
Journal of Computer Science 2 (10): 798-806, 2006 
ISSN 1549-3636 
© 2006 Science Publications 

Corresponding Author: R.B.Patel, Department of Computer Engineering, M. M. Engineering College, Mullana-133203, 
Haryana, India 

798 

 
Cluster Computing: A Mobile Code Approach 

 
R.B.Patel and Manpreet Singh 

Department of Computer Engineering, M.M. Engineering College, Mullana-133203, Haryana, India 
 

Abstract: Cluster computing harnesses the combined computing power of multiple processors in a 
parallel configuration. Cluster Computing environments built from commodity hardware have 
provided a cost-effective solution for many scientific and high-performance applications. In this paper 
we have presented design and implementation of a cluster based framework using mobile code. The 
cluster implementation involves the designing of a server named MCLUSTER which manages the 
configuring, resetting of cluster. It allows a user to provide necessary information regarding the 
application to be executed via a graphical user interface (GUI). Framework handles- the generation of 
application mobile code and its distribution to appropriate client nodes, efficient handling of results so 
generated and communicated by a number of client nodes and recording of execution time of 
application. The client node receives and executes the mobile code that defines the distributed job 
submitted by MCLUSTER server and replies the results back. We have also the analyzed the 
performance of the developed system emphasizing the tradeoff between communication and 
computation overhead. 
 
Key words: Middleware, mobile code, cluster computing 

 
INTRODUCTION 

 
 Cluster computing is an important element in 
mainstream computing. In recent years, cluster 
computers have emerged as the leaders in high-
performance computing. Cluster computing harnesses 
the combined computing power of multiple 
microprocessors in a parallel configuration. Cluster 
computers are a set of commodity PC’s dedicated to a 
network designed to capture their cumulative 
processing power for running parallel-processing 
applications[1]. Clustered computers are specifically 
designed to take large programs and sets of data and 
subdivide them into component parts, thereby allowing 
the individual nodes of the cluster to process their own 
individual chunks of the program. 
 A Cluster is a group of loosely coupled computers 
that work together closely so that in many respects they 
can be viewed as though they are a single computer. 
Clusters are commonly, but not always, connected 
through fast local area networks. Clusters are usually 
deployed to improve speed and/or reliability over that 
provided by a single computer, while typically being 
much more cost-effective than single computers of 
comparable speed or reliability. Cluster can be 
categorized into three forms.  
 High-availability (HA) clusters are implemented 
primarily for the purpose of improving the availability 
of services which the cluster provides. They operate by 
having redundant nodes, which are then used to provide 
service when system components fail. The most 
common size for an HA cluster is two nodes, which is 

the minimum required to provide redundancy. HA 
cluster implementations attempt to manage the 
redundancy inherent in a cluster to eliminate single 
points of failure.  
 Load balancing clusters operate by having all 
workload come through one or more load-balancing 
front ends, which then distribute it to a collection of 
back end servers. Although they are implemented 
primarily for improved performance, they commonly 
include  high-availability features as well. Such a 
cluster  of   computers  is   sometimes   referred   to   as 
a server farm.  
 High-performance clusters (HPC) are implemented 
primarily to provide increased performance by splitting 
a computational task across many different nodes in the 
cluster and are most commonly used in scientific 
computing. One of the most popular HPC 
implementations is a cluster with nodes running Linux 
as the system and free software to implement the 
parallelism. This configuration is often referred to as a 
Beowulf cluster[2]. Such clusters commonly run custom 
programs which have been designed to exploit the 
parallelism available on HPC clusters. Many such 
programs use libraries such as MPI[3] which are 
specially designed for writing scientific applications for 
HPC computers. HPC clusters are optimized for 
workloads which require jobs or processes happening 
on the separate cluster computer nodes to communicate 
actively during the computation. These include 
computations where intermediate results from one 
node's calculations will affect future calculations on 
other nodes. 



