
Journal of Computer Science 3 (5): 266-273, 2007
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Parvinder Singh Sandhu, Assistant Professor, Department of Computer Science and Engineering,
Guru Nanak Dev Engineering College, Ludhiana(Punjab)- 141 0006 India. Tel: 9855532004

266

Approaches for Categorization of Reusable Software Components

1Parvinder Singh Sandhu, 2Janpreet Singh and 3Hardeep Singh

1, 2 Department of Computer Science and Engineering, Guru Nanak Dev Engineering College
Ludhiana, Punjab, India

 3Department of Computer Science and Engineering, Guru Nanak Dev University, Amritsar,Punjab, India

Abstract: Reuse repositories manager manages the reusable software components in different
categories and needs to find the category of reusable software components. In this paper, we have used
different pure and hybrid approaches to find the domain relevancy of the component to a particular
domain. Probabilistic Latent Semantic Analysis (PLSA) approach, LSA, Singular Value
Decomposition (SVD) technique, LSA Semi-Discrete Matrix Decomposition (SDD) technique and
Naive Bayes Approach purely as well as hybrid, are evaluated to determine the Domain Relevancy of
software components. It exploits the fact that Feature Vector codes can be seen as documents
containing terms -the identifiers present in the components- and so text modeling methods that capture
co-occurrence information in low-dimensional spaces can be used. The FV code representation of
clusters or domains is used to find the domain-relevancy of the software components. PLSA has
provided better results than LSA retrieval techniques in terms of Precision and Recall but its time
complexity is too high. SVD Transformation with Naïve Bayes scheme has outperformed all other
approaches and shows better results than the existing approach (LSA) being used by some open source
code repositories e.g. Sourceforge. The DR-value determined is close to the manual analysis, used to
be performed by the programmers/repository managers. Hence, the tool can also be utilized for the
automatic categorization of software components and this kind of automation may improve the
productivity and quality of software development.

Key words: LSA, Naïve Bayes, PLSA, Reusable Components, SVD, SDD

INTRODUCTION

 The demand for new software applications is
currently increasing at the exponential rate, as is the
cost to develop them. The number of qualified and
experienced professionals required for this extra work
is not, however, increasing commensurably[1]. Software
professionals have recognized reuse as a powerful
means of potentially overcoming the above said
software crisis [2, 3, 4, 5] and it promises significant
improvements in software productivity and quality [6].
 There are two approaches for reuse of code:
develop the reusable code from scratch or identify and
extract the reusable code from already developed code.
The organization that has experience in developing
software, but not yet used the software reuse concept,
there exists extra cost to develop the reusable
components from scratch to build and strengthen their
reusable software reservoir [7, 8]. The cost of developing

the software from scratch can be saved by identifying
and extracting the reusable components from already
developed and existing software systems or legacy
systems [9, 10].
 Tracz in [11] observed that for programmers to
reuse software they must first find it useful. Poulin [12]
further concluded that 65% of typical software is made-
up of Domain-specific class of software. So we can
expect the most savings, if we reuse the domain-
specific software [13]. It means one should concentrate
on evaluating the software in terms of its relevancy to a
particular domain.
 Kawaguchi in [14] used code clones-based similarity
metric, decision trees, and latent semantic analysis
(LSA) approaches to help finding similar software
systems in software archive. Further, Kawaguchi in [15]
explained the use of LSA approach to automatic
categorization of software systems and developed web
interface to visualize determined categories.

J. Computer Sci., 3 (5): 266-273, 2007

 267

 In this paper, a probabilistic approach called PLSA,
is shown to extract different aspects in a software
component, that provides the domain-relevancy of the
software component. The LSA approach is also
proposed to automatically cluster feature-vector (FV)
codes into meaningful categories. The FV code derived
descriptions are computed by Latent Semantic Analysis
(LSA) using Singular Value Decomposition (SVD) and
Semi-Discrete matrix Decomposition (SDD)
techniques. The FV code representation of clusters or
domains is further used to find the domain-relevancy
(DR-value) of the software components automatically.
The purely and hybrid Naïve Bayes schemes are also
tried for the categorization of the software components.

