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Abstract: We address a variant of the unbounded knapsack problem (UKP) into which the processing 
time of each item is also put and considered, referred as MMPTUKP. The MMPTUKP is a decision 
problem of allocating amount of n items, such that the maximum processing time of the selected items 
is minimized and the total profit is gained as at least as determined without exceeding capacity of 
knapsack. In this study, we proposed a new exact algorithm for this problem, called MMPTUKP 
algorithm. This pseudo polynomial time algorithm solves the bounded knapsack problem (BKP) 
sequentially with the updated bounds until reaching an optimal solution. We present computational 
experience with various data instances randomly generated to validate our ideas and demonstrate the 
efficiency of the proposed algorithm. 
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INTRODUCTION 

 
 One of the most frequently used decision making 
that operations researchers must deal is to decide which 
subset of n items or projects should be selected such 
that the total profit sum of the selected items or projects 
is maximized, without exceeding the capital budget, 
referred generally as the knapsack problem (KP). This 
problem can be formulated as a mathematical model (an 
integer linear program) and is one of an NP-hard 
combinatorial optimization problem by which can be 
solved successfully by various exact algorithms. The 
commonly used techniques are the dynamic 
programming and branch-and-bound methods and the 
branch-and-cut and branch-and-price methods as 
described in Toth[1]. This kind of problem can be 
applied and arises in many real world situations. In the 
following, we will provide a historical overview of this 
problem and various involved algorithms.  
 For the 0-1 knapsack problem (KP), it involves 
with selecting items or projects to maximize total profit 
without exceeding the existing capital budget or 
knapsack capacity. Exact algorithms for this problem 
are mainly based on two approaches: branch-and-bound 
and dynamic programming. Examples of branch-and-
bound algorithms can be found in[2-10] and more 

recently in[11,12]. Dynamic programming approaches are 
presented in[5,13,14] and more recently in[15]. A hybrid 
algorithm, combining the dynamic programming and 
the branch-and-bound algorithms has been recently 
proposed by Martello et al.[16]. Different hybrid 
algorithms for the knapsack problem were presented by 
Plateau and Elkihel[10] and Martello and Toth[17]. An 
experiment comparison of the most effective exact 
algorithms for KP is given in[18].  
 The 0-1 multidimensional knapsack problem (0-1 
MKP) is a generalization of the 0-1 knapsack problem 
and a special case of general 0-1 integer programming. 
The objective is the same as the 0-1 knapsack problem. 
Several heuristics or meta-heuristics have been used to 
solve the 0-1 MKP and updated and comprehensive 
survey for 0-1 MKP dealing with applications, 
complexity and heuristics can be found in Freville[19,20].  
 The multiple-knapsack problem (MKP) is the 
problem of assigning a subset of n items to m distinct 
knapsacks to maximize total profits without exceeding 
the capacity of each of the knapsacks. The problem has 
several applications in naval, financial management and 
steel industry[21]. The MKP is NP-hard in the strong 
sense and thus any dynamic programming approach 
would result in strictly exponential time bounds. 
Several branch-and-bound algorithm for MKP have 
thus been presented during the last two decade in Hung 
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and Fisk[22], Martello and Toth[23], Neebe and 
Dannenbring[24] and Christofides et al.[25], Pisinger[26] 
and Martello and Toth[27]. 
 The multiple-choice knapsack problem (MCKP) is 
defined as a 0-1 Knapsack Problem with the addition of 
disjoined multiple-choice constraints. MCKP is NP-
hard as it contains KP as a special case, but it can be 
solved in pseudo-polynomial time through dynamic 
programming in Dudzinski and Walukiewicz[28]. The 
problem has a large range of applications: Capital 
Budgeting in Nauss[29], Menu Planning in Sinha and 
Zoltners[30], transforming nonlinear KP to MCKP in 
Nauss[29], determining which components should be 
linked in series in order to maximize fault tolerance in 
Sinha and Zoltners[30] and to accelerate ordinary 
LP/GUB problems by the dual simplex algorithm in 
Witzgal[31]. Moreover MCKP appears as Lagrangian 
relaxation of several integer programming problems in 
Fisher[32]. Several algorithms for MCKP have been 
presented during the last two decades: e.g. Nauss[29], 
Sinha and Zoltners[30], Dyerm Kayal and Walker[33] and 
Psinger[34]. 
 The budgeting problem with bounded multiple 
choices constraints (BBMC) is a generalization of the 
multiple choice knapsack problem (MCKP). It has a 
wide variety of applications in budgeting, where a 
number of projects from each class has to be selected, 
such that the overall gain is largest possible and such 
that the costs demanded for the chosen projects do not 
exceed a fixed upper limit. It may be applied in 
sequencing and scheduling problems, strategic 
production and hospital planning with production 
constraints in each department, or government 
budgeting with demands in different sectors. The 
algorithm was presented in Pisinger[35]. 
 The unbounded knapsack problem (UKP) is a 
classic NP-hard problem with a wide range of 
applications[36-39]. The two classic approaches for 
solving this problem exactly are branch and bound[38] 
and dynamic programming[36-39]. Another algorithm 
(dynamic programming revisited) is also presented in 
Andonov et al.[40]. 
 To the best of our knowledge, the unbounded 
knapsack problem with minimizing maximum 
processing time, (MMPTUKP) in this study has not 
been studied in the literature. So the objective of this 
study is to present a new optimal solution algorithm for 
this type of problem and to evaluate performance of this 
algorithm by randomly generated data.  
 

