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Abstract: The software industry has been experiencing a software crisis, a difficulty of delivering 
software within budget, on time, and of good quality. This may happen due to number of defects 
present in the different modules of the project that may require maintenance. This necessitates the need 
of predicting maintenance urgency of the particular module in the software. In this paper, we have 
applied the different predictor models to NASA five public domain defect datasets coded in C, C++, 
Java and Perl programming languages. Twenty one software metrics of different datasets and Java 
Classes of thirty five algorithms belonging to the different learner categories of the WEKA project 
have been evaluated for the prediction of maintenance severity.  The results of ten fold cross validation 
are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) 
for different project datasets. The results show that logistic model Trees (LMT) and Complimentary 
Naïve Bayes (CNB) based Model provide a relatively better prediction consistency compared to other 
models and hence, can be used for the maintenance severity prediction of the software. The developed 
system can also be used for analysis and to evaluate the influence of different factors on the 
maintenance severity of different software project modules. 
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INTRODUCTION 

 
Software maintenance is defined as the process of 
modifying existing operational software after delivery 
to the customer to correct faults, to improve 
performance, and/or to adapt the product to a changed 
environment. Maintenance is inevitable for almost any 
kind of product. However, most products need 
maintenance due to the wear and tear caused by use. On 
the other hand, software products do not need 
maintenance on this count, but need maintenance to 
correct errors, enhance features, port to new platforms 
etc. Maintenance requests[1] can be of corrective, 
perfective, adaptive, user support and preventive types. 
The software maintenance life cycle (SMLC) concept 
recognizes four stages [2, 3] in the life of an application 
software system: introduction, growth, maturation, and 
decline.  
 The software industry has been experiencing a 
software crisis, a difficulty of delivering software 
within budget, on time, and of good quality. At the 
same time, the industry has experienced a dramatic 
increase in the software life cycle costs of maintenance. 
Pigoski [4] illustrates that the percentage of the 
industry’s expenditures used for maintenance purposes 
was 40 percent in the early 1970s, 55 percent in the 
early 1980s, 75 percent in the late 1980s, and 90 

percent in the early 1990s. Given its dominance in the 
industry, the study of software maintenance is 
increasingly prudent. It has also been noted [5] that over 
50% of programmer effort is dedicated to maintenance. 
According to Mall [12] the effort of development of a 
typical software product to its maintenance effort is 
roughly in the 40:60 ratios. Given this high cost, some 
organizations are beginning to look at their 
maintenance processes as areas for competitive 
advantage.  
 With real-time systems becoming more complex 
and unpredictable, partly due to increasingly 
sophisticated requirements, traditional software 
development techniques might face difficulties in 
satisfying these requirements. Future real-time software 
systems may need to dynamically adapt themselves 
based on the run-time mission-specific requirements 
and operating conditions. This involves dynamic code 
synthesis that generates modules to provide the 
functionality required to perform the desired operations 
in real-time. However, this necessitates the need to 
develop a real-time assessment technique that classifies 
these dynamically generated systems as being faulty / 
maintenance free [6].  
 A variety of software maintenance predictions 
techniques have been proposed, but none has proven to 
be consistently accurate. These techniques include 
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statistical method, machine learning methods, 
parametric models and mixed algorithms. Therefore, 
there is a need to find the best prediction technique for 
a given maintenance prediction dataset (MP) to 
calculate the maintenance severity. In this paper we 
have proposed a prediction model for quantifying the 
impact of defects on the overall environment by 
predicting maintenance severity.  
 The basic hypothesis of software quality prediction 
is that a module currently under development has 
defects if a module with the similar product or process 
metrics in an earlier project (or release) developed in 
the same environment had defects [7]. Therefore, the 
information available early within the current project or 
from the previous project can be used in making 
predictions. This  methodology is very useful for the 
large-scale projects or projects with multiple releases. 
 Maintenance managers can apply existing 
techniques that have been traditionally been used for 
other types of applications. One system is not enough 
for prediction purposes. The empirical study detailing 
software maintenance for web based java applications 
can be performed to aid in understanding and predicting 
the software maintenance category and effort [8].  
 With the advent of Total Quality Management, 
organizations are using metrics to improve quality and 
productivity [9]. Software maintenance organizations are 
no exception. In 1987, the U.S. Navy established 
centralized Software Support Activity (SSA) to provide 
software maintenance for cryptologic systems. At that 
time two systems were supported and a software 
maintenance metrics program was established to 
support the goals of the SSA. 
 Visual approach [10] can be used to uncover the 
relationship between evolving software and the way it 
is affected by software bugs. By visually putting the 
two aspects close to each other, we can characterize the 
evolution of software artifacts. 
 Software maintenance is central to the mission of 
many organizations. Thus, it is natural for managers to 
characterize and measure those aspects of products and 
processes that seem to affect cost, schedule, quality, 
and functionality of a software maintenance delivery 
[13]. The importance o software maintenance in today's 
software industry can not be overestimated.  
 Statistical, machine learning, and mixed techniques 
are widely used in the literature to predict software 
defects. Khoshgoftaar [14] used zero-inflated Poisson 
regression to predict the fault-proneness of software 
systems with a large number of zero response variables. 
He showed that zero-inflated Poisson regression is 
better than Poisson regression for software quality 
modeling. Munson and Khoshgoftaar [15,16] also 
investigated the application of multivariate analysis to 
regression and showed that reducing the number of 
“independent” factors (attribute set) does not 
significantly affect the Accuracy of software quality 
prediction. 

