
Journal of Computer Science 2 (12): 870-874, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Dr. Thabit Sultan Mohammed, Al-Zaytoonah University, Faculty of Science and IT, Software
Engineering Department, P.O. Box 130 Amman- (11733) Jordan

870

Evaluating the Effect of Inheritance on the Characteristics of Object Oriented Programs

1Thabit Sultan Mohammed and 2Hayam K. Mustafa
1Software Engineering Department, Faculty of Science and IT, Al-Zaytoonah University, Amman-Jordan

2Computer Information Systems Department, Faculty of Science and IT
Al-Zaytoonah University, Amman-Jordan

Abstract: This paper considers a fact that software measures, which many of them were defined many
years ago, are still not widely used in software industry, and therefore some additional insights will be
gained by investigating Halstead’s metrics and use them to propose more software metrics. Since the object
oriented approach was considered an active technology for achieving high quality software, three metrics
for evaluating the extent to which the inheritance property was invested in the object oriented programs are
proposed in this paper. The first proposed metric was “the inheritance ratio” which studies the reduction in
the program volume as a result of using the inheritance property with respect to the volume of the same
program when it was written as functional oriented. The second metric “the inheritance level” points at the
reduction achieved in program volume when the inheritance property was implemented in different levels.
The third metric “effort ratio” relates to the reduction in developer’s effort during the process of program
development.

 Keywords: inheritance, object oriented metrics, software science, software measurement.

INTRODUCTION

Producing low-cost, high quality software is
highly desirable in major software development
projects. One of the most important activities of process
improvement is the ability to measure the process.
DeMarco in [1] has said “you cannot control what you
can not measure”. Software metrics are therefore
important and can be used as quality indicators to help
in risk management by providing means to identify
risky parts at early stages of the software design. They
can also help managers to prioritize their decisions,
quantify improvements in the process, and assess
failure and success.

Halstead’s metrics, or what are commonly
referred to as ‘software science’ [2], are among the most
widely quoted software measures. These metrics were
proposed by Maurice Halstead as a means of
determining quantitative measures directly from the
operands and operators in the program. Although
Halstead metrics are most often used as maintenance
metrics, they are also useful during software
development to asses code quality. Researchers have
used Halstead’s metrics for evaluation in many
examples. These metrics are used to evaluate student
programs[3] and query language[4], to measure software
written for real time switching system[5], to measure
functional programs, to incorporate software
measurements into a compiler[6] and to measure open
sources software[7].

The objective of Halstead’s metrics is to
measure the basic program characteristics such as;
length, vocabulary, volume, level, difficulty, effort and
time. Some researchers have extends the work on more
characteristics relating to the object oriented techniques
[8] such as; average class size, average method size, and
polymorphism.

The metrics presented in this paper tends to be
compact by concentrating specifically on the effect of
implementing the inheritance property in object
oriented programs, while covering the most important
of basic program characteristics without excluding what
is referred to as developer attributes “the programming
effort”. The effort according to Halstead is based on
program difficulty and reflects the time required for
developing a program. In fact, not many studies have
considered the impact of this metric on software quality
[8].

The model presented in our paper is directed
towards analyzing open source software programs
written in C++ language. In[9], Halstead metrics are
calculated for Java language programs not as open
source but at the level of Java byte code, where it was
assumed that some flexibility in analysis will be granted
since much commercial software is distributed as byte
code only.

It is important to distinguish between the
design principles of object oriented approach and the

J. Computer Sci., 2 (12): 870-874, 2006

 871

design principles of functional oriented approach, in
order to clarify many aspects of the object orientation
and allow better quality and administration
management.

Pressman[10] points at five situations, where the
object oriented metrics can be configured.

• Localization: It relates to the tendency of
information in being centralized.

• Encapsulation: Encapsulation means that
objects include their data and attributes.

• Information Hiding: Information hiding
means to hide object characteristics (data and
attributes).

• Inheritance: This property allows the
possibility of deriving a new class and giving
it the attributes of a class or more (partially or
as a whole).