METHODOLOGY

An approach is proposed that allows automatic
clustering of feature-vector (FV) codes, extracted from
different software domains, into meaningful categories.
It exploits the fact that FV codes can be seen as
documents containing terms – the identifiers present in
the components- and so text modeling methods that
capture co- occurrence information in low-dimensional
spaces can be used. The comments in the source code
describing the function of the chunks of code and Good
naming conventions used in the high-level language
source code. Interfaces of the code components (such as
function, class, module etc) make high use of verbs,
nouns, adjectives and adverbs. These verb phrases
convey the functional characteristics of the component.
Therefore, function name, constant names and variable-
names used make a good source of representation
information. The common reserved words are excluded
because they have no relation with software features. If,
the keyword consist of more than one word joined with
“underscore”, “hyphen” or “capital letter and small
letter combination” then the keyword is broken down to
find the primitive or root words. The organizations of
common keywords extracted from the samples of a
domain can act as descriptor for that particular domain.
 The words can be divided into two categories –
open-class words and closed-class words. The words,
which are nouns, verbs, adjectives or adverbs are called
open-class words and are supposed to convey desired
functional information about the component. The
closed-class words include articles, pronouns,
prepositions, conjunctions, interjections, helping verbs
and do not convey any functional information. The
closed-class words are eliminated from the list of
keywords.
 The FV code derived descriptions are computed by
Probabilistic Latent Semantic Analysis (PLSA), LSA’s

Singular Value Decomposition (SVD), LSA’s Semi-
Discrete Matrix Decomposition (SDD) and Naïve
Bayes Approaches and performance of different
approaches is evaluated. The FV code representation of
clusters is used to find the domain-relevancy (DR-
value) of the software components.

Naïve Bayes Based Approach: The Naive Bayesian
classification is the optimal method of supervised
learning, if the values of the attributes of an example
are independent given the class of the example [16].
Researchers have applied Naïve Bayes algorithm for
the text-document classification. But values of the
attributes of an example are not independent in case of
text-document classification but the in case of the
Software component classification the attributes of an
example can be taken independent to each other. We
propose two-step approach, as mentioned below.

Learning Phase: In the learning phase, let V is the set
of all possible target values. This function learns the
probabilities terms P(wk|vj), describing the probability
that an extracted features from a software component in
class vj will be the feature named wk. It also learns the
class prior probabilities P(vj). Vocabulary is the set of
all distinct features and other tokens occurring in the
example software components. The features and
frequency of occurrence of the features in different
example software components is collected using
following steps:

1. Extract features from Training software
belonging to different domains

2. Create Identifier-by-Software Matrix
3. Calculate the required P(vj)and P(wk|vj)

probability terms. For each target value vj in V,
calculate P(vj) and P(wk|vj) using (1) and (2).

||
||

)(
Examples

docs
P j

jv = (1)

||
1

)|(
vocabularyn
n

P k
jk vw +

+
= (2)

Where docsj is the subset of software components
from examples for which the target value is vj, Textj is a
single software component created by concatenating all
members of docsj, n is total number of distinct positions
in Textj and For each feature wk in Vocabulary, nk is
number of times features wk occurs in Textj.

Classification Phase: This phase returns the estimated
target value for query the software component that need

J. Computer Sci., 3 (5): 266-273, 2007

 268

to be categorized. The following steps are involved in
the classification phase:

1. Extracting features and frequency of features from
the query software components as performed in
learning phase.

2. Fold query software’s frequency vector according
to existing features of the Vocabulary.

3. Calculate VNB according to (3).

)|()(maxarg j

positionsi
ij

Vv
NB vaPvPV

j

∏
∈∈

= (3)

Where ai denotes the ith feature of query software
and Positions is all features in query document that
found in Vocabulary. This step also makes use of
“Thesaurus” for automatically increasing the search
space, by replacing ai with a group of matched features.

PLSA Based Approach: The core of PLSA is a
statistical, which is known as aspect Model [17]. Aspect
Model is latent variable model for general co-
occurrence data which associates an unobserved class
variable z Є Z={z1, z2,…zk} with each observation, i.e.,
with each occurrence of a word w Є W={w1,w2,…wm}
in a document d Є D = {d1, d2,…, dN}. The following
steps are proposed to find the DR-value of potential
reusable components using training software
components:

Learning Phase: The following steps are followed in
the training phase:

1. Extract keywords/identifiers from Training
software belonging to different domains. In
identifiers include function names, constant names
and variable-names used in the software. From
identifiers, exclude reserved because they have no
relation with software features. The comments are
also included in the analysis to extract more meta
information of the software component.

2. Create identifier-by-software matrix. Considering a
software system as a document and an identifier as
a word; create an identifier-by-software matrix,
similar to the word-by-document matrix.

