
Journal of Computer Science 3 (3): 138-143, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: P. Charnsethikul, Operations Research and Management Science Units, Department of Industrial
Engineering, Faculty of Engineering, Kasetsart University, Bangkhaen, Bangkok 10900, Thailand

138

An Exact Algorithm for the Unbounded Knapsack Problem with

Minimizing Maximum Processing Time

1Chanin Srisuwannapa and 2Peerayuth Charnsethikul
Department of Applied Statistics, King Mongkut’s Institue of Technology, Lardkrabang

OR/MS Units, IE Department, Kasetsart University, Bangkok, Thailand

Abstract: We address a variant of the unbounded knapsack problem (UKP) into which the processing
time of each item is also put and considered, referred as MMPTUKP. The MMPTUKP is a decision
problem of allocating amount of n items, such that the maximum processing time of the selected items
is minimized and the total profit is gained as at least as determined without exceeding capacity of
knapsack. In this study, we proposed a new exact algorithm for this problem, called MMPTUKP
algorithm. This pseudo polynomial time algorithm solves the bounded knapsack problem (BKP)
sequentially with the updated bounds until reaching an optimal solution. We present computational
experience with various data instances randomly generated to validate our ideas and demonstrate the
efficiency of the proposed algorithm.

Key words: Integer programming, bounded and unbounded knapsack problems

INTRODUCTION

 One of the most frequently used decision making
that operations researchers must deal is to decide which
subset of n items or projects should be selected such
that the total profit sum of the selected items or projects
is maximized, without exceeding the capital budget,
referred generally as the knapsack problem (KP). This
problem can be formulated as a mathematical model (an
integer linear program) and is one of an NP-hard
combinatorial optimization problem by which can be
solved successfully by various exact algorithms. The
commonly used techniques are the dynamic
programming and branch-and-bound methods and the
branch-and-cut and branch-and-price methods as
described in Toth[1]. This kind of problem can be
applied and arises in many real world situations. In the
following, we will provide a historical overview of this
problem and various involved algorithms.
 For the 0-1 knapsack problem (KP), it involves
with selecting items or projects to maximize total profit
without exceeding the existing capital budget or
knapsack capacity. Exact algorithms for this problem
are mainly based on two approaches: branch-and-bound
and dynamic programming. Examples of branch-and-
bound algorithms can be found in[2-10] and more

recently in[11,12]. Dynamic programming approaches are
presented in[5,13,14] and more recently in[15]. A hybrid
algorithm, combining the dynamic programming and
the branch-and-bound algorithms has been recently
proposed by Martello et al.[16]. Different hybrid
algorithms for the knapsack problem were presented by
Plateau and Elkihel[10] and Martello and Toth[17]. An
experiment comparison of the most effective exact
algorithms for KP is given in[18].
 The 0-1 multidimensional knapsack problem (0-1
MKP) is a generalization of the 0-1 knapsack problem
and a special case of general 0-1 integer programming.
The objective is the same as the 0-1 knapsack problem.
Several heuristics or meta-heuristics have been used to
solve the 0-1 MKP and updated and comprehensive
survey for 0-1 MKP dealing with applications,
complexity and heuristics can be found in Freville[19,20].
 The multiple-knapsack problem (MKP) is the
problem of assigning a subset of n items to m distinct
knapsacks to maximize total profits without exceeding
the capacity of each of the knapsacks. The problem has
several applications in naval, financial management and
steel industry[21]. The MKP is NP-hard in the strong
sense and thus any dynamic programming approach
would result in strictly exponential time bounds.
Several branch-and-bound algorithm for MKP have
thus been presented during the last two decade in Hung