 Menzies, Ammar, Nikora, and Stefano[17] 
compared decision trees, naïve Bayes, and 1-rule 
classifier on the NASA software defect data. A clear 
trend was not observed and different predictors scored 
better on different data sets. However, their proposed 
ROCKY classifier outscored all the above predictor 
models. Emam, Benlarbi, Goel, and Rai [18] compared 
different case-based reasoning classifiers and concluded 
that there is no added advantage in varying the 
combination of parameters (including varying nearest 
neighbor and using different weight functions) of the 
classifier to make the prediction Accuracy better. 
 Bayesian Belief Networks (also known as Belief 
Networks, Causal Probabilistic Networks, casual Nets, 
Graphical Probability Networks, Probabilistic Cause-
Effect Models, and Probabilistic Influence 
Diagrams)[19] have attracted much recent attention as a 
possible solution for the problems of decision support 
under uncertainty. Although the underlying theory 
(Bayesian probability) has been around for a long time, 
the possibility of building and executing realistic 
models has only been made possible because of recent 
algorithms and software tools that implement them. 
Clearly defects are not directly caused by program 
complexity alone. In reality the propensity to introduce 
defects will be influenced by many factors unrelated to 
code or design complexity. 
 Many modeling techniques have been developed 
and applied for software quality prediction. These 
include logistic regression, discriminant analysis [20, 21], 
the discriminative power techniques, Optimized Set 
Reduction, artificial neural network [22-23], fuzzy 
classification Bayesian Belief Networks (Fenton & 
Neil, 1999), recently Dempster-Shafer Belief Networks. 
For all these software quality models, there is a tradeoff 
between the defect detection rate and the overall 
prediction Accuracy. The software quality may be 
analyzed with limited fault proneness data [24].  
 

METHODOLOGY 
 
The following steps are proposed for the prediction of 
maintenance severity:  
1. Deciding the relevant attributes of software 

maintenance prediction and choosing the metric 
corresponding to the selected attribute that could 
have contribution towards prediction of 
maintenance urgency/severity. 