J. Computer Sci., 2 (10): 798-806, 2006 

 799 

Master Node 

Nodes 

Nodes 

Switch 

Distributed Applications 

 
PC 

Network 
Interface 

H/W 

Cluster Middleware 

Communication Network 

 
PC 

Network 
Interface  
 H/W 

 
PC 

Network 
Interface  
 H/W 

 
PC 

Network 
Interface  
 H/W 

 In this paper we have presented design and 
implementation of a cluster based framework using 
mobile code. The cluster implementation involves the 
designing of a server named MCLUSTER which 
manages the configuring, resetting of cluster. We have 
also the analyzed the performance of the developed 
system emphasizing the tradeoff between 
communication and computation overhead. 
 
Basic architecture of cluster computing: There are 
many cluster configurations, but a simple architecture is 
shown in Fig.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1: Basic architecture of cluster computing 
 
 In a typical cluster, the application runs on a 
Master node. However, the computational work is split-
up and parsed out to be done by the multiple nodes in 
the cluster. In this way, cluster is better equipped to 
handle larger amounts of data and complex problems 
than otherwise possible on a stand-alone machine. 
Some of the main modules related to cluster 
configuration are: Building a Cluster, System 
Administration, Hardware Management and Software 
Platform Maintenance. 
 After the cluster is constructed, it requires an 
effective system administration to remain useful. 
Maintenance and administration of a cluster are similar 
to those of a LAN. Two major domains of work 
explored in this area are: hardware management and 
software platform maintenance. 
 The main component of Hardware management is 
network management which can be divided into two 
major areas: cabling and topology. Every machine in a 
cluster must be able to work with the other machines. 
Maintaining the software on a cluster consists of 
administrative work multiplied by ‘n’ nodes - each of 
which is potentially dependent on other nodes. 
 
Parallel processing using cluster computing: Parallel 
processing mainly involves concurrent use of multiple 
processors to process data. Significant development in 
Network technology is paving a way for parallel 

processing. Cluster computing implements MIMD 
(Multiple Instruction Multiple Data Stream) model of 
Flynn’s classification[4] of computer architecture using 
general purpose processors or multicomputers. Clusters 
are also suitable than special parallel computers for the 
execution of parallel applications as they can easily 
integrate into existing networks. By sharing the 
computers of owner-users, which are normally not 
accessible in a non-dedicated cluster, parallel 
applications can gain extra processing power to perform 
CPU-hungry computations. On the other hand, owner-
users of their computers could suffer from a slight 
degradation of the execution performance. The 
degradation of the CPU services trends to be 
insignificant when the workload of the computers move 
towards I/O-bound applications and the number of 
owner-users is large in the cluster. 
 
Design of cluster computing: The main aim is to 
provide a flexible framework for Cluster Computing. 
The framework so used consists of three parts: Personal 
Computers (PC), high speed communication network, 
distributed applications as shown in Fig. 2.  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Framework for Cluster Computing 
 
 PC are connected to the network using standard 
Ethernet Network Interface Card (NIC).Cluster 
middleware is implemented in Java so that middleware 
can provide the Single System Image[5] of the cluster to 
any computer with different OS platforms once the Java 
virtual machine(JVM) is installed. JVM makes it easier 
to implement, migrate and execute the mobile code at 
remote computer in the cluster. The user is guided 
through the creation and management of cluster via a 
graphical user interface. It frees the user from 
identifying the network topology of the framework of 
cluster. The framework has been designed in such a 
way that incremental changes to it can easily enhance 
the generality and usability of cluster.  
 