J. Computer Sci., 3 (3): 138-143, 2007

 139

and Fisk[22], Martello and Toth[23], Neebe and
Dannenbring[24] and Christofides et al.[25], Pisinger[26]
and Martello and Toth[27].
 The multiple-choice knapsack problem (MCKP) is
defined as a 0-1 Knapsack Problem with the addition of
disjoined multiple-choice constraints. MCKP is NP-
hard as it contains KP as a special case, but it can be
solved in pseudo-polynomial time through dynamic
programming in Dudzinski and Walukiewicz[28]. The
problem has a large range of applications: Capital
Budgeting in Nauss[29], Menu Planning in Sinha and
Zoltners[30], transforming nonlinear KP to MCKP in
Nauss[29], determining which components should be
linked in series in order to maximize fault tolerance in
Sinha and Zoltners[30] and to accelerate ordinary
LP/GUB problems by the dual simplex algorithm in
Witzgal[31]. Moreover MCKP appears as Lagrangian
relaxation of several integer programming problems in
Fisher[32]. Several algorithms for MCKP have been
presented during the last two decades: e.g. Nauss[29],
Sinha and Zoltners[30], Dyerm Kayal and Walker[33] and
Psinger[34].
 The budgeting problem with bounded multiple
choices constraints (BBMC) is a generalization of the
multiple choice knapsack problem (MCKP). It has a
wide variety of applications in budgeting, where a
number of projects from each class has to be selected,
such that the overall gain is largest possible and such
that the costs demanded for the chosen projects do not
exceed a fixed upper limit. It may be applied in
sequencing and scheduling problems, strategic
production and hospital planning with production
constraints in each department, or government
budgeting with demands in different sectors. The
algorithm was presented in Pisinger[35].
 The unbounded knapsack problem (UKP) is a
classic NP-hard problem with a wide range of
applications[36-39]. The two classic approaches for
solving this problem exactly are branch and bound[38]
and dynamic programming[36-39]. Another algorithm
(dynamic programming revisited) is also presented in
Andonov et al.[40].
 To the best of our knowledge, the unbounded
knapsack problem with minimizing maximum
processing time, (MMPTUKP) in this study has not
been studied in the literature. So the objective of this
study is to present a new optimal solution algorithm for
this type of problem and to evaluate performance of this
algorithm by randomly generated data.

Problem formulation and a new exact algorithm
Problem formulation: The problem studied in this
work can be formulated as follows. We are given a
knapsack with capacity c and expected profits at least B
into which we may put n types of objects. Each object
of type i with parameters, the profit, pi, the weight wi
and the processing time ti and with n, B and c are all
positive integers and we have an unbounded number of
copies of each object type. The problem calls for
selecting the set of items with minimizing the
maximum processing time and must have at least profit
of B without exceeding the knapsack capacity
(budgeting, c). Mathematically, the problem can be
described as the following integer linear programming
formulation:

i i
n

j j
j 1

n

j j
j 1

Min T
subject to T t x i 1,2,..,n

p x B

w x c

=

=

≥ =

≥

≤

∑

∑

jx 0≥ and integer for all j = 1,2,..,n.
An exact algorithm (MMPTUKP algorithm): Here,
we propose an exact algorithm for solving MMPTUKP
as follows:
1. Solve the following sub-problem, unbounded

knapsack problem (UKP), by an exact algorithm
such as branch-and-bound or dynamic
programming methods.

Subject to

n

j j
j 1

n

j j
j 1

M a x p x z

w x c

=

=

=

≤

∑

∑

jx 0≥ and integer for all j = 1, 2,.., n.
 After getting an optimal solution, let z* be the
optimal objective value and let

*
jx , j 1,..., n= , be the optimal solution. Then check

whether z*≥ B. If yes, proceed to step 2. Otherwise, it
indicates that there is no feasible solution, then stop.
2. Let u lT 0,T 0,T 0= = = and let *

u j jj 1,2,...,n
T Max [t x]

=
= ,

3. Let u lT [T T]/ 2= + , then compute jT / t   defined

as the upper bounds of each item jx in the next
sub-problem, then solve the following sub-
problem, bounded knapsack problem(BKP) with
these new upper bounds.