2. The Collection of sampled relevant MP data, 
analyze and refine metrics data for different 
projects. 

3. Evaluate different prediction techniques and 
selecting the best technique based on Accuracy 
Percentage, Mean Absolute Error (MAE) and Root 
Mean Squared Error (RMSE). 
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Table 1: Details of the Projects Datasets used in the study 

Sr.No Project # of instances # of instances with defects Preprocessing Source Code 

1 KC1 2107 293 Missing values removed C++ 
2 JM1 10878 2102 Missing values removed C 
3 PC4 370 178 Missing values removed C 
4 KC3 458 29 Missing values removed Java 
5 KC4 125 60 Missing values removed Perl 

  
4. Developing an intelligence system using the best 

technique as evaluated in the previous step. 
5. Testing of the developed system.  
 
 The real-time defect data sets used in this paper 
has been accessed from the NASA’s MDP (Metric 
Data Program) data repository. The KC1 data is 
obtained from a science data processing project 
coded in C++, containing 2107 modules. Out of these 
293 modules have defects. The JM1 data is obtained 
from a predictive ground system project, written in C, 
containing 10878 modules. Out of these 2102 
modules have defects. The PC4 data is collected from 
a software system coded in C, containing 370 
modules. Out of these 178 modules have defects. The 
KC3 data is collected from a software system coded 
in Java, containing 458 modules. Out of these 29 
modules have defects. The KC4 data is collected 
from a software system coded in Perl, containing 125 
modules. Out of these 60 modules have defects as 
shown in Table 1. All these data sets varied in the 
percentage of defect modules, with the KC3 dataset 
containing the least number of defect modules and 
the JM1 dataset containing the largest.  
 The Table 2 shows the different types of 
predictor software metrics (independent variables) 
used in our analysis. These complexity and size 
metrics include well known metrics, such as 
Halstead, McCabe, line count, operator/operand 
count, and branch count metrics. Halstead metrics are 
sensitive to program size and help in calculating the 
programming effort in months. The different 
Halstead metrics include length, volume, difficulty, 
intelligent count, effort, error, and error estimate. 
McCabe metrics measure code (control flow) 
complexity and help in identifying vulnerable code. 
The different McCabe metrics include cyclomatic 
complexity, essential complexity, design complexity 
and lines of code. The target metric (dependent 
variable) is the "Severity".  
 

RESULTS AND DISCUSSIONS 
 
The Severity value quantifies the impact of the defect 
on the overall environment with 1 being most severe 
to 5 being least severe. For, example severity 1 may 
imply that the defect caused a loss of functionality 
without a workaround where severity 5 may mean 
that the impact is superficial and did not cause any 
disruptions to the system. 

Table 2: Details of the Metrics Group used in the study  
Metric 
Type Metric Definition 

McCabe 

v(G) 
 
ev(G) 
 
iv(G) 
 
ELOC 

Cyclomatic Complexity 
(CC) 
Essential Complexity(EC) 
Design Complexity(DC) 
Lines of Code Executable 

Derived 
Halstead 

N 
V 
L 
D 
I 
E 
B 
T 

Length 
Volume 
Level 
Difficulty 
Intelligent Count 
Effort 
Effort Estimate 
Programming Time 

