
Journal of Computer Science 2 (11): 807-814, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author : Saad Dahlab University, Route de Soumaa, 09000 Blida, Algeria
807

The Design of a Complex Software System with Archjava

1Djamal Bennouar, 2Tahar Khammaci and 3Abderrezak Henni

1Saad Dahlab University, Route de Soumaa, 09000 Blida, Algeria
2LINA, Université de Nantes, 2, Rue de la Houssinière, 44322, Nantes, France

3Institut National d’Informatique, Oued Smar, 16000, Algiers, Algeria

Abstract: Software development by assembling components represents a very promising way for the
design of high quality software at lower costs. The assembly is specified by the Architecture
Description Languages (ADL). ArchJava is an ADL that is characterized by its independence from the
application domain and its close position to the implementation level, thus making it very attractive for
practitioners. Until now, ArchJava was used to illustrate its characteristics either on simple cases, or
for the software specification at a high level of abstraction. In this study we present the design of a
complex software system by assembling components using ArchJava and following a top down design
process. This experience underlines the power of design by assembling components for the fast
realization of complex software system. It also emphasizes some deficiencies of ArchJava in the
specification of some concepts related to the design by assembling components, the design of the GUI
and data modeling.

Key words: Software architecture, connector, component, ArchJava

INTRODUCTION

 Over the years, the object model has been
successful in various fields of software system design
(RAD, Distributed Object Infrastructure, Component
models such as EJB, CCM, .Net etc.). However, in the
last decade the software engineering community has
made significant progress in reducing the semantic gap
between the mental model of the software architect and
the models handled by software tools (diagram,
program etc). This progress was materialized by the
emergence of software architecture as an autonomous
field of research/development in software engineering.
The purpose of software architecture is to provide the
concepts, techniques and tools needed to deal directly
with various aspects of mental models related to a
software system.
 Historically, a mental model has always been
expressed in an informal box and line diagram notation.
Each box deals with a precise functionality of a system.
The lines correspond to interactions semantics or data
flow. This view of software is often called software
architecture and often represents the first step leading to
the realization of a software product. Furthermore,
software architecture aims to easily and efficiently
accommodate the mental models of architects and tries
to join other engineering areas, by adopting the strategy
of designing a system by assembling different
components. To reach this objective, the procedural
paradigm of interaction which prevails in the object
model and the component models like JavaBeans,
ActiveX and EJB must be completely abandoned (as

was the case with structured programming with the
emergence of the object model).
 A number of research initiatives were undertaken
in the last decade concerning software architecture
specification. These efforts resulted in the proposal of a
great number of ADL. The work presented in[1]
summarizes the characteristics of these ADL and
discusses the main concepts introduced in Software
Architecture such as components, ports, composite
components or configurations and connectors.
Recently, UML 2.0[2], in an attempt to fill the gaps of
UML 1.4, has introduced some mechanisms in order to
support the concepts just introduced. Still, ADL has not
been highly successful. This is due to several factors,
such as the orientations to solve problems in a specific
domain[3], the use of a particular architecture style[4], or
the exclusive use of formal languages like CSP[5].
 ArchJava[6] was introduced to overcome the stated
deficiencies. It offers an attractive alternative for the
practitioners: an ADL, at the implementation level,
supporting the main concepts needed for the design by
assembling software components.
 ArchJava is an extension of the JAVA language. It
brings to java the fundamental concepts of software
architecture, namely the concepts of components, ports,
connectors and composite components. ArchJava was
tested on simple cases or to make specification at a high
level of abstraction[7], with an aim of illustrating the
various concepts which it handles. In the present study,
we use ArchJava to realize a complex software system
intended for a telecommunication company. The
software system manages the commerce of various
products of an X25 network. Moreover, this study

J. Computer Sci., 2 (11): 807-814, 2006

 808

determines the strong and weak points of ArchJava
when it is used to design concrete software system.