J. Computer Sci., 3 (3): 138-143, 2007

 140

n

j j
j 1

n

j j
j 1

j j

Max p x z

subject to w x c

0 x T / t , j 1,..., n

=

=

=

≤

 ≤ ≤ = 

∑

∑

 After getting an optimal solution, let z* be the
optimal objective value and *

jx , j 1,..., n= be the
optimal solution for the problem and then check
whether z* ≥ B or not. If yes, let uT T= and then
repeat step 3. Otherwise, proceed to step 4.

4. Check whether T is converge or not by using the

condition, u lT T 0− < ε → , if yes, print the current
solution as the optimal solution with T* = Tu and
then stop. Otherwise, proceed to step 5.

5. Let lT T= , go to step 3.
 To verify the correctness of the proposed
algorithm, the following theorem is proven as follows:
Theorem 1: Algorithm MMPTUKP terminates with a
feasible solution under optimality of T.

Proof: Let there exist 0 *T T< be the optimal value of
T with a feasible solution, 0

jx , j∀ and the total

profit 0Z B≥ . Then, solve the bounded knapsack
problem (BKP) with new upper bound jT / t   , with

T=T0 for all xj. If Z*<B then 0T does not exist as
claimed. Otherwise, Tu = T0 which leads to the
impossible case that Tu > Tl. By contradiction, T* is
optimal as stated.

 For the complexity of MMPTUKP, the possible
bottleneck computation is due to either solving the UKP
in step 1 or solving the corresponding BKP at most
[Log2Tu*] times where Tu* is the initial upper bound of
T obtained from step 2. From theoretical standpoints,
there exists at least a pseudo polynomial time algorithm
for the proposed MMPTUKP procedure as summarized
in the following theorem.

Theorem 2: MMPTUKP procedure can be solved as a
pseudo polynomial time algorithm.
Proof: Since the number of iterations in the procedure
is logarithmically bounded, a linear complexity is
implied. In the procedure, the corresponding UKP and
BKPs must be solved. Computationally, both problems
can be solved efficiently in a pseudo polynomial
bounded algorithm such as dynamic programming
(bounded by the complexity of the right hand side and

variables upper bound). Therefore, MMPTUKP can
also be solved within a number of times bounded by a
linear function and each time solved within a
complexity of pseudo polynomial time bounded.

Performance evaluation experiments: We have
investigated how the MMPTUKP algorithm behaves for
many problem-sizes. The algorithm was coded as a
C++ program and was complied as an .EXE file to run
against solving the problem by direct mixed integer
programming (MIP) methods using CPLEX software
for small/intermediate scale and large scale problems
respectively. All experiments were tested on a PC
notebook with CPU GenuineIntel, Pentium(r) III
processor 1 Ghz, 256 MB RAM, 20 GB hard disk.
Firstly, it is critical to find a highly efficient method to
solve the corresponding bounded and unbounded
knapsack problems in the proposed algorithm. Though,
there are many special algorithms with pseudo
polynomial time complexities proposed to solve these
problems. Experimentally, we have found that the
direct approach using CPLEX can provide quite an
acceptable result in term of computational time even
when a small computer is used. The basic results are
shown Table 1.

Table 1: Solution time in second for solving bounded and unbounded

knapsack problems (BKP and UBKP) using CPLEX
Number of variables (BKP)Time (UKP)Time
 10 0.1 0.06566667
 50 0.15 0.13466667
100 0.24 0.21588889
500 0.39 0.30822222
1,000 0.59 0.47077778
5,000 1.211 1.31755556
10,000 2.924 4.807
50,000 138.399 390.942
100,000 659.999 1973.007
 (0.18hrs) (0.54hrs)
500,000 9679.127 27229.564
 (2.688hrs) (7.65hrs)
1,000,000 36851.94 107979.197
 (10.236hrs) (29.99hrs)