3. Remove useless identifiers and perform
Normalization to obtain f(d, w) matrix.

4. Initialize the P(w|z) and P(d |z) randomly with
numbers between [0,1] and normalize them to sum
to 1 along rows. P(z) is also initialize randomly.

5. Apply EM algorithm [18] as shown in eq. (4)-(7)
and iterate it until convergence or iterations are less
than maximum number of iterations. The
convergence means the maximization of log-
likelihood function [17] as shown in (8).

∑
∑

=
',)'',|()',(

),|(),(
)|(

wd

d

wdzPwdf
wdzPwdf

zwP (4)

∑
∑

=
wd

w

wdzPwdf
wdzPwdf

zdP
,')','|()','(

),|(),(
)|((5)

∑=
wd

wdzPwdf
R

zP
,

),|(),(1)((6)

Where
∑≡

wd
wdfR

,
),((7)

∑ ∑=−
Dd Ww

wdPwdflikelihoodLog
ε ε

),(log(),((8)

Where, f (d, w) is the frequency of occurrence of
word w in document d.

The output of the Training phase is the probability of
finding words in different latent classes, i.e. P(w|z) and
probability of finding documents in different latent
classes, i.e. P(d |z).

Learning Phase: In the estimation phase the following
steps are followed:

1. Extract the features from q, the potential reusable
components and FV is mapped according to
occurrence matrix’s keyword list.

2. Find different aspects’ values in Query Software
Components

3. After training, the estimated P(w|z) parameters are
used to estimate P(q|z) for query software
components, q, through a “folding-in” process[17].
In the “folding-in” process, EM is used in a similar
manner to the training process: the E-step is
identical, the M-step keeps all the P(w|z) constant
and only re-calculates P(q|z), which shows the
level of different aspects in Query Software
Components i.e. DR-value.

Hybrid LSA and Naïve Bayes Classification: The
Latent Semantic Analysis (LSA) can be applied to
induce and represent aspects of the meaning of English
language words [19, 20]. LSA is a variant of the vector
space model that converts a representative sample of
documents to a term-by-document matrix in which each
cell indicates the frequency with which each term

J. Computer Sci., 3 (5): 266-273, 2007

 269

(rows) occurs in each document (columns). Thus a
document becomes a column vector and can be
compared with a user's query represented as a vector of
the same dimension. There are four different schemes
are evaluated to find DR-value of a software
component:

• SVD transformation of data with Similarity
Measure

• SDD transformation of data with Similarity
Measure

• SVD transformation of data with Naïve Bayes
Classification

• SDD transformation of data with Naïve Bayes
Classification

The following phases are followed for evaluation:

Construction of Feature Vector (FV) of Domains:
The following steps are proposed to find the FV of the
different domains using training software components:
1. Extraction of Meta Information: Meta information

is collected from the sample software components
in form of identifiers/keywords and identifier-by-
software matrix is created. The useless identifiers
are removed and Normalization is performed.

2. SVD/SDD Transformation: LSA (SVD and SDD
[21]) is used for decomposition and Dimensionality
Reduction of the features extracted from previous
step.
SVD is a form of factor analysis, or more properly,

the mathematical generalization of which factor
analysis is a special case [19]. It constructs an n-
dimensional abstract semantic space in which each
original term and each original (and any new) document
are represented as vectors. In SVD a rectangular term-
by-document matrix X is decomposed into the product
of three other matrices W, S, and PT as shown below:

PSWX T
K = (9)

Where W is a orthonormal matrix and its rows
correspond to the rows of X, but it has m columns
corresponding to new, specially derived variables such
that there is no correlation between any two columns;
i.e., each is linearly independent of the others. P is an
orthonormal matrix and has columns corresponding to
the original columns but m rows composed of derived
singular vectors. The third matrix S is an m by m
diagonal matrix with non-zero entries (called singular
values) only along one central diagonal. A large
singular value indicates a large effect of this dimension
on the sum squared error of the approximation. The
role of these singular values is to relate the scale of the

factors in the other two matrices to each other such that
when the three components are matrix multiplied, the
original matrix is reconstructed.

After the decomposition by SVD, the k most
important dimensions (those with the highest singular
values in S) are selected as shown in (10). All other
factors are omitted, i.e., the other singular values in the
diagonal matrix along with the corresponding singular
vectors of the other two matrices are deleted. The
reduced dimensionality solution then generates a vector
of n real values to represent each document. The
reduced matrix ideally represents the important and
reliable patterns underlying the data in X. It
corresponds to a least-squares best approximation to
the original matrix X [22].