• Object Abstraction Technique: This
technique allows the designer to concentrate
only on the basic and necessary details of
certain parts of programs.

The next section of this paper presents a table

containing the equations governing the basic Halstead
model as well as the adopted counting method of
program tokens. Section 3, however, presents the
proposed model and its three metrics. The results
obtained in applying the model on a set of programs are
presented and analyzed in section 4. In section 5, some
concluding remarks are presented.

Basic metrics: According to Halstead the program
source code is interpreted as a sequence of tokens and
classifying each token to be an operator or an operand.
The following are therefore calculated:

• the total number of unique (distinct) operators
(n1),

• the total number of unique (distinct) operands
(n2),

• total number of operators (N1),
• total number of operands (N2).
The number of unique operators and operands (n1

and n2) as well as the total number of operators and
operands (N1 and N2) are calculated by collecting the
frequencies of each operator and operand token in the
source program.

Other Halstead measures are derived from these
four quantities with certain fixed formulas as shown in
Table I:

Table 1:
Measure Formula
Program Length N = N1 + N2
Program Vocabulary n = n1 + n2
Volume V = N (log2 n)
Difficulty D = (n1/2) (N2/n2)
Effort E = DV

It is important that the counting strategy be
clearly defined and consistent, since all Halstead’s
software science depends on counts of operators and
operands and there is no general agreement among
researches on the most meaningful way to classify and
count these tokens. We have used a counting strategy
on which there exist a consensus in [11] and [12]. In [13],
some rules are proposed for identifying operators and
operands in the object oriented programming language.
The entities that can be used to apply Halstead metrics
are the source code itself or the algorithms of that
source code. When Halstead metrics are applied to
these two entities, different values for the same base
measures are obtained. In both C++ and Java
languages, each statement in the source code must be
ended with a semicolon (;), which is an operator. This
requirement, however, does not exist in the equivalent
algorithm for that source code. In our work, we have
excluded this operator (i.e. the semicolon at the end of
each statement), while counting the operators. This
representation condition effects directly the program
length (L=N1 + N2), whose equation is shown in Table
(I). This effect on program length was studied by
Kiricenko and Oramanjienva in [14].

The proposed model: The proposed model is
composed of three metrics concentrating on the
investment of the inheritance property in program
design. These metrics are derived by establishing
relations between program volume before and after the
use of inheritance and hence measuring the achieved
reduction in program volume.

a. The inheritance ratio (hr): This metric is calculated
according to the following formula:
hr = Vr / Vnh (1)
where
Vr represents the volume of the program when using

inheritance.
Vnh represents the volume of the same program when

no inheritance is used.
 The ratio (hr) represents the saving achieved in
program volume, when the program is designed with
inheritance to its volume designed according to the
functional oriented approach. This metric will be a tool
for estimating and evaluating the costs of program
design and program test as well as program complexity.

b. The inheritance level (hl): This metric refers to the
reduction achieved in program volume when different
levels of inheritance are used in designing the same
program, compared with the program volume when it is
designed without implementing the inheritance
property.
This metric is given by the following formula:
hl = Vhi / Vnh (2)

J. Computer Sci., 2 (12): 870-874, 2006

 872

where:
Vhi represents the volume of the program when the ith

level of inheritance is implemented.
Vnh represents the volume of the same program when

no inheritance is used.
 This metric is an extension to the inheritance ratio
(hr) metric., where for a certain program, a design
alternative being assessed for the that metric may be
among the design alternatives considered for
assessment for this metric.
 The lower the value of (hl) the better the design
alternative and of course the lowest achieved value of
(hl) gives an indication to the best design alternative.

c. Effort ratio (Er): This metric reflects the save in the
programmers effort for writing a program. The
implementation effort according to Halstead is
proportional to both the volume (V) and the difficulty
(D) of the program, as shown in Table I.
The effort ratio (Er) metric is obtained by applying the
following formula:
Er = Eh / Enh (3)
where
Eh represents the effort to write a program when

inheritance is implemented.
Enh represents the volume of the same program when

no inheritance is used.
 To give a better indication, the value of this metric
need to be less than one. The lower its value, the better
the indication, means that less effort is required in
writing a program with implementing the inheritance
property.