 The test data in each problem size is randomly
generated as pj =[1,1000], wj=[1,1000], bj [1,10] for all
j = 1,2,..,n and n

j j
j 1

C 0.5* w b
=

= ∑ following[18]. The above

results indicate that CPLEX is more efficient when
solving the BKP as compared to solving the UKP since
the bounded variable constraints in the BKP help
reducing alternatives in the search tree during its branch
and cut processes. Moreover, these results imply
possibilities to solve very large scale BKP and UKP
using the current state of the art mixed integer linear
programming software especially when utilized

J. Computer Sci., 3 (3): 138-143, 2007

 141

 Table 2: Comparative results between using MMPTUKP algorithm (1) and the direct method (2)
*From 5 generated problems

cooperatively with modern parallel processing
technology. Next, the C++ executed program of
MMPTUKP algorithm is experimented with a set of
randomly generated problems comparing with solving
the direct model as described earlier using CPLEX. The
obtained results are shown in Table 2.
 From Table 2, 10 replications for each problem
size are randomly generated except large sizes of
50,000 and 100,000 where 5 replications are used due

to their large amount of computation time consumed.
Again, we use the ranges according to[18] as follows:
tj = [1,1000], pj = [1,1000], wj = [1,1000],

n

j
1

C w= ∑ ,
n

j
1

B c= ∑

.
The results from Table 2 clearly show that MMPTUKP
algorithm is more efficient as compared to solving the
problem directly especially when the problem is large

Number
of variables

Avg. time
of (1) (sec.)

#iterations
of (1)

#iterations
of (1) from
CPLEX

#nodes MIP
used of (1)

#nodes of
 integer
solution of (1)

Avg. time
 of (2) (sec.)

#iterations
of (2)

#nodes
 MIP used
of (2)

#nodes
of
integer
 solution
of (2)

10 1.6364 26 65 79 47 0.081 31 11 8

20 3.405 27 109 152 67 0.1801 76 26 21

30 4.9803 26 111 148 99 0.3213 130 46 45

40 6.5705 28 142 177 118 0.4996 210 66 65

50 8.5975 29 196 253 179 0.7099 294 84 84

60 10.5262 30 148 188 122 1.0004 422 112 110

70 12.4828 30 178 223 158 1.3561 561 144 143

80 14.4877 31 214 264 196 1.7787 704 160 160

90 17.0063 31 333 417 308 2.4206 1145 334 326

100 19.2365 30 305 375 285 3.0125 925 218 211

200 21.9803 33 317 355 281 5.321 2549 449 428

300 24.7051 33 311 330 274 14.953 9474 3205 2935

400 27.5931 33 216 229 184 25.1088 7911 916 674

500
30.8347
(0.008hrs) 36 180 191 123

115.79533
(0.032hrs) 26856 5209 5105

600
34.8417
(0.009hrs) 36 254 272 214

139.055
(0.038hrs) 11788 941 941

700
39.3245
(0.011hrs) 35 140 139 115

>35545.870
(9.87hrs) >865844 >456900 >447606

800 43.7699 36 91 90 58 - - - -

900 48.698 36 98 96 68 - - - -

1,000 168.4723 38 123 127 92 - - - -

2,000 175.17167 37 26 23 0 - - - -

3,000 186.735 38 80 75 52 - - - -

4,000 203.64267 39 28 24 0 - - - -

5,000 229.677 39 29 22 0 - - - -

6,000 263.7426 39 33 27 0 - - - -

7,000 309.08433 41 31 22 0 - - - -

8,000 365.065 40 34 26 0 - - - -

9,000 435.2993 40 38 27 0 - - - -

10,000 510.2636 41 28 21 0 - - - -

50,000*
9319.9416

(2.59hrs) 43 33 22 0 - - - -

100,000*
43579.1843

(12.10hrs) 45 35 26 0 - - - -

J. Computer Sci., 3 (3): 138-143, 2007

 142

(more than thousand variables). An interesting statistic
of the number of nodes with integer solution directly
from the branch and bound process illustrates that the
use of cutting planes in the branch and cut process
utilized in CPLEX plays an important role as the
problem size grows because these numbers become
none for large scale test problems. Finally, the program
is used to solve a set of five very large generated
problems with 1,000,000 variables. The average
computational time is more than 24 hours with the
minimum is below 17 hours and the maximum is over 3
days. Parallel programming might be an alternative
approach for improving the algorithm performance in
this case.