PSWX T
KKKK = (10)

The Xk matrix should now contain the major
associational structure in the matrix and has left out the
noise. In this reduced model, the overall pattern of term
usage determines how close the documents will be
located, regardless of the precise words in the
documents [23].

The Semi-Discrete Matrix Decomposition (SDD)
is similar to the SVD, in that the original matrix is
decomposed into three matrices [24] as shown in the
following equation:

PSWX T
KKKK = (11)

Where matrices Wk and Pk
T contain entries from

the set -1, 0 and 1 [21].
3. Naïve Bayes Learning: The SVD and SDD

transformed frequency or occurrence tables of the
keywords are used for calculating P(vj) & P(wk|vj)
values separately according to the equations
mentioned in the Naïve Bayes section.

Estimating Domain Relevancy value (DR-value):
The following steps are taken to calculate DR-value of
a potential reusable Component:
1. Extraction of features from query Component:

Features are extracted from the potential reusable
component; FV is formed and FV is mapped
according to occurrence matrix’s keyword list.

2. Perform Similarity Analysis: Similarity analysis
between FV of the potential Reusable Component
and the FV of different domains is performed and
the similarity vector tells the relevancy level with
existing domains. Here assumption is taken that the
input software might belong to a number of
domains with different extent.

J. Computer Sci., 3 (5): 266-273, 2007

 270

In SVD based technique, the query component’s
similarity with the other components in the repository
is measured by calculating the cosine between the
vectors, xk and a query vector, qk as shown below:

AqS T ~~
= (12)

Where PSA T
KK

α−= 1~
 (13)

And the query vector is projected into the same k-
dimensional space [20] by:

SWqq KK
T α=

~
 (14)

The performance of queries generally improves as
k increases, but will decrease past a threshold. It is
possible for an SVD based system to locate terms
which do not even appear in a document. Documents
which are located in a similar part of the concept space
(i.e. which have a similar meaning) are retrieved, rather
than only matching keywords. By using a concept
space, following problems can be solved.

1. Polysemy, or the problem that most words have
more than one meaning, and that meaning is
obtained from the word’s context.

2. Synonymy, or the problem that there are many
ways of describing the same object. The presence
of synonyms tends to decrease the Recall
performance of Information Retrieval systems [22].

In the SDD based technique, the similarity ‘S’ [21]
between a document and query vector can be calculated
as: AqS T ~~

= (15)

Where PSA T
KK

α−= 1~
 (16)

And the query vector is projected into the same k-
dimensional space by:

qWSq T
KK

α=
~

 (17)
In this study, the value of the splitting parameter α

in equation has left at the default 0
3. SVD/SDD with Naïve Bayes Evaluation: The

performance of the Naïve Bayes Approach is also
monitored for classifying the query software
components while considering the P(vj) & P(wk|vj)
values of the previous section. The results are recorded
in terms of Precision, Recall and F-Measure values as
discussed in the nest section.

EVALUATION OF DEVELOPED SYSTEM
It is tried to evaluate the system in terms of

Precision and Recall criteria. Let S be a set of all
software systems contained in a repository. Precision
and Recall are defined in (18)-(21).

Precision =
||

)(
S

sprecisionSs soft∑ ε (18)

Where
)(sprecisionsoft =

|)(|
|)()(|

sC
sCsC

Actual

IdealActual ∩ (19)

And

Recall =
||

)(
S

srecallSs soft∑ ε (20)

Where
)(srecallsoft =

|)(|
|)()(|

sC
sCsC

Ideal

IdealActual ∩ (21)

Where Cactual(s) is a set of clusters containing
software “s”, generated by our software and CIdeal(s) is
a set of clusters containing input software “s”,
determined manually by the Domain Experts. Using
Precision and Recall values F-value is calculated as a
measure of performance evaluation i.e.

F-Value =
rp

pr
+

2
 (22)

Where, p is the Precision and r is the Recall of the
system.

IMPLEMENTATION AND RESULTS

As a software implementation of the discussed concept,
a deployable Component Object Model (COM) based
Component, which is Microsoft's binary standard for
object interoperability, is developed. The developed
component’s objects can be accessible through Visual
Basic, C++, or any other language that supports COM.
A sample data from various Reusable Repositories of
‘C’ components is collected and the program is run for
the 63 components belonging to six categories or
domains (that can be grouped in three main
domains/categories) and frequency table is formed with
2942 extracted keywords.