Problem formulation and a new exact algorithm 
Problem formulation: The problem studied in this 
work can be formulated as follows. We are given a 
knapsack with capacity c and expected profits at least B 
into which we may put n types of objects. Each object 
of type i with parameters, the profit, pi, the weight wi 
and the processing time ti and with n, B and c are all 
positive integers and we have an unbounded number of 
copies of each object type. The problem calls for 
selecting the set of items with minimizing the 
maximum processing time and must have at least profit 
of B without exceeding the knapsack capacity 
(budgeting, c). Mathematically, the problem can be 
described as the following integer linear programming 
formulation: 
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jx 0≥ and integer for all j = 1,2,..,n. 
An exact algorithm (MMPTUKP algorithm): Here, 
we propose an exact algorithm for solving MMPTUKP 
as follows: 
1. Solve the following sub-problem, unbounded 

knapsack problem (UKP), by an exact algorithm 
such as branch-and-bound or dynamic 
programming methods. 
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jx 0≥ and integer for all j = 1, 2,.., n. 
 After getting an optimal solution, let z* be the 
optimal objective value and let 

*
jx , j 1,..., n= , be the optimal solution. Then check 

whether z*≥  B. If yes, proceed to step 2. Otherwise, it 
indicates that there is no feasible solution, then stop.  
2. Let u lT 0,T 0,T 0= = =  and let *

u j jj 1,2,...,n
T Max [t x ]

=
= , 

3. Let u lT [T T ]/ 2= + , then compute jT / t    defined 

as the upper bounds of each item jx  in the next 
sub-problem, then solve the following sub-
problem, bounded knapsack problem(BKP) with 
these new upper bounds. 
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 After getting an optimal solution, let z* be the 
optimal objective value and *

jx , j 1,..., n=  be the 
optimal solution for the problem and then check 
whether z* ≥  B or not. If yes, let uT T=  and then 
repeat step 3. Otherwise, proceed to step 4. 
 
4. Check whether T is converge or not by using the 

condition, u lT T 0− < ε → , if yes, print the current 
solution as the optimal solution with T* = Tu and 
then stop. Otherwise, proceed to step 5. 

5. Let lT T= , go to step 3. 
 To verify the correctness of the proposed 
algorithm, the following theorem is proven as follows: 
Theorem 1: Algorithm MMPTUKP terminates with a 
feasible solution under optimality of T. 
 
Proof: Let there exist 0 *T T<  be the optimal value of 
T with a feasible solution, 0

jx , j∀  and the total 

profit 0Z B≥ . Then, solve the bounded knapsack 
problem (BKP) with new upper bound jT / t   , with 

T=T0 for all xj. If Z*<B then 0T  does not exist as 
claimed. Otherwise, Tu = T0 which leads to the 
impossible case that Tu > Tl. By contradiction, T* is 
optimal as stated.  
 