CONCLUSION

 In this study we derived a new exact algorithm,
MMPTUKP algorithm, to the problem that the
maximum processing time of the selected items is
minimized and the total profit is gained as at least as
determined without exceeding capacity of knapsack.
This algorithm uses CPEX first for solving the sub-
problem, the unbounded knapsack problem (UKP), in
order to get an initial upper bound and optimal solution
of a subset of items, then updating both lower/upper
bounds of each item through a binary search approach
and solve the corresponding BKP sequentially. The
results from computational experiments with various
data instances randomly generated validate this idea
and demonstrate the efficiency of MMPTUKP
algorithm. For comparisons between MMPTUKP
results with the direct approach results, they indicate
that MMPTUKP algorithm performs better on average
especially in large size test problems.

ACKNOWLEDGEMENT

 We would like to thank Professor Silvano Martello,
University of Bologna, Italy, for many papers and
discussions in which contributed significantly for the
early version of paper.

REFERENCES

1. Toth, P., 2000. Optimization engineering

techniques for the exact solution of NP-hard
combination optimization problems. Eur. J. Oper.
Res., 125: 222-238.

2. Balas, E. and E. Zemel, 1980. An algorithm for
large zero-one knapsack problems. Oper. Res., 28:
1130-1154.

3. Fayard, D. and G. Plateau, 1975. Resolution for the
solution of the 0-1 knapsack problem: Comparison
of methods. Math. Program., 8: 272-307.

4. Fayard, D. and G. Plateau, 1982. Algorithm for the
solution of the 0-1 knapsack problem. Computing,
28: 269-287.

5. Horowitz, E. and S. Sahni, 1974. Computing
partitions with applications to the knapsack
problem. J. ACM, 21: 277-292.

6. Martello, S. and P. Toth, 1977. An upper bound for
the zero-one knapsack problem and a branch and
bound algorithm. Eur. J. Oper. Res., 1: 169-175.

7. Martello, S. and P. Toth, 1988. A new algorithm
for the 0-1 knapsack problem. Manag. Sci., 34:
633-644.

8. Martello, S. and P. Toth, 1990. Knapsack Problem:
Algorithm and Computation Implementations,
Wiley, Chichester.

9. Nauss, R.M., 1976. An efficient algorithm for the
0-1 knapsack problem. Manag. Sci., 23: 27-31.

10. Plateau, G. and M. Elkihel, 1985. A hybrid
algorithm for the 0-1 knapsack problem. Methods
of Oper. Res., 49: 277-293.

11. Martello, S. and P. Toth, 1997. Upper bounds and
algorithm for hard 0-1 knapsack problem. Oper.
Res., 45: 768-778.

12. Pisinger, D., 1995. An expanding-core algorithm
for the exact knapsack problem. Eur. J. Oper. Res.,
87: 175-187.

13. Bellman, R.E., 1957. Dynamic Programming.
Princeton University Press, Princeton, NJ.

14. Toth, P., 1980. Dynamic programming algorithms
for the zero-one knapsack problem. Computing,
25: 29-45.

15. Pisinger, D., 1997. A minimal algorithm for the 0-1
knapsack problem. Oper. Res., 45: 578-767.

16. Martello, S., D. Pisinger and P. Toth, 1999.
Dynamic programming and strong bounds for the
0-1 knapsack problem. Manag. Sci., 45: 414-424.