As evidenced from table 1, the Naïve Bayes
evaluation phase results show 74.4186% Accuracy,
0.1705 Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) in classifying the software
components.

J. Computer Sci., 3 (5): 266-273, 2007

 271

Fig. 1: Snapshot of Calculated P(z |q) values

Table 1: Evaluation Phase Statistics of Naïve Bayes

Evaluation Phase Statistics
Algorithm

Accuracy (%) MAE RMSE

Naïve Bayes 74.4186 0.1705 0.413

The Training phase of the PLSA is run and P(w|z)

is calculated in from of frequency matrix. Thereafter,
query components are used and P(z|q) is calculated, as
shown in Fig. 1. The figure shows different aspect or
concept or unobserved latent variable levels found in
the software components and these values gives
indication of the DR-values of the software component.

Table 2: Detailed results of PLSA based Similarity Measure

Algorithm Class
Type Precisi-on Reca

ll

F-
Measur

e

Accu-
racy
(%)

Class 1 0.6364 0.70
00 0.6667

Class 2 0.8000 0.66
67 0.7273

PLSA
Based

Similarity
Measure Class 3 0.7059 0.80

00 0.7500

72.09

Similarity analysis is performed on the P(z |q) and

the query software components are clustered in
different clusters according to their latent variable
values. The results show 72.09% Accuracy for the
correct classification of query components. The
detailed class-wise results are shown in Table 2.

Fig. 2: Snapshot of Occurrence Matrix formed after the

SVD decomposition

Fig. 3: Snapshot of Occurrence Matrix formed after the
SDD decomposition

When the SVD and SDD Similarity Measure based
Domain-Relevancy module is run to determine DR-
value of the query software component then the results
of shows 62.4 % Accuracy in both cases as shown in
table 3 with best F-Measure value of 0.7097, but the
space complexity of SDD is less as compared to SVD
technique.

Table 3: Detailed Results of SVD and SDD Based Similarity
Measures

Algorithm Class
Type

Precisi-
on Recall F-

Measure
% Acc-

uracy

Class 1 0.7500 0.3000 0.4286

Class 2 0.8462 0.6111 0.7097

SVD
Transform

and
Similarity
Measure Class 3 0.5385 0.9333 0.6829

62.4

Class 1 0.7500 0.3000 0.4286

Class
2

0.846
2

0.611
1 0.7097

SDD
Transform

and
Similarity
Measure Class

3
0.538

5
0.933

3 0.6829

62.4

In the hybrid scheme of SVD/SDD with Naïve

Bayes Classification is applied, the SVD with Naive
based scheme shows better results as compared to its
counterpart SDD with Naïve Bayes scheme as shown
in Table 4.

J. Computer Sci., 3 (5): 266-273, 2007

 272

Table 4: Detailed Results of SVD and SDD Based Similarity
Evaluation Phase Statistics

Scheme
Accuracy % MAE RMSE

SVD
Transformation

with Naïve Bayes
Classification

76.7442 0.155 0.3937

SDD
Transformation

with Naïve Bayes
Classification

74.4186 0.1705 0.413

The detailed results of the SVD Transformation

with Naïve Bayes Classification results are shown in
table 5 with 76.7442 % Accuracy, 0.833 best Precision
and 0.889, 0.889 best Recall and 0.842 best F-Measure
values.

Table 5: Detailed results of SVD Transformation with Naïve Bayes

scheme
Class
Type Precision Recall F-Measure Accuracy

(%)
Class 1 0.636 0.7 0.667

Class 2 0.8 0.889 0.842

Class 3 0.833 0.667 0.741

76.7442

CONCLUSION

The PLSA based software categorization approach
provides better results than purely LSA based retrieval
techniques in terms of Precision and Recall but its time
complexity is too high. At the same level of dimension
the categorization results of the SDD are similar to that
of results of SVD technique, but SDD produced
Precision rates similar to SVD with less storage.
However the SDD decomposition requires more time to
decompose the original matrix., and requires a higher
dimension than SVD. It is found that the SDD provided
a significantly higher average Precision than the SVD if
the same query time was required. In order to match the
SDD query speed, a much lower dimension must be
used for the SVD. The pure and hybrid Naïve Bayes
approach is found better performer than the PLSA and
LSA based approaches. In the hybrid approaches the
SVD Transformation with Naïve Bayes scheme has
outperformed all other approaches and shows better
results than the existing approach (LSA) being used by
some open source code repositories e.g. Sourceforge.
The categorization results are close to the manual
analysis, used to be performed by the
programmers/repository managers. Hence, the
developed tool can be also be utilised for the automatic

categorization of software components and domain-
relevancy of software components. Ultimately, this kind
of automation may improve the productivity and quality
of software development.