THE ARCHJAVA LANGUAGE

 ArchJava was designed to allow system design by
assembling components. Significant work was done to
ensure the validity and the integrity of the interactions
between components in ArchJava. These interactions
are done only through connectors. ArchJava supports
the following concepts of software architecture:

Components and ports: An ArchJava component is a
special object, being able to be equipped with ports
through which it can interact with other components. It
is declared by the component class keyword. A port
corresponds to the concept of interface found in COM
or CCM models. It is declared by the keyword port. At
the port level, a component exposes a set of methods
organized in two main categories:
* Provided methods: These methods are
implemented by the component and can be activated by
other components. A provided method is declared by
the keyword provide.
* Required methods: These methods are
implemented by other components and are declared by
the keyword require. A component reaches an external
service by activating a required method of a port.

 In spite of the possibility offered by a port to mix
the provided and required methods, in practice it is
recommended to put in a port, either the required
methods or the provided methods. The basic rules of the
establishment of connection between methods of ports
are as follows:
* A provided method is connectable to a required

method.
* A provided method may be connected to several

required methods.

Composite component: A composite is composed
from many interconnected other components which can
either be composite or non-composite. The ports of the
composite are connected to the ports of its internal
components by special connectors named delegation
connectors in UML 2.0 or glue in ArchJava. With the
concept of composite component, software architecture
has a hierarchical structure. Its development follows a
top down process which can comprise several stages of
refinement. In the next sections, while needed, we will
schematize component, ports and connectors according
to the recommendations of UML 2.0.

TARGETED APPLICATION AND ITS DOMAIN

 In this experimental study, we plan to realize a
software system to manage the commerce of products
of an X25 network for a telecommunication company.

 A telecommunication company may have one or
more inter-connected X25 sub-networks. Each sub-
network may be provided by an independent
manufacturer. Each manufacturer equips the sub-
network that it provides with a control station. The
control station, in addition to the various actions of
control of the sub-network, collects tickets describing
communications over the network from the sub-
network switches. A second control station is also
provided for each X25 sub-network. This second station
is used in case the first control station fails to work. The
second station carries out the collection of the tickets in
parallel with the first station. The tickets collected by
the second station are exploited only in the event of
breakdown of the first station
 A subscription with an X25 network is determined
by a number similar to the telephone number. A
customer can have one or more subscriptions. The
tickets inform about the customers and the products
which they consumed during one period of a precise
connection. As an example, we can find on a ticket the
caller number, the called number, the date and time of
starting a connection, the duration of a connection, the
quantity (in bytes) of transferred data, etc.
 The major goals of the application are the
management of X25 network products, subscribers,
subscriptions, invoicing, payment, tariff plan, system
maintenance, and users. The application downloads a
file containing tickets from a selected control station of
the X25 sub-network. The tickets are evaluated
according to a tariff plan and the information provided
by each ticket. In addition to the information provided
by the tickets, other information will be used for the
calculation of the invoice of a subscription for a period.
Among this information we find the speed of transfer of
data, the hiring of modems, the membership to a secure
and closed group of subscribers, etc. Other details
concerning the application will be given in the next
section.

THE DESIGN PROCESS

 The design process we follow is characterized by
the following elements:

* It is a strongly oriented design by assembling

components. It consists of developing a tree
representing the hierarchy of refinement of the
system. The root of the tree corresponds to a
component representing the system to be realized.
The leaves represent the not composite components
which contain only the ports declaration and the
realization in java of provided and internal
methods. The intermediate nodes represent
composite components. The design process follows
a top down strategy of development. Thus the
design will begin with the global definition of the
component at the root of the refinement tree.

J. Computer Sci., 2 (11): 807-814, 2006

 809

* It is iterative. At each design stage, several
attempts of modeling are evaluated. The decisions
at a design stage can lead us to reconsider the
results of the preceding stages.

* It is recursive. The process at the current stage is
applied to the following stage.

 A composite component may contain a special
component known as controller. Among the roles
assigned to the controller are the initialization of the
composite, the management of the flow of control and
the multiplexing of ports. The process comprises a
number of stages. Each stage corresponds to a level of
refinement represented by the refinement tree. Each
stage has two phases. In the next section we present a
partial view of this process. Complete description can
be found in[8].

Phase 1: The External view
 In this phase the following actions are performed:

Global description: This phase begins with an abstract
definition of the system or component. In a pictorial
sense, it is in the form of only one box that has several
arriving and leaving arrows. Arrows represent the
provided and needed services, data or control. To
eliminate any ambiguities, this box and arrow
specification must be accompanied by a narration
explaining the total functionalities of the system and the
semantics associated with the arrows. The narration
may also contain the requirements and constraints fixed
by the customer.