 For the complexity of MMPTUKP, the possible 
bottleneck computation is due to either solving the UKP 
in step 1 or solving the corresponding BKP at most 
[Log2Tu*] times where Tu* is the initial upper bound of 
T obtained from step 2. From theoretical standpoints, 
there exists at least a pseudo polynomial time algorithm 
for the proposed MMPTUKP procedure as summarized 
in the following theorem. 
 
Theorem 2: MMPTUKP procedure can be solved as a 
pseudo polynomial time algorithm. 
Proof: Since the number of iterations in the procedure 
is logarithmically bounded, a linear complexity is 
implied. In the procedure, the corresponding UKP and 
BKPs must be solved. Computationally, both problems 
can be solved efficiently in a pseudo polynomial 
bounded algorithm such as dynamic programming 
(bounded by the complexity of the right hand side and 

variables upper bound). Therefore, MMPTUKP can 
also be solved within a number of times bounded by a 
linear function and each time solved within a 
complexity of pseudo polynomial time bounded. 
 
Performance evaluation experiments: We have 
investigated how the MMPTUKP algorithm behaves for 
many problem-sizes. The algorithm was coded as a 
C++ program and was complied as an .EXE file to run 
against solving the problem by direct mixed integer 
programming (MIP) methods using CPLEX software 
for small/intermediate scale and large scale problems 
respectively. All experiments were tested on a PC 
notebook with CPU GenuineIntel, Pentium(r) III 
processor 1 Ghz, 256 MB RAM, 20 GB hard disk. 
Firstly, it is critical to find a highly efficient method to 
solve the corresponding bounded and unbounded 
knapsack problems in the proposed algorithm. Though, 
there are many special algorithms with pseudo 
polynomial time complexities proposed to solve these 
problems. Experimentally, we have found that the 
direct approach using CPLEX can provide quite an 
acceptable result in term of computational time even 
when a small computer is used. The basic results are 
shown Table 1.  
 
Table 1: Solution time in second for solving bounded and unbounded 

knapsack problems (BKP and UBKP) using CPLEX  
Number of variables (BKP)Time (UKP)Time 
 10 0.1 0.06566667 
 50 0.15 0.13466667 
100 0.24 0.21588889 
500 0.39 0.30822222 
1,000 0.59 0.47077778 
5,000 1.211 1.31755556 
10,000 2.924 4.807 
50,000 138.399 390.942 
100,000 659.999 1973.007 
  (0.18hrs) (0.54hrs) 
500,000 9679.127 27229.564 
  (2.688hrs) (7.65hrs) 
1,000,000 36851.94 107979.197 
  (10.236hrs) (29.99hrs) 
 
 The test data in each problem size is randomly 
generated as pj =[1,1000], wj=[1,1000], bj [1,10] for all 
j = 1,2,..,n and n

j j
j 1

C  0.5* w b
=

= ∑  following[18]. The above 

results indicate that CPLEX is more efficient when 
solving the BKP as compared to solving the UKP since 
the bounded variable constraints in the BKP help 
reducing alternatives in the search tree during its branch 
and cut processes. Moreover, these results imply 
possibilities to solve very large scale BKP and UKP 
using the current state of the art mixed integer linear 
programming software especially when utilized  
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 Table 2: Comparative results between using MMPTUKP algorithm (1) and the direct method (2) 
*From 5 generated problems 

 
cooperatively with modern parallel processing 
technology. Next, the C++ executed program of 
MMPTUKP algorithm is experimented with a set of 
randomly generated problems comparing with solving 
the direct model as described earlier using CPLEX. The 
obtained results are shown in Table 2. 
 From Table 2, 10 replications for each problem 
size are randomly generated except large sizes of 
50,000 and 100,000 where 5 replications are used due  
 

 
to their large amount of computation time consumed. 
Again, we use the ranges according to[18] as follows: 
tj = [1,1000], pj = [1,1000], wj = [1,1000], 

n

j
1

C  w= ∑ , 
n

j
1

B  c= ∑  

. 
The results from Table 2 clearly show that MMPTUKP 
algorithm is more efficient as compared to solving the 
problem directly especially when the problem is large 

Number 
of variables 

Avg. time  
of (1)  (sec.) 