Line 
Count 

LOCode 
LOComment 
LOBlank 
LOCodeAndComment 

Lines of Code 
Lines of Comment 
Lines of Blank 
Lines of Code and 
Comment 

Basic 
Halstead 

UniqOp 
UniqOpnd 
TotalOp 
TotalOpnd 

Unique Operators 
Unique Operands 
Total Operators 
Total Operands 

Branch BranchCount Total Branch Count 

 
Table 3: Maintenance Severity values used in this study   

Number of instances having 
maintenance severity value S.No Project 
1 2 3 4 5 

1 KC1 48 207 28 8 2 
2 JM1 343 163 1146 64 386 
3 PC4 58 40 80 0 0 
4 KC3 0 25 3 0 1 
5 KC4 3 23 31 0 3 

 
 The Table 3 shows the no of modules with defect 
associations of different projects having maintenance 
severity value of 1, 2, 3, 4 and 5 respectively. We have 
used MATLAB 7.2 and Java Classes of Weka Project [11] 
to conduct these experiments. Thirty five algorithms 
belonging to the six learner categories of the WEKA 
project have been evaluated on five projects for the 
prediction of maintenance severity. The ten fold cross 
validation results are recorded in terms of Accuracy, MAE 
and RMSE for different project as specified earlier. Table 
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4, Table 5 and Table 6 are derived from Table 7 and 
Table 8 by selecting the best algorithm from each 
category based on Accuracy, MAE and RMSE. The 
detailed tables implementing all the prediction 
algorithms on five different projects are shown in the 
Appendix section of the paper. 
 
Table 4: Accuracy Percentage for different projects shown by 

different prediction algorithms (PA)     

Accuracy Percentage for Different Projects Considered  
PA 

KC1 
 

JM1 
 

KC3 
 

KC4 
 

PC4 
 

CNB 62.4573 53.8535 41.3793 65 52.2472 

LWL 69.2833 54.6622 82.7586 55 53.9326 

CVR 70.9898 56.5176 86.2069 58.3333 54.4944 

LMT 70.3072 55.3283 86.2069 65 58.9888 

RBF 66.8942 54.0913 79.3103 53.3333 53.9326 

SL 70.3072 54.9001 86.2069 65 57.3034 

 
Table 5: Mean Absolute Error (MAE) for different projects 

shown by different prediction algorithms 
MAE for Different Projects Considered 

PA KC1 
 

JM1 
 

KC3 
 

KC4 
 

PC4 
 

CNB 0.1502 0.1846 0.2345 0.14 0.191 

LWL 0.1855 0.2513 0.106 0.2207 0.2329 

CVR 0.1784 0.2416 0.1011 0.2255 0.2257 

LMT 0.1887 0.246 0.1127 0.2145 0.2242 

RBF 0.1833 0.2516 0.0914 0.2147 0.2344 
SL 0.1887 0.248 0.1172 0.2145 0.2251 

 
Table 6: Root Mean Squared Error (RMSE) for different projects 

shown by different prediction algorithms (PA) 

RMSE for Different Projects Considered 
PA KC1 

 
JM1 
 

KC3 
 

KC4 
 

PC4 
 

CNB 0.3875 0.4296 0.4842 0.3742 0.437 

LWL 0.3085 0.3552 0.2787 0.3548 0.348 

CVR 0.3064 0.3506 0.2317 0.3396 0.3425 

LMT 0.3076 0.3524 0.2224 0.3285 0.3395 

RBF 0.3133 0.3563 0.2588 0.3694 0.3514 

SL 0.3076 0.3533 0.2235 0.3285 0.3371 
 
 We have used abbreviations in the tables and 
figures to represent different predictive methods and 
other terms: Complement Naive Bayes (CNB), 
Logistic Model Trees (LMT), Classification via 
Regression (CVR), RBFNetwork (RBF), Simple 
Logistic (SL), Predictive Algorithm (PA), Mean 

Absolute Error (MAE) and Root Mean Squared Error 
(RMSE). 
 
Prediction based on Accuracy Percentage: The Fig. 1 
derived from Table 4 shows that Classification via 
Regression (CVR) performed better for KC1 and JM1 
data and LMT performed better for KC4 and PC4 data 
sets. For KC3 data sets the both have performed equally. 
But, there is very less difference in Accuracy values of 
LMT and CVR for KC1 and JM1 as compared to 
Accuracy values for KC4 and PC4. Though, CVR 
produced good Accuracy results, yet LMT is much better 
for maintenance severity analysis based on Accuracy 
percentage results.  
 