Organize the services: From the preceding definition,
we must define:
* The provided services
* The required services

Definition of adaptation services: These are internal
services. The main role of an adaptation service is to
manage connections to legacy systems or system not
realized in ArchJava.

Definition of the external ports: The required and
provided services are gathered in ports. A port will
contain either the provided services or the required
services.
 At the end of this first phase, a global ArchJava
description of the system becomes possible.

Phase 2: The Internal view
 In this phase, the following goals must be
achieved.
Define the internal system logic in a box and line
style.

Define the roles played by the controller. Among
these roles we can find the composite component

initialization, the logic of activating components
according to a defined strategy (sequence activation,
parallel activation etc...), the multiplexing of method
between external and internal ports and the
management of the composite component environment

Define a mapping between external services and the
internal box: This mapping will show exactly which
component will realize a provided method and which
one need a required method exposed on external ports.
This mapping will serve to determine if a port
multiplexing is needed and to realize the delegation
connectors linking external ports to internal
components ports.
 In order to achieve this mapping, we have to apply
one of the following strategies.
* All methods, in an external port, are mapped to

only one component. In this case, we will find a
similar port in the internal component.

* Methods in an external port are mapped to more
than one component. To realize the connection of
external method to a method in a port of an internal
component, we have to use the multiplexing
technique which will be held by the controller
component. The external port is then connected to
a similar port of the controller.

Internal component design: For each box of the
internal view, one of the following actions has to be
performed
* Find an existing component which can realize all

of the objectives assigned to a box and use it. In
case where no existing component corresponds to
the box objectives, apply the two design phases to
the box in order to completely define the external
view (ports) and internal view (component and
connections)

* Realize the delegation connectors
* Realize the connection using existing connector

technology. The process we present here does not
deal with the engineering of connector’s
architecture.

DESIGN OF THE TARGETED APPLICATION

 In the following, we will apply the just described
process to the design of the targeted application
previously presented. We present some aspects of this
process in order to illustrate how software architecture
is conducted with ArchJava

Phase 1: The external view

Global description of the system: Figure 1 shows the
global view of the system. It is clear that such a view is
not very precise and is ambiguous. It requires a
complementary narration and could not be treated by
software tools

J. Computer Sci., 2 (11): 807-814, 2006

 810

Tickets
Products
Tariff plan
Subscribers
Subscription
Payment

X25 Billing Center

System

Requirements Provided

Invoice
Accountable
Data
Statistics
Maintenance
reports

X25 Billing Center

System

pp_ticket
pp_product
pp_tarif
pp_subscriber
pp_subscription
pp_invoice
pp_payment
pp_maint
pp_report

Fig. 1: The global view of the system

System ports: The preceding view is transformed into
a more precise view which would be the starting point
for a successive operation of refinement until reaching
the desired software product. Figure 2 shows all the
ports of the system. A number of methods dealing with
some objectives assigned to the port are defined within
each port. Note that all the functionalities quoted in the
previous informal definition don’t appear in Fig. 2. It is
the case of the ticket acquisition service. This service
will be defined in the internal view of the system
because it connects our system to another system, not
defined in ArchJava

Fig. 2: System ports

Adaptation services: These are the services (presented
in the previous informal view) that are needed by the
system we are designing, but are provided by other
systems which we will call foreign systems or foreign
component. The external view of a foreign component
or system is not compatible with the external view of
the system or component designed in ArchJava. In such
cases, the following rule must be applied: When a
component or a system defined in ArchJava interacts
with a foreign system, connection to the foreign system
has to be established through an adapter component
(Fig. 3). This one interposes between our system and
the foreign system. The adapter will be given the
responsibility to hide the specifics of the foreign system.

ArchJava description: Figure 4 shows, in ArchJava,
the external view of the system we plan to realize.

Henceforth, this system will be named
X25BillingCenter.