RESULTS AND THEIR ANALYSIS

i. The inheritance ratio (hr): We have experimented
our model by applying it to a sample composed of five
programs.
Figure (1) illustrates the results for the first metric (i.e.
the inheritance ratio). In figure (1.a) the volumes, when
the inheritance property is implemented and when no
inheritance is used for the five different programs are
shown. The drops in volumes are shown in figure (1.b),
where inheritance ratios are illustrated.

All of the five programs used have a relatively
long source code. For short programs, it will be difficult
to make a comparison between volumes, and the
inheritance ratio may not necessarily be more than 1.
The general indication obtained from this metric is that
the implementation of the inheritance property leads to
an expected reduction in the costs of both software
design and test as program volumes have decreased.

ii. The inheritance level (hl): To investigate how the
second metric (the inheritance level) behaves, two other
programs (referred to as PROG1 and PROG2) were
designed, and four different design alternatives were

implemented for each one of them. The results of these
design alternatives are shown in figures (2.a) and (2.b).

0

200

400

600

800

1000

1 2 3 4 5

Programs

V
ol

um
e Volume using

inheritance
Volume with no
inheritance

Fig. 1a: Volumes for five sample programs with and

with no inheritance

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Programs

In
he

rit
an

ce
 ra

tio

Fig. 1b: Inheritance ratios of the 5 sample programs

Both figures behave in agreement with the
results obtained in section (i) above, where volumes
have dropped compared with the cases of point 0 at the
inheritance level axis. The curves in these figures are
shaped as part of a parabolic curve with their minima
are at the points of inheritance level =2, showing the
minimum volume. This behavior gives an indication
that going deep in inheritance levels is not necessarily
always in favor of program volume reduction.
With the increase of inheritance levels, the number of
methods coupled between different classes increases,
thereby increasing the difficulty of the software and the
estimated costs of test.

0

200

400

600

800

0 1 2 3 4

level of inheritance

Vo
lu

m
e

Fig. 2a: Volumes for program (PROG1) with different

design alternatives

J. Computer Sci., 2 (12): 870-874, 2006

 873

0
200
400
600
800

1000

0 1 2 3 4

level of inheritance

Vo
lu

m
e

Fig. 2b: Volumes for program (PROG2) with different

design alternatives

iii. The effort ratio (Er): Figure (3) illustrates the
developer’s effort required for writing programs. The
same five different programs of (i) above are used for
experimentation. In figure (3.a) a comparison between
the efforts required with and without implementation of
inheritance is presented. Figure (3.b) shows the
behavior of the effort ratio for the sample programs.
The curves shown in figures (3.c) and (3.d) below
illustrate the calculated effort for the two previously
mentioned programs (PROG1 and PROG2)
implemented with different designs. Each design
alternative is based on different level of inheritance.
Figure (3.c) behaves in a similar manner as figure (2.a)
behaves, showing that the lowest effort is required,
when the inheritance level=2. Figure (3.d), however,
shows a slightly different behavior, where the effort has
increased when the inheritance level =1. Such increase
can be justified by the increase in the difficulty
(D=n1/2) (N2/n2)), where more operators and operands
are used but not invested for inheritance yet. When the
inheritance levels are increased and more classes are
derived with inherited properties, a noticeable decrease
in effort is obtained.

0
20000
40000
60000
80000

100000
120000

1 2 3 4 5

Programs

E
ffo

rt

Effort using
inheritance
Effort with no
inheritance

Fig. 3a: Efforts for five sample programs with and with

no inheritance

0

0.2

0.4

0.6

0.8

1 2 3 4 5

Programs

Ef
fo

rt
 ra

tio

Fig. 3b: Effort ratios of five sample programs

0

10000

20000

30000

0 1 2 3 4

Levels of inheritance
Ef

fo
rt

Fig. 3c: Efforts for program (PROG1) with different

design alternatives

0
5000

10000
15000
20000

0 1 2 3 4

Levels of inheritance

Ef
fo

rt

Fig. 3d: Efforts for program (PROG2) with different

design alternatives

CONCLUSION

 Metrics are units of measurement that are
used to characterize products, processors and people
and hence allow a definition for their success or failure.
Metrics can also help in identifying and quantifying
improvement or degradation in our products, processes
and people.