 

0
10
20
30
40
50
60
70
80
90

100

KC1 JM1 KC3 KC4 PC4

Projects 

A
cc

ur
ac

y 
Pe

rc
en

ta
ge CNB

LWL

CVR

LMT

RBF

SL

 
Fig. 1: Accuracy Percentage vs. Projects with different 

prediction techniques 
 
Prediction based on Mean Absolute Error: The Fig. 2 
derived from Table 5 shows that Complement Naive 
Bayes (CNB) performed better for KC1, JM1, KC4 and 
PC4 data sets. For KC3 data sets RBF Network has 
performed better. Though, RBF produced good results, 
yet CNB is much better for maintenance severity analysis 
based on mean absolute error calculations. It suggests the 
use of CNB as one of the foremost technique for 
maintenance severity prediction 
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Prediction based on Root Mean Squared Error: 
The Fig. 3 derived from Table 6 shows that 
Classification via Regression (CVR) performed better 
for KC1 and JM1 data, LMT performed better for 
KC3 and KC4 data sets and SL performed better for 
KC4 and PC4 data sets . For KC4 data sets the LMT 
and SL have performed equally. But, LMT has 
performed better than SL for KC1, JM1 and KC3 
datasets. Also, LMT has performed better than CVR 
for PC4 data sets and there is not much difference in 
results for KC1 and JM1 data sets. So, LMT is much 
better for maintenance severity Prediction based on 
RMSE results. 
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Fig. 3: RMSE vs. Projects Graph with different 

prediction techniques 
 

CONCLUSION 
 
We have compared different prediction models for 
predicting the maintenance urgency of different 
projects having modules with defects. We have seen 
that there in no particular predicting technique that 
performed the best for all the data sets based on 
Accuracy, Mean Absolute Error (MAE) and Root 
Mean Squared error (RMSE). However, 
Classification via Regression (CVR) and Logistic 
Model Trees (LMT) are the better methods that 
showed relatively better result consistency in 
predicting Accuracy percentage and RMSE value. 
CNB has shown better result consistency in 

predicting MAE value. But, logistic model Trees (LMT) 
and Complimentary Naïve Bayes (CNB) based Model 
provide a relatively better prediction consistency 
compared to other models and hence, can be used for the 
maintenance severity prediction of the software. 
 So, the predicted model can be used to automate the 
calculation of maintenance severity of defective modules 
.We can also prioritize that which module should be 
maintained first based on predicted maintenance severity 
value and this will reduce the amount of effort required to 
maintain that particular module. Hence, the productivity 
and ease of use of the software will be increased. In 
Future, the developed system can also be used for analysis 
and to evaluate the influence of different factors on the 
maintenance severity of different software project 
modules. 

APPENDIX 
 

Appendix has two tables: Table 7 and Table 8.  The Table 
7 shows the results of prediction algorithms on KC1, JM1 
and KC3 projects datasets. The Table8 shows the results 
of prediction algorithms on KC4 and PC4 projects 
datasets. The name of all the 35 algorithms are BayesNet 
(BN) , Complement Naive Bayes (CNB), Naive Bayes 
(NB), Naive Bayes Multinomial (NBM), IB1, IBk, KStar, 
LWL, AdaBoostM1 (ABM1), Attribute Selected 
Classifier (ASC), Bagging, Decorate, Classification Via 
Regression (CVR), CVParameter Selection (CVPS), 
FilteredClassifier (FC), LogitBoost (LB), MultiBoostAB 
(MBAB), Ordinal Class Classifier (OCC), Raced 
Incremental LogitBoost (RILB), MultiClass Classifier 
(MCC), Random Committee (RC),   HyperPipes (HP), 
VFI, J48, Decision Stump (DS), LMT, NBTree, 
RandomForest (RF), RandomTree (RT), REPTree, 
RBFNetwork (RBF), Logistic, Multilayer Perceptron 
(MP), Simple Logistic (SL), SMO. They all belong to the 
six categories Bayes, Function, Lazy, Meta, 
Miscellaneous and Trees. 
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Table 7: Accuracy and Errors shown by different models on predicting maintenance severity 
KC1 Statistics after 10 fold  