Architecture of cluster middleware: In current cluster 
configuration there are two types of nodes: 



J. Computer Sci., 2 (10): 798-806, 2006 

 800 

ClientManager 

Client Node 

 
 
 
 
 
    MCLUSTER Server 

ClusterManager 

AppManager 

Mobile 
Code 

ClientManager 

Client Node 

 

 

 

 

MCLUSTER SERVER 

Invitation 
Packet 

Communication 
Network 

  

  

  

  MCLUSTER SERVER   

Communication 
Network 

 
  

Address 
Packet 

Nodes registered to the 
cluster, i.e., Client node 

 
 
 
 
 
 
 
 
 
 
Fig. 3: Architecture of cluster middleware 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Broadcast of Invitation Packet by MCLUSTER 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Transmission of IP address from Client to MCLUSTER 



J. Computer Sci., 2 (10): 798-806, 2006 

 801 

 

  

 

  

MCLUSTER SERVER 

Communication 
Network 

Mobile Code  

Node Selected For Execution of 
Current Application  
                     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Distribution of mobile code by MCLUSTER to selected nodes 
 

 
Fig .7: Options related to cluster management 
 

 
 
Fig. 8: Options related to application description and execution 
 
a server node named MCLUSTER, client nodes. 
Middleware is generally considered the layer of 
software sandwiched between the operating system and 
applications. Cluster middleware allows programmer to 
develop and execute the parallel applications on 
clusters and achieve good execution performance. 
Figure 3 illustrates the structure of cluster middleware. 

 MCLUSTER server and client nodes are 
communicating with each other through message 
passing and any distributed application is executed 
using mobile code which contains both input data as 
well as application code. The important building blocks 
of cluster middleware are ClusterManager, 
AppManager and ClientManager. 



J. Computer Sci., 2 (10): 798-806, 2006 

 802 

Cluster 

Receiver Thread 

Mframe 

SocketHandler 

Sender Thread Par_Execution   

AppManager 
ClusterManager 

Find_Address        

MClusterServer 

 

 
Fig. 9: Selection of current scenario and node list option 
 

 
Fig. 10: Selection of input button for specifying number of nodes to be selected 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11: Class diagram of middleware implementation of MCLUSTER SERVER 



J. Computer Sci., 2 (10): 798-806, 2006 

 803 

ClientManager 

  App_rec_exec ClientFrame 

ClientNode 

 
Fig. 12: Frame displayed at client node corresponding to invitation packet 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13: Class diagram of middleware implementation of client node 
 

 
Fig. 14: Result of application series with client nodes=3 and data range=1-100000 
 
 ClusterManager is the software module that 
initiates the cluster and manages all nodes that take part 
in the cluster process. ClusterManager periodically 
broadcast invitation packets to all nodes in the network 
as shown in (Fig. 4). All those nodes on which 
ClientManager is activated and are not being part of the 
cluster, will display a frame on the user screen after 
receiving the invitation packet .If user accepts the 

invitation then IP address of user’s node will be 
automatically communicated to MCLUSTER Server as 
show in Fig. 5. MCLUSTER efficiently maintains a 
database of all these addresses.  
 AppManager is the module which coordinates all 
functions related to application description, distribution 
and execution. AppManager provides a GUI from 
which user can easily select a particular application, 



J. Computer Sci., 2 (10): 798-806, 2006 

 804 

provides the input data and specify the parameters such 
as number of nodes to be used for the execution of 
application. After the selection of application, 
AppManager initiates Par_Execution module. 
Par_Execution module implements an algorithm for 
parallel execution of application. Steps of algorithm are 
as follows: 
 Select the first N IP Addresses from the database, 
where N is the number of nodes to be used for the 
execution of current application as specified by the 
user. 
 Divide the given data range into N number of non 
Overlapping data sub range. 
 Send an Execute Packet to all selected Client 
nodes. 
 Creates N number of threads where each thread is 
involved in the transfer of Mobile code as shown in Fig. 
6 (class file of application, data sub range) to one of the 
selected client node as well as the retrieval of result 
from the same node.  
 ClientManager is the software that listens to the 
requests from MCLUSTER server related to cluster 
membership, application execution and service those 
requests ClientManager is the code which can be 
executed on any node in the network. During its 
execution, it will receive three types of messages from 
MCLUSTER server: Invitation message, Execution 
message and Reset message. A node can provide its 
Computational power to cluster only when it register 
itself to MCLUSTER by communicating its IP address 
to the server in lieu of Invitation message & then it 
becomes one of the client node of cluster. On receiving 
the mobile code from server it load and execute the 
mobile code and reply the results back. 
 