Metrics for object-oriented software
engineering is affected by the features of the object
oriented approach of software development such as:
localization, encapsulation, information hiding
inheritance and object abstraction technique.
The three proposed metrics in this paper depend on
implementing the inheritance property when designing
software programs. These three metrics are; the

J. Computer Sci., 2 (12): 870-874, 2006

 874

inheritance ratio, the inheritance level and the effort
ratio.

From the application of the model on a number
of sample programs we can conclude that the
investment of the inheritance property leads to a
decrease in the volume of programs. It also leads to a
decrease in efforts required for implementation. The
depth of inheritance affects the volume and effort in
program development. Generally speaking, having
more levels of inheritance leads to reducing volume and
effort. Practically, however, there exists a level which
can be considered better than others.

Through the application of the sample
programs on our model, the second level of inheritance
gave optimum volumes and efforts. And in general we
can claim that our results give indications to the level of
inheritance that is relatively better than others. Further
application of sample programs on our model will
improve the results and may lead to a rule that can
quickly point out the most suitable inheritance level for
a given program.

REFERENCES

1. DeMarco, T., 1998. Controlling Software projects:

Management, measurement, and estimation.
Yourdon Press, New York.

2. Halstead, M.H., 1977. Elements of Software
Science. New York: Elsvier North-Holland.

3. Leach, R.J., 1995. Using metrics to evaluate
student programs. ACM SIGCSE Bulletin, 27: 41-
48.

4. Chuan, C.H., L. Lin, L.L. Ping and L.V. Lain,
1994. Evaluation of query languages with software
science metrics. Proc. IEEE Eegion 10’s Ninth
Annual Intl. Conf. Frontiers of Computer
Technology, Singapore, pp: 516-520.

5. Baily, C.T. and W.L. Dingee, 1981. A Software
Study Using Halstead Metrics. Proc. 1981 ACM
Workshop / Symposium on Measurements and
Evaluation of Software Quality, Maryland, USA,
pp: 189-197.

6. Al Qutaish, R.E., 1987. Incorporating Software
Measurements into a Compiler. MSC Thesis.
Department of Computer Science, Serdang: Putra
University of Malaysia.

7. Samoladas, L., I. Stamelos, L. Angelis and A.
Oikonomou, 2004. Open source software
development should strive for even greater code
maintainability. Communication of ACM, 47: 83-
88.

8. Subhas, C. M. and Virendrakumar C. B., 2003.
Measures of Software Systems Difficulty. www.
Asq.org, SQP Vol. 5, No. 4.

9. Daniel, K. 2003. Halstead Metrics with Java
Bytecode. ACM SIGPLAN Notices, Vol. 17, No. 11, 2.

10. Pressman, R.S., 2005. Software Engineering: A
Practitioner’s Approach. 6th Edn. Mc-Graw Hill
Co.

11. Abd Ghani, A. A. and Hunter, R. 1996. An
Attribute Grammar Approach to specifying
Halstead’s Metrics. Malaysian Journal of
Computer Science, Vol. 9, No.1, 1996, pp.56-67.

12. Conte, S. D., Dunsmore, H. E., and Shen, V., Y.
1986. Software Engineering Metrics and Models.
Menlo Park, California : Benjamin Cummings.

13. Li, D. Y., Kiricenko, V., and Ormandjieva, O.
2004. Halstead’s software Science in Today’s
Object Oriented World. Metrics News, Vol. 9, No.
2. pp. 33-40.

14. Kiricenko, V., and Ormandjieva, O. 2005.
Measurement of OOP size based on Halstead’s
Software Science. In proceedings of the 2nd
Software European Forum. Rome, Italy.

