16.6508 0.3196 0.3996 86.2069 0.1562 0.2727

VFI 14.6758 0.3124 0.4004 15.0333 0.3197 0.4005 44.8276 0.2272 0.3514

J48 62.116 0.18 0.367 48.2873 0.2269 0.4204 75.8621 0.1097 0.2982

DS 69.9659 0.1861 0.308 54.5195 0.2522 0.3557 86.2069 0.0949 0.2437

LMT 70.3072 0.1887 0.3076 55.3283 0.246 0.3524 86.2069 0.1127 0.2224

NBTree 68.942 0.1927 0.312 56.0419 0.2431 0.353 86.2069 0.1359 0.233

RF 67.9181 0.1664 0.3154 53.568 0.2233 0.3585 82.7586 0.1145 0.2779

RT 58.7031 0.1646 0.4031 45.0048 0.2202 0.4682 68.9655 0.1241 0.3523

REPTree 69.2833 0.1855 0.3184 55.3758 0.2369 0.3617 86.2069 0.1124 0.2286

RBF 66.8942 0.1833 0.3133 54.0913 0.2516 0.3563 79.3103 0.0914 0.2588

Logistic 65.529 0.1804 0.328 54.9001 0.2456 0.3532 68.9655 0.124 0.3516

MP 66.8942 0.175 0.32 55.0428 0.2461 0.3538 79.3103 0.1024 0.2571

SL 70.3072 0.1887 0.3076 54.9001 0.248 0.3533 86.2069 0.1172 0.2235

SMO 70.6485 0.2586 0.3443 54.6147 0.2732 0.365 86.2069 0.2294 0.3228

J. Computer Sci., 3 (5): 281-288, 2007

 287

Table 7: Accuracy and Errors shown by different models on predicting maintenance severity

KC4 Statistics after 10 fold
Cross-Validation

PC4 Statistics after 10 fold
Cross-Validation Classification / Prediction

Algorithm

Accuracy MAE RMSE Accuracy MAE RMSE

BN 51.6667 0.2372 0.3423 52.2472 0.1998 0.3782

CNB 65 0.14 0.3742 52.2472 0.191 0.437
NB 23.3333 0.281 0.4813 50.5618 0.1965 0.4289

NBM 65 0.1802 0.3719 46.0674 0.2168 0.4635

IB1 53.3333 0.1867 0.432 44.9438 0.2202 0.4693
IBk 53.3333 0.1995 0.4151 44.9438 0.2232 0.4623
KStar 51.6667 0.2105 0.3954 49.4382 0.2032 0.4302
LWL 55 0.2207 0.3548 53.9326 0.2329 0.348

ABM1 55 0.2527 0.3583 53.3708 0.3027 0.3862

ASC 48.3333 0.2397 0.3559 44.382 0.2423 0.4075
Bagging 63.3333 0.2186 0.3359 54.4944 0.2204 0.3385
Decorate 50 0.2264 0.3756 46.0674 0.2323 0.3738
CVR 58.3333 0.2255 0.3396 54.4944 0.2257 0.3425

CVPS 51.6667 0.2407 0.3426 44.9438 0.2585 0.3582

FC 51.6667 0.2333 0.3423 53.9326 0.2241 0.3462

LB 55 0.2125 0.3629 55.618 0.2194 0.353

MBAB 55 0.2527 0.3583 53.3708 0.3019 0.3856

OCC 55 0.2216 0.3635 46.0674 0.2265 0.3949

RILB 51.6667 0.2407 0.3426 44.9438 0.2585 0.3582

MCC 63.3333 0.3045 0.3815 55.0562 0.3084 0.3864

RC 50 0.1887 0.3822 49.4382 0.2283 0.368
HP 28.3333 0.2971 0.3838 34.8315 0.2648 0.3631
VFI 38.3333 0.2843 0.3769 53.3708 0.2584 0.3651
J48 55 0.219 0.3885 41.573 0.2448 0.4481

DS 55 0.2229 0.3557 53.3708 0.2366 0.3512

LMT 65 0.2145 0.3285 58.9888 0.2242 0.3395

NBTree 56.6667 0.2348 0.3448 49.4382 0.2296 0.3594

RF 55 0.2058 0.3626 52.809 0.2153 0.3524

RT 46.6667 0.2167 0.4637 45.5056 0.218 0.4669

REPTree 60 0.2236 0.3512 53.9326 0.2248 0.3576

RBF 53.3333 0.2147 0.3694 53.9326 0.2344 0.3514

Logistic 60 0.1934 0.3369 52.809 0.2222 0.3581
MP 60 0.2138 0.3307 50.5618 0.2167 0.3741
SL 65 0.2145 0.3285 57.3034 0.2251 0.3371
-SMO 53.3333 0.2667 0.3559 55.618 0.2509 0.3501

J. Computer Sci., 3 (5): 281-288, 2007

 288

REFERENCES

1. Abrand, A. and H. Nguyenkim, 1991. Analysis of

Maintenance Work Categories Through
Measurement. Proceedings of IEEE Conference on
Software Maintenance, Sorrento, Italy: IEEE, pp:
104-113.