#iterations 
of (1) 
 

#iterations 
of (1) from 
CPLEX 

#nodes MIP 
used of (1) 

#nodes of 
 integer  
solution of (1) 

Avg. time  
 of (2) (sec.) 

#iterations 
of (2) 

#nodes 
 MIP used 
of (2) 

#nodes 
of  
integer 
 solution 
of (2) 

10 1.6364 26 65 79 47 0.081 31 11 8 

20 3.405 27 109 152 67 0.1801 76 26 21 

30 4.9803 26 111 148 99 0.3213 130 46 45 

40 6.5705 28 142 177 118 0.4996 210 66 65 

50 8.5975 29 196 253 179 0.7099 294 84 84 

60 10.5262 30 148 188 122 1.0004 422 112 110 

70 12.4828 30 178 223 158 1.3561 561 144 143 

80 14.4877 31 214 264 196 1.7787 704 160 160 

90 17.0063 31 333 417 308 2.4206 1145 334 326 

100 19.2365 30 305 375 285 3.0125 925 218 211 

200 21.9803 33 317 355 281 5.321 2549 449 428 

300 24.7051 33 311 330 274 14.953 9474 3205 2935 

400 27.5931 33 216 229 184 25.1088 7911 916 674 

500 
30.8347 
(0.008hrs) 36 180 191 123 

115.79533 
(0.032hrs) 26856 5209 5105 

600 
34.8417 
(0.009hrs) 36 254 272 214 

139.055 
(0.038hrs) 11788 941 941 

700 
39.3245 
(0.011hrs) 35 140 139 115 

>35545.870 
(9.87hrs) >865844 >456900 >447606 

800 43.7699 36 91 90 58 - - - - 

900 48.698 36 98 96 68 - - - - 

1,000 168.4723 38 123 127 92 - - - - 

2,000 175.17167 37 26 23 0 - - - - 

3,000 186.735 38 80 75 52 - - - - 

4,000 203.64267 39 28 24 0 - - - - 

5,000 229.677 39 29 22 0 - - - - 

6,000 263.7426 39 33 27 0 - - - - 

7,000 309.08433 41 31 22 0 - - - - 

8,000 365.065 40 34 26 0 - - - - 

9,000 435.2993 40 38 27 0 - - - - 

10,000 510.2636 41 28 21 0 - - - - 

50,000* 
9319.9416 

(2.59hrs) 43 33 22 0 - - - - 

100,000* 
43579.1843 

(12.10hrs) 45 35 26 0 - - - - 
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(more than thousand variables). An interesting statistic 
of the number of nodes with integer solution directly 
from the branch and bound process illustrates that the 
use of cutting planes in the branch and cut process 
utilized in CPLEX plays an important role as the 
problem size grows because these numbers become 
none for large scale test problems. Finally, the program 
is used to solve a set of five very large generated 
problems with 1,000,000 variables. The average 
computational time is more than 24 hours with the 
minimum is below 17 hours and the maximum is over 3  
days. Parallel programming might be an alternative 
approach for improving the algorithm performance in 
this case. 
 

CONCLUSION 
 
 In this study we derived a new exact algorithm, 
MMPTUKP algorithm, to the problem that the 
maximum processing time of the selected items is 
minimized and the total profit is gained as at least as 
determined without exceeding capacity of knapsack. 
This algorithm uses CPEX first for solving the sub-
problem, the unbounded knapsack problem (UKP), in 
order to get an initial upper bound and optimal solution 
of a subset of items, then updating both lower/upper 
bounds of each item through a binary search approach 
and solve the corresponding BKP sequentially. The 
results from computational experiments with various 
data instances randomly generated validate this idea 
and demonstrate the efficiency of MMPTUKP 
algorithm. For comparisons between MMPTUKP 
results with the direct approach results, they indicate 
that MMPTUKP algorithm performs better on average 
especially in large size test problems. 
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