Fig. 3: Connection to a foreign system

public component class X25BillingSystem
 {
// 1- External View Start Here----------
// 1- Provided services
// Not all port will be shown here
 public port pp_subscriber{
 provide int subscriberAdd (
 Subscriber subscriber);
 provide int subscriberUpdate (

 Subscriber subscriber);
 provide int subscriberDelete(
 Subscriber subscriber);
 }
 public port pp_subscription

provide int subscriptionDefine (
Subscriber subscriber,
Subscription subscription);
provide int subscriptionRelease (
Subscription subscription);
provide int subscriptionUpdate (
Subscription subscription);
provide int subscriptionStart (
Subscription subscription);
provide int subscriptionStop (
Subscription subscription);

 }
 // Other provided ports go here
 // 1-2 – Required Port
 // No Required port for this system
 // External View End Here ---------

 // 2- internal View
 // 3- Activate the controller component
public void run() {
 controler.pp_starter.activate()
}
 // 4- Next method ensures that the component may be
 // operated in a stand alone mode
public static void main(String[] arg){
 new X25BillingCenter().run();
}

Fig. 4: External view of the system

Phase 2: The internal view

System logic in a box and line style: Figure 5 shows
the fundamental components of the X25BillingCenter’s
internal architecture. We describe in what follows some
components. A complete description is given in[9].

X25 Billing
Center System

pp_ticket
pp_product
pp_tarif
pp_subscriber
pp_subscription
pp_invoice
pp_payment
pp_maint
pp_report

X25
Control
Station

Ftp Server

CMPA
CtrlStation

J. Computer Sci., 2 (11): 807-814, 2006

 811

 pp_ticket

pp_subscriber

pp_subscription

pp_tarif CMP_Tarif

CMP_Subscription

CMP_Subscriber

CMP_Acq

CMP_Acq

CMP_Subcriber

CMPA_CtrlStation

CMP_Cost

CMP_Subcription

CMP_Invcoice

CMPA_Db

CMP_ Payment

CMP_Acc

CMP_Maintain

CMP_Reports

CMP_Alarm

X25BCController

CMP_Engine

CMP_Log

CMP_GUI

CMPA_Reports

Fig. 5 Box and line style

CMP_acq will assume the responsibility of bringing
back the tickets from the control station, format them,
valorize them and finally send them to a data base. The
tickets in the database will be used thereafter for the
calculation of the invoices. This component will require
at least the services of two adapters of the foreign
system: The first adapter will interpose between the
control station and the system to be realized. The
second will interpose between a database and the
system.

CMP_Subscriber provides facilities to put various
kinds of data concerning the subscribers in databases.
This component will use the database adapter
component and will be used by the graphical user
interface component (CMP_GUI).

CMP_Subscription. A subscription is an X25 number,
or address associated with various services and time of
validity. A subscription is affected to one and to only
one subscriber. A customer may have several
subscriptions. This component has the responsibility to
define the subscriptions, to assign them to subscribers,
to modify, cancel, stop, start and restart them etc. This
component uses the services of the database adapter
(CMPA_db)

CMP_Invoice carry out the calculation of subscriber’s
invoices. It requires the services of the data base
adapter component (CMPA_Db) and a report tool
component adapter (CMPA_Reports)

CMP_GUI Allows the interactive and graphical use of
the system. It requires the services of components such
as CMP_Acq, CMP_Subscriber and so on.

CMP_Engine: Some operations require a time for their
termination, which can be very significant. This is the
case for the ticket acquisition operation done by
CMP_acq component and the invoicing of a significant
number of subscribers done by CMP_Invoice.

Components like CMP_Acq and CMP_Invoice must
have the capabilities to operate independently from
other components, in particular the CMP_GUI. The
component CMP_Engine was introduced to control, in
an autonomous way, the management (starting,
stopping, logging etc.) of time consuming operations. It
provides the service of configuration
(activate/deactivate engine) and requires the services of
heavy driven components such CMP_invoice or
CMP_Acq

ArchJava description of composition: With
ArchJava, it is possible at this early stage to describe
the composition of the system by only quoting the
different components used (Fig. 6).

public component class X25BillingSystem
 {
 // 1- Internal View: Composition
 private final CMP_Acq acquire =
 new CMP_Acq ();
 private final CMP_Subcriber subscriber =
 new CMP_Subscriber ();
 private final CMP_Subcription subscription =
 new CMP_Subscription ();
//..
// … other component used must be specified here
// ..
 private final CMP_Alarm alarm =
 new CMPAlarm ();
 // Next component is the system controller
 private final X25BCController controller =

 new X25BCController()
 // End of Internal View System Composition
 // 2- External View
 // 2- 1 Provided services