2. Kung, H. and C. Hsu, 1998. Software Maintenance
Life Cycle Model. Proceedings International
Conference on Software Maintenance, IEEE 1998,
Washington D.C.

3. Hsiang-Jui, Kung, 2004. Quantitative Method to
Determine Software Maintenance Life Cycle.
Proceedings of the 20th IEEE International
Conference on Software Maintenance, IEEE, 2004.

4. Pigoski, T. M., 1997. Practical Software
Maintenance. Wiley computer publishing, 1997.

5. Gibson, V. and J. Senn, 1989. System Structure
and Software Maintenance Performance. Comm. of
ACM, 27(3): 347-358.

6. Venkata, U.B., B. Challagulla, B. Bastani Farokh,
Y. I-Ling, 2005. Empirical Assessment of machine
Learning based Software Defect Prediction
Techniques. Proceedings of the 10th IEEE
International Workshop on Object-Oriented Real-
Time Dependable Systems (WORDS’05), IEEE
2005.

7. Khoshgoftaar, T. M., E. B. Allen, F. D. Ross, R.
Munikoti, N. Goel, and A. Nandi, 1997. Predicting
fault-prone modules with case-based reasoning.
ISSRE-1997 the Eighth International Symposium
on Software Engineering IEEE Computer Society,
pp: 27-35.

8. Lee, Min-Gu and L. Jefferson Theresa, 2005. An
Empirical Study of Software Maintenance of a
Web-based Java Application. Proceedings of the
21st IEEE

9. International Conference on Software Maintenance
(ICSM’05), IEEE-2005.

10. Thomas M. Pigoski and Lauren E. Nelson, 1994.
Software Maintenance Metrics: A Case Study.
Proceedings of IEEE Conference on Software
Maintenance, IEEE (1994).

11. Ambros, Marco D' and Michle Lanza, 2006.
Software Bugs and Evolution: A Visual Approach
to uncover their relationship. Proceedings of IEEE
Conference on Software Maintenance and
Reegineering (CSMR' 06), IEEE (2006).

12. www.cs.waikato.ac.nz/~ml/weka/
13. Mall, Rajib, 2005. Fundamentals of software

Engineering. Prentice Hall of India Publishers, pp:
10-20.

14. Stark, George E., 1996. Measurements for
Managing Software Maintenance. IEEE computer
Society (1996).

15. Khoshgoftaar, T.M., K. Gao and R. M. Szabo,
2001. An Application of Zero-Inflated Poisson
Regression for Software Fault Prediction. Software
Reliability Engineering, ISSRE 2001. Proceedings
of 12th International Symposium on, 27-30 Nov.
(2001), pp: 66 -73.

16. Munson, J. and T. Khoshgoftaar, 1990. Regression
Modeling of Software Quality: An Empirical
Investigation. Information and Software
Technology, 32(2): 106 - 114.

17. Khoshgoftaar, T. M. and J. C. Munson, 1990.
Predicting Software Development Errors using
Complexity Metrics. IEEE Journal on Selected
Areas in Communications, 8(2): 253 -261.

18. Menzies, T., K. Ammar, A. Nikora, and S. Stefano,
2003. How Simple is Software Defect Prediction?
Journal of Empirical Software Engineering,
October (2003).

19. Eman, K., S. Benlarbi, N. Goel and S. Rai, 2001.
Comparing case-based reasoning classifiers for
predicting high risk software components. Journal
of Systems Software, 55(3): 301 – 310.

20. Fenton, N.E. and M. Neil, 1999. A critique of
software defect prediction models. IEEE Trans. on
Software Engineering, 25(5): 675 -689.

21. Hudepohl, J. P., S. J. Aud, T. M. Khoshgoftaar, E.
B. Allen, and J. E. Mayrand, 1996. Software
Metrics and Models on the Desktop. IEEE
Software, 13(5): 56-60.

22. Khoshgoftaar, T. M., E. B. Allen, K. S.
Kalaichelvan, and N. Goel, 1996. Early quality
prediction: a case study in telecommunications.
IEEE Software (1996), 13(1): 65-71.

23. Khoshgoftaar, T. M. and N. Seliya, 2002. Tree-
based software quality estimation models for fault
prediction. METRICS 2002, the Eighth IIIE
Symposium on Software Metrics, pp: 203-214.

24. Seliya N., T. M. Khoshgoftaar, S. Zhong, 2005.
Analyzing software quality with limited fault-
proneness defect data. Ninth IEEE international
Symposium, Oct 12-14, (2005).

25. Munson, J. C. and T. M. Khoshgoftaar, 1992. The
detection of fault-prone programs. IEEE
Transactions on Software Engineering, 18(5): 423-
433.