REFERENCES

1. Smith, E., A. Al-Yasiri and M. Merabti, 1998. A

Multi-Tiered Classification Scheme For
Component Retrieval. Euromicro Conference,
24(2): 882 – 889.

2. Basili, V. R., 1989. Software Development: A
Paradigm for the Future. Proc. COMPAC ‘89, Los
Alamitos, Calif.: IEEE CS Press, pp: 471-485.

3. Boehm, B. W., 1988. A Spiral Model of Software
Development and Enhancement. IEEE Computer,
21(5): 61- 72.

4. Griss, M. L. and M. Wosser, 1995. Making reuse
work at Hewlett-Packard. IEEE Software, 12(1):
105 - 107.

5. Succi, G., C. Uhrik and M. Ronchetti, 1996.
Reusability and Portability of Logic Programming.
Journal of Programming Languages Design,
Chapman & Hall, 4(2): 101-114.

6. Boehm, B., 1999. Managing Software Productivity
and Reuse. IEEE Computer, 32(9): 111 - 113.

7. Joos, R., 1994. Software Reuse at Motorola. IEEE
Software, 11(5): 42-47.

8. Lim, W., 1994. Effects of Reuse on Quality,
Productivity, and Economics. IEEE Software,
11(5): 23-30.

9. Ahrens, J. D. and N. S. Prywes, 1995. Transition to
a legacy- and reuse-based software life cycle. IEEE
Computer, 8(10): 27 - 36.

10. Caldiera, G. and V. R. Basili, 1991. Identifying and
Qualifying Reusable Software Components. IEEE
Computer, pp .61-70.

11. Tracz, W., 1991. A Conceptual Model for
Megaprogramming. SIGSOFT Software
Engineering Notes, 16(3): 36-45.

12. Poulin, J. S., 1997. Measuring Software Reuse–
Principles, Practices and Economic Models,
Addison-Wesley Publishers.

13. Price, Margaretha W., S. A. Demurjian and D. M.
Needham, 1997. A Reusability Measurement
Framework and Tool For Ada 95. Conference on
TRI-Ada '97.

J. Computer Sci., 3 (5): 266-273, 2007

 273

14. Kawaguchi, S., P. K. Garg, M. Matsushita and K.
Inoue, 2003. Automatic categorization algorithm
for evolvable software archive Software Evolution.
Sixth International Workshop on Principles of
Software Evolution (IWPSE'03), pp: 195 – 200.

15. Kawaguchi, S., P. K. Garg, M. Matsushita and K.
Inoue, 2004. MUDABlue: an automatic
categorization system for open source repositories.
11th Asia-Pacific Software Engineering
Conference (2004), pp: 184 – 193.

16. Mitchell, T., 1997. Machine Learning. McGraw
Hill Publishers, 2nd Ed.

17. Hofmann T., 1999. Probabilistic latent semantic
indexing. Proc. of SIGIR'99.

18. Gildea, D. and T. Hofmann, 1999. Topic Based
Language Models Using EM. 6th European
Conference On Speech Communication and
Technology (Eurospeech'99, 1999), pp: 2167-2170.

19. Berry, M., S.T. Dumais and G. W. O'Brien, 1995.
Using Linear Algebra For Intelligent Information
Retrieval. SIAM: Review, 37(4): 573-595.

20. Deerwester, S., S. T. Dumais, G. W. Furnas, T. K.
Landauer and R. Harshman, 1990. Indexing By
Latent Semantic Analysis. Journal of the American
Society For Information Science, 41: 391-407.

21. Kolda, T., 1997. Limited-Memory Matrix Methods
with Applications. Ph.D. thesis, University of
Maryland at College Park, Applied Mathematics
Program (1997).

22. Deerwester, S., S. T. Dumais, G. W. Furnas, T. K.
Landauer and R. Harshman, 1990. Indexing By
Latent Semantic Analysis. Journal of the American
Society For Information Science, 41: 391-407.

23. Dumais, S. T., 1992. LSI meets TREC: A status
report. Text Retrieval Conference, pp: 137-152.

24. Kise, K., M. Junker, A. Dengel and K. Matsumoto,
2001. Experimental evaluation of passage-based
document retrieval. 6th International Conference
on Document Analysis and Recognition, pp: 592-
596.