Fig. 6: Specification of needed component for the
internal view

Mapping external ports to components: In this first
stage of refinement, it appears that all methods of each
port will be mapped to one component since all ports
contain only the provided services. All methods of each
port will be implemented by only one component. Thus
the mapping is direct and no multiplexing functionality
is needed. As a result, in each component that is
mapped to an external port we will find a similar port.
As an example, all the methods of the external port
pp_ticket will be implemented by CMP_Acq. Thus,
CMP_Acq has to provide a similar port which we name
pp_ticket. Figure 7 shows a partial mapping,
materialized by delegation connectors.

Fig. 7: Mapping external ports to internal ports

J. Computer Sci., 2 (11): 807-814, 2006

 812

pp_ticket

CMP_acq

rp_ctrlStation

rp_db

rp_log

rp_alarm

CMP_TFMgr

rp_ctrlStation rp_db
pp_acq rp_alarm rp_log

pp_acq

pp_val

rp_val

rp_format

pp_format

pp_tf_manager

rp_tf_manager

rp_acquire

pp_acquire

rp_db rp_ctrlStation

CMP_TicketIn CMP_TicketVal

CMP_TicketFormatter

CMPAcq_Controler

The design of internal components: For each
component of this stage of design, it is necessary to
search if a component which carries out the same
objectives exists. In this case it should be used. If this
research is unfruitful for various reasons, the design of
the component should then be carried out. This lead us
to apply to the component the two phases of the design
process. In our case, we face a situation where no
ArchJava component exists for the telecommunication
domain. We are thus brought to realize all our
components. In the following, we illustrate the
application of the process with its two phases on the
CMP_Acq heavy component. .

CMP_Acq external ports: Figure 8 shows all the
external ports of component CMP_Acq and Fig. 9
shows the external view described in ArchJava

Fig. 8: CMP_Acq external ports

public component class CMP_acq
 {
 // 1- Internal View Composition
 // 2- External View
 // 2- 1- Provided services
 public port pp_ticket{

provide int acquire();
provide int format();
provide int valorize();
provide int clean();

 }
 // 2-2 – Required Services
 public port rp_ctrlStation

require X25Network select();
require Station select(
 X25Network x25net)
require String download(
 Station station);

 }
 public port rp_db

require int dbconnect (
 Dbserver dbserver);
require int dbdisconnect(
 Dbserver dbserver);
require QueryRes Query(
 String query)
require int download(Station station);

 }
 // 3- internal View Connexion and Glue
 // 4- Below code for Controller Activation
 // 5- Below code for stand Alone comp

Fig. 9: CMP_Acq external view in ArchJava

CMP_Acq Internal view: Figure 10 shows a draft of
the internal view of this component. It is made up of 4
components and a controller. We present in the
following the CMP_Acq internal components.

CMP_TicketIn downloads the tickets using the
services provided by the adapter CMPA_CtrlStation

through the delegation connector connected to the
external port rp_ctrlStation.

Fig. 10: Component CMP_acq internal view (Not all

connexions are shown)

CMP_TicketFormatter transforms a raw ticket in an
internal format. This component ensures the
independence of the system with respect to the format
of tickets specific to each X25 networks manufacturer

CMP_TicketVal. The tickets in the internal format are
submitted to this component in order to be valorized.
Valorization process is based on the information
contained in the ticket (connection duration, quantity of
data transferred), on the tariff policy and the services
used during the communication described by the ticket.
The number of fields representing the ticket are
increased in the valorization process by additional
fields containing several ticket cost according to tariff
policy. After valorization, the tickets are sent the
database through the rp_db port.

CMP_TFMg manages the operation on the files
containing the ticket in manufacturer format or internal
format. It contributes to reinforce the recovery of the
operations of various components in case of failure or
major error. The provided services are used by the
previous components.