17. Martello, S. and P. Toth, 1984. A mixture of
dynamic programming and branch-and-bound for
the subset-sum problem. Manag. Sci., 30: 765-771.

18. Martello, D. Pisinger and P. Toth, 2000. New
trends in exact algorithm for the 0-1 knapsack
problem. Eur. J. Oper. Res., 123: 325-332.

19. Frevill, A., 1991. Contribution a l’Optimization en
Nombres Entries, Habilition a Diriger des
Recherches. Universite se paris XIII, France.

J. Computer Sci., 3 (3): 138-143, 2007

 143

20. Freville, A. and G. Plateau, 1986. Heuristics and
reduction methods for multiple constraints 0-1
linear programming. Eur. J. Oper. Res., 24: 206-
215.

21. Sinuany-Stern, Z. and I. Winer, 1994. The one
dimensional cutting stock problem using two
objectives. J. Oper. Res. Soc., 45: 231-236.

22. Hung, M.S. and J.C. Fisk, 1978. An algorithm for
zero-one multiple knapsack problem. Naval Res.
Log. Quart., 24: 571-579.

23. Martello, S. and P. Toth, 1980. Solution of the
zero-one multiple knapsack problem. Eur. J. Oper.
Res., 4: 276-283.

24. Neede, A. and D. Dannenbring, 1977. Algorithm
for a specialized segregated storage problem.
Technical Report 77-5, University of North
Carolina, Durham, NC.

25. Christofides, N., A. Mingozzi and P. Toth,
1979.Combinatorial Optimization. N. Christofides,
A. Minglzzi, P. Toth, C. Sandi (Eds.) Wiley,
Chrichester, pp: 339-369.

26. Pisinger, D., 1999. An exact algorithm for large
multiple knapsack problems. Eur. J. Oper. Res.,
114: 528-541.

27. Martello and P. Toth, 1981. A branch and bound
algorithm for the zero-one knapsack problem.
Discrete Appl. Math., 3: 275-288.

28. Dudzinski, K. and S. Walukiewicz, 1987. Exact
methods for the knapsack problem and its
generalizations. Eur. J. Oper. Res., 28: 3-21.

29. Nuass, R.M., 1978. The 0-1 knapsack problem
with multiple choice constraints. Eur. J. Oper. Res.,
2: 125-131.

30. Singa, A. and A.A. Zoltners, 1979. The multiple-
choice knapsack problem. Oper. Res., 27: 503-515.

31. Witzgal, C., 1997. On one-row linear programs.
Applied Mathematics Division, National Bureau of
Standards.

32. Fisher, M.L., 1981. The lagrangian relaxation
method for solving integer programming problems.
Manag. Sci., 27: 1-18.

33. Dyer, M.E., M. Kayal and J. Walker, 1984. A
branch and bound algorithm for solving the
multiple choice knapsack problem. J. Comput.
Appl. Math., 11: 231-249.

34. Pisinger, D., 1995. A minimal algorithm for the
multiple-choice knapsack problem. Eur. J. Oper.
Res., 83: 394-410.

35. Pisinger, D., 2001. Budgeting with bound multiple-
choice constraints. Eur. J. Oper. Res., 129: 471-
480.

36. Garfinkel, R. and G. Nemhauser, 1972. Integer
Programming. Wiley, New York.

37. Hu, T.C., 1969. Integer Programming and Network
Flows. Addison-Wesley, Reading, MA.

38. Martello, S. and P. Toth, 1990. Knapsack
Problems: Algorithms and Computer
Implementation, Wiley, New York.

39. Nemhauser, G.L. and L.A. Wolsey, 1988. Integer
and Combinatorial Optimization. Wiley, New
York.

40. Andonov, R., V. Poirriez and S. Rajopadhye, 2000.
Unbounded knapsack problem: Dynamic
programming revisited. Eur. J. Oper. Res., 123:
394-407.