Cross-Validation 

JM1 Statistics after 10 fold  

Cross-Validation 

KC3 Statistics after 10 fold  

Cross-Validation 

Classification 

/ Prediction  

Algorithm Accuracy MAE RMSE Accuracy MAE RMSE Accuracy MAE RMSE 

BN 69.9659 0.1904 0.3078 32.3977 0.2726 0.4692 86.2069 0.1198 0.2291 

CNB 62.4573 0.1502 0.3875 53.8535 0.1846 0.4296 41.3793 0.2345 0.4842 

NB 15.6997 0.336 0.5653 22.0742 0.3109 0.5471 48.2759 0.2069 0.4549 

NBM 12.2867 0.3511 0.5922 20.5519 0.3183 0.5622 37.931 0.2483 0.4967 

IB1 59.0444 0.1638 0.4047 46.5271 0.2139 0.4625 72.4138 0.1103 0.3322 

IBk 58.0205 0.1698 0.4024 46.7174 0.214 0.4606 72.4138 0.144 0.311 

KStar 54.6075 0.1844 0.4041 46.8126 0.2226 0.4262 65.5172 0.1351 0.3595 

LWL 69.2833 0.1855 0.3085 54.6622 0.2513 0.3552 82.7586 0.106 0.2787 

ABM1 69.9659 0.212 0.321 54.5195 0.2522 0.3557 86.2069 0.1287 0.255 

ASC 70.6485 0.1857 0.3047 53.3302 0.2363 0.3738 86.2069 0.1006 0.2279 

Bagging 69.6246 0.1836 0.3051 55.7088 0.2375 0.3488 86.2069 0.1101 0.2324 

Decorate 62.7986 0.1794 0.3393 54.9477 0.2239 0.3573 72.4138 0.1275 0.2752 

CVR 70.9898 0.1784 0.3064 56.5176 0.2416 0.3506 86.2069 0.1011 0.2317 

CVPS 70.6485 0.1882 0.3048 54.5195 0.2544 0.3565 86.2069 0.1359 0.233 

FC 70.6485 0.1857 0.3047 54.6622 0.2466 0.355 86.2069 0.1006 0.2279 

LB 69.6246 0.1736 0.3082 55.471 0.244 0.3516 72.4138 0.1096 0.3195 

MBAB 69.9659 0.212 0.321 54.5195 0.2522 0.3557 82.7586 0.0806 0.2675 

OCC 64.8464 0.1915 0.3352 52.8069 0.2411 0.3674 72.4138 0.1418 0.3239 

RILB 70.6485 0.1882 0.3048 54.6147 0.2423 0.3579 86.2069 0.1359 0.233 

MCC 66.8942 0.3032 0.38 55.0428 0.3113 0.3896 72.4138 0.2972 0.3731 

RC 63.8225 0.1773 0.3307 54.6147 0.2191 0.3579 75.8621 0.1269 0.3026 

HP 20.1365 0.3017 0.385 16.6508 0.3196 0.3996 86.2069 0.1562 0.2727 

VFI 14.6758 0.3124 0.4004 15.0333 0.3197 0.4005 44.8276 0.2272 0.3514 

J48 62.116 0.18 0.367 48.2873 0.2269 0.4204 75.8621 0.1097 0.2982 

DS 69.9659 0.1861 0.308 54.5195 0.2522 0.3557 86.2069 0.0949 0.2437 

LMT 70.3072 0.1887 0.3076 55.3283 0.246 0.3524 86.2069 0.1127 0.2224 

NBTree 68.942 0.1927 0.312 56.0419 0.2431 0.353 86.2069 0.1359 0.233 

RF 67.9181 0.1664 0.3154 53.568 0.2233 0.3585 82.7586 0.1145 0.2779 

RT 58.7031 0.1646 0.4031 45.0048 0.2202 0.4682 68.9655 0.1241 0.3523 

REPTree 69.2833 0.1855 0.3184 55.3758 0.2369 0.3617 86.2069 0.1124 0.2286 