CMPAcq_controller: It ensures the activation of the
three components CMP_TicketIn, CMP_
TicketFormatter and CMP_TicketVal, as well as the
recovery in the event of major problem having stopped
the work of one of the three components. It may launch
the three components in sequence or parallel and it

J. Computer Sci., 2 (11): 807-814, 2006

 813

carries out the multiplexing of the port pp_ticket.
Figure 11 shows the composition description of the
CMP_Acq component.

public component class CMP_acq
 {

 // 1- Internal View Comoosition
 private final CMP_TicketIn ticketin =
 new CMP_TicketIn ();
 private final CMP_TicketFormater formatter =
 new CMP_TicketFormatter ();
 private final CMP_TicketVal ticketVal=
 new CMP_TicketVal ();
 private final CMP_TicketFileMgr tfmgr =
 new CMP_TicketFileMgr ();
 private final CMP_AcqControler controler =
 new CMP_AcqControler ();

 // 2- External View
 // 3- internal View Connexion and Glue
 // 4- Below code for Controller Activation
 // 5- Below code for stand Alone component

Fig. 11: CMP_Acq composition

Mapping external ports of CMP_Acq to its
component: The mapping between external ports and
the internal component port are realized in ArchJava by
the glue instruction (Fig. 12)

public component class CMP_acq
 {
 // 3-1 Glue Implementation
 glue pp_acq to controller.pp_acq;
 glue rp_ctrlStation to ticketIn.rp_ctrlStation;
 glue rp_db to ticketVal.rp_db;
 glue rp_alarm to ticketVal.rp_alarm,
 ticketIn.rp_alarm,
 formatter.rp_alarm,
 ticketFileMgr.rp_alarm,
 controler.rp_alarm ;
 glue rp_log to ticketValuer.rp_log,
 ticketIn.rp_log,
 formatter.rp_log,
 ticketFileMgr.rp_log,
 controler.rp_log ;
 glue rp_db to ticketVal.rp_db;

 // 3-2 Componenet connection
 // 4- Below code for Controller Activation
 // 5- Below code for stand Alone component

Fig. 12 : CMP_acq, external to internal ports mapping

CMP_Acq Component connexion: The connection
description in ArchJava are specified by the connect
instruction (Fig. 13) which must obey to a previously
specified connect pattern definition

LESSONS AND COMMENTS

 The defined design process was applied
successfully for the realization of the X25BillingCenter
software. Work carried out showed the flexibility and
the power of ArchJava to easily describe architectures
specified, even in an informal, ambiguous and
incomplete manner. Compared to another work whose
goal was to realize the same product using EJB

technology[10] the realization time in ArchJava was the
shortest. The use of EJB requires the control of several
technologies (Servlets, JSPs, JavaBeans, EJBs, XML
etc.) and concepts, whereas in ArchJava, the only
concepts to be controlled are the fundamental concepts
of the software architecture expressed in the JAVA
language. A factor which could explain this
performance would be the efficient support of the
composition concept in ArchJava. This concept made it
possible to follow a top down design process. The
composition concept is not efficiently supported by the
EJB component model[11].

public component class CMP_acq
 { // 3-2 Componenet connection
 connect controller.rp_acq, ticketin.pp_acq;
 connect controller.rp_format,
 formatter..pp_format;
 connect controller.rp_val, ticketValuer.pp_val
 connect tfiMgr.pp_tf_manager,
 ticketin.rp_tf_manager,
 formater.rp_tf_manager,
 tiocketVal.rp__tf_manager;
 // Remaining connect expression go here
 // 4- Below code for Controller Activation
 // 5- Below code for stand Alone component

Fig. 13: CMP_acq connectors description

 ArchJava represents an important progress in ADL
technology. It constitutes an excellent first bridge to
practitioner to pass from the object oriented design
world towards the design by assembling components
world. However, ArchJava encounters some difficulties.
We will quote in the following those met in this work.
Connector deficiencies:
* The connection points in a port are represented by

methods. It is not possible for the moment to
specify another form of connection point (i.e.
connection point supporting synchronous or
asynchronous mode using shared variable). By
limiting the connection point to methods, the
ArchJava language did not arrive to release itself
from interaction based on procedural model while
designing the software system. To reach a degree
of maturity and efficiency similar to the other
fields of engineering, the design by assembling
software component must abandon the paradigm of
objects and its communication based on method
invocation.

* It is not possible to connect ports having a different
number of interaction points (methods), or to
connect directly interaction points. This deficiency
constrained us in introducing the multiplexing
component.