RBF 66.8942 0.1833 0.3133 54.0913 0.2516 0.3563 79.3103 0.0914 0.2588 

Logistic 65.529 0.1804 0.328 54.9001 0.2456 0.3532 68.9655 0.124 0.3516 

MP 66.8942 0.175 0.32 55.0428 0.2461 0.3538 79.3103 0.1024 0.2571 

SL 70.3072 0.1887 0.3076 54.9001 0.248 0.3533 86.2069 0.1172 0.2235 

SMO 70.6485 0.2586 0.3443 54.6147 0.2732 0.365 86.2069 0.2294 0.3228 
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Table 7: Accuracy and Errors shown by different models on predicting maintenance severity 

KC4 Statistics after 10 fold  
Cross-Validation 

PC4 Statistics after 10 fold  
Cross-Validation Classification / Prediction  

Algorithm 

Accuracy MAE RMSE Accuracy MAE RMSE 

BN 51.6667 0.2372 0.3423 52.2472 0.1998 0.3782 

CNB 65 0.14 0.3742 52.2472 0.191 0.437 
NB 23.3333 0.281 0.4813 50.5618 0.1965 0.4289 

NBM 65 0.1802 0.3719 46.0674 0.2168 0.4635 

IB1 53.3333 0.1867 0.432 44.9438 0.2202 0.4693 
IBk 53.3333 0.1995 0.4151 44.9438 0.2232 0.4623 
KStar 51.6667 0.2105 0.3954 49.4382 0.2032 0.4302 
LWL 55 0.2207 0.3548 53.9326 0.2329 0.348 

ABM1 55 0.2527 0.3583 53.3708 0.3027 0.3862 

ASC 48.3333 0.2397 0.3559 44.382 0.2423 0.4075 
Bagging 63.3333 0.2186 0.3359 54.4944 0.2204 0.3385 
Decorate 50 0.2264 0.3756 46.0674 0.2323 0.3738  
CVR 58.3333 0.2255 0.3396 54.4944 0.2257 0.3425 

CVPS 51.6667 0.2407 0.3426 44.9438 0.2585 0.3582 

FC 51.6667 0.2333 0.3423 53.9326 0.2241 0.3462 

LB 55 0.2125 0.3629 55.618 0.2194 0.353 

MBAB 55 0.2527 0.3583 53.3708 0.3019 0.3856 

OCC 55 0.2216 0.3635 46.0674 0.2265 0.3949 

RILB 51.6667 0.2407 0.3426 44.9438 0.2585 0.3582 

MCC 63.3333 0.3045 0.3815 55.0562 0.3084 0.3864 

RC 50 0.1887 0.3822 49.4382 0.2283 0.368 
HP 28.3333 0.2971 0.3838 34.8315 0.2648 0.3631 
VFI 38.3333 0.2843 0.3769 53.3708 0.2584 0.3651 
J48 55 0.219 0.3885 41.573 0.2448 0.4481 

DS 55 0.2229 0.3557 53.3708 0.2366 0.3512 

LMT 65 0.2145 0.3285 58.9888 0.2242 0.3395 

NBTree 56.6667 0.2348 0.3448 49.4382 0.2296 0.3594 

RF 55 0.2058 0.3626 52.809 0.2153 0.3524 

RT 46.6667 0.2167 0.4637 45.5056 0.218 0.4669 

REPTree 60 0.2236 0.3512 53.9326 0.2248 0.3576 

RBF 53.3333 0.2147 0.3694 53.9326 0.2344 0.3514 

Logistic 60 0.1934 0.3369 52.809 0.2222 0.3581 
MP 60 0.2138 0.3307 50.5618 0.2167 0.3741 
SL 65 0.2145 0.3285 57.3034 0.2251 0.3371 
-SMO 53.3333 0.2667 0.3559 55.618 0.2509 0.3501 
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