* The connection points of two connected ports must
have the same name. This deficiency goes against
the significant objective of software architecture,
namely, the design of component independently
from the environment of use.

J. Computer Sci., 2 (11): 807-814, 2006

 814

* It is not possible to fix default values (default
method in our case) on the connection points. The
default values (here a default method) are used
when the connection point is not explicitly
connected. .

Design deficiency: For the CMP_GUI component, the
refinement process was very delicate. Thus, in this first
version, component CMP_GUI is not composite. It was
completely designed with java/swing. The integration
of swing component with ArchJava requires the support
for asynchronous event connection points and needs the
use of the connect instruction to establish connection
instead of the event connector model of the swing
components. These improvements are possible but
require a significant amount of work. This work is
concentrated on two essential points:
* Realization of the components adapter for swing

components.
* Realization of a personalized connector managing

the asynchronous events. This may be achieved by
the use of a reflection mechanism provided by
ArchJava.

Data modeling: Like any ADL, ArchJava is oriented
towards the specification of components and their
interactions. ArchJava does not offer any mechanism to
model or organize data (i.e. no mechanism to achieve
component persistence). Data describing an information
system or any real world are not considered as
architectural elements. Rather, they feed software
architecture and flow in it. Their modeling is carried out
in a way independent of architecture. The link will be
made through an adapter which is aware of the adopted
data model.

CONCLUSION

 The work described in this study, presents an actual
experience where an approach of designing a complex
system by assembling components is used. This
experience showed how a software architecture
approach could lead to the fast realization of a complex
software system. It also raised certain weaknesses of
ArchJava and ADL in general. A graphic tool for
software architecture specification[12] can fill a good
part of these deficiencies by the use of adapters.
 This work also raised the need to model
independently the software architecture and the data
flowing in this architecture. It is obvious that the data
could have an impact on architecture, in particular the
paths used (connectors). The opposite is also true.
Reducing the impact of data on architecture and the
opposite would work to enhance the reusability of
component in any environment.

REFERENCES

1. Medvidovic, N. and R.N. Taylor, 2000. A

classification and comparison framework for
software architecture description languages. IEEE
Trans. Software Engg., 26: 70-93.

2. OMG, Unified Modeling Language:
Superstructure, version 2.0, formal/05-07-04,
http://www.omg.com

3. Vestal, S., 1993. Scheduling and Communicating
in MetaH. Real-Time Systems Symp., pp: 194-200,
Raleigh-Durham (NC).

4. Medvidovic, N., R.N. Taylor and E.J. Whitehead,
1996. Formal modeling of software architectures at
multiple levels of abstraction. Proc. California
Software Symp., pp: 28-40, Los Angeles, CA.

5. Allen, R.J., 1997. A formal approach to software
architecture. Ph.D. Thesis. School of Computer
Science, Carnegie Mellon University.

6. Aldrich, J., 2003. Using Types to enforce
architectural structure. Computer Science and
Engineering, Ph. D. Thesis, Washington
University, http://www-
2.cs.cmu.edu/~aldrich/papers.

7. Aldrich, J., C. Chambers and D. Notkin, 2002.
Architectural reasoning in ArchJava. Eur. Conf.
Object Oriented Programming, Málaga, Spain, Jun.
10-14.

8. Bennouar, D., 2005. A semi-automated design
process for software architecture. RRI04/008,
LDRSI Lab, CS Dept., The Saad Dahlab
University, Algeria, (In French).

9. Saadi, A., 2005. ArchJava components data book
for telecommunication domain. M. Sc. Thesis,
LDRSI Lab, CS Dpt.,The Saad Dahlab University
at Blida, Algeria (In French).

10. Zougagh, M., 2005. Applying CATALYSIS process
to the design of a complex system in
telecommunication domain. M. Sc. Thesis, LDRSI
Lab, The Saad Dahlab University at Blida, Algeria
(In French).

11. Carrez, C., 2003, Behavioral contract for
 components, Phd Thesis, INFRES, Télécom Paris

ENST, (In french).
12. Khider, H., 2005. An IDE for rapid software

architecture design with archJava. M. Sc. Thesis,
LDRSI Lab, CS Dept., The Saad Dahlab
University at Blida, Algeria (In French).