Implementation and performance study: There exist 
two main classes that constitute the cluster middleware. 
Cluster class creates an object of Mframe class which in 
turn builds a GUI that helps the user to obtain cluster as 
well as application execution information interactively 
as shown in Fig. 7 and 8. 
 Mframe also coordinates with ClusterManager and 
AppManager classes. ClusterManager class contains 
two supporting classes: Sender and Receiver mainly 
involved in cluster monitoring[6] such as building and 
resetting as shown in Fig. 9. AppManager class receives 
the application name, data range; node count 
information from the user via GUI as shown in Fig. 10. 
This information is used by its two subclasses: 
SocketHandler and Find_Address for the generation 
and distribution of mobile code to the required client 
nodes.  
 ClientManager mainly provides communication 
with MCLUSTER server. It contains two supporting 
classes: ClientFrame and App_rec_Exec. ClientFame is 
providing a GUI to the user as shown in Fig. 12 while 
App_rec_Exec provides an environment for the 
execution of mobile code.  

 Series application is selected for validating the 
prototype. It basically involves generating a sequence 
of numbers between an initial value and a final value. 
The job load is evenly distributed among selected client 
nodes. MCLUSTER server begins a timer before the 
execution of application and stops it after the collection 
of entire series from client nodes as shown in Fig. 14. 
The effect of number of client nodes and data range on 
the execution time of application is represented by Fig. 
15 and 16.  
 The performance of cluster, during the execution 
of distributed applications not having significant 
amount of data (such as between 1-20000) deteriorate 
as indicated by Overhead point in Fig. 15. At these data 
ranges the communication overhead between 
MCLUSTER Server and Client nodes overwhelm the 
advantage of distributed processing power obtained 
from client nodes. When data range is extensive then 
the time consumed by an application so executed in a 
distributed manner is several times smaller than the 
execution time of the same application processed on a 
single node. The MCLUSTER model is designed in 
such a way that even for a large problem size (such as 
between 1-5000000) and average cluster size (up to 
N=11) performance of distributed application will not 
deteriorate as shown in Fig. 16.  
 
Overhead analysis: When the scalability of cluster 
increases i.e. more and more nodes are introduced in 
the cluster, the communication links near the server are 
congested due to large transmission of data thereby 
degrading the cluster performance. Communication 
overhead includes the overhead due to exchange of data 
between nodes and message delay caused by network 
congestion. The result so generated after execution of 
the application Series for a data range 1-100000 on a 
cluster of 11 client nodes is represented by Fig. 17.  
 From Fig. 17 and on the basis of assumption that 
external network load is low and constant ,the 
communication overhead for MCLUSTER model can 
be parameterized as a simple linear function of number 
of bytes transmitted and number of client nodes 
selected. 
 Coverhead = � + � * N 
 Where �=Startup time involving Partitioning time, 
Time spent during selection  
 of client nodes. 
 �= Cost per byte transmitted. 
 N=Number of nodes selected for a particular execution 
 
Related work: A number of research efforts in the area 
of improving the performance of distributed 
applications in a cluster computing environment have 
emerged[2,7,8].Previous studies revealed the impact of 
cluster size and underlying network on the performance 
of distributed applications[9,10]. 
 Our work (i) evaluates the performance of 
application   as   a   function   of  problem size, network  



J. Computer Sci., 2 (10): 798-806, 2006 

 805 

0
2000

4000
6000
8000

10000
12000

14000
16000

1-10000 1-20000 1-50000 1-100000

Data Range

Ti
m

e 
(M

ill
is

ec
on

ds
)

1
2

3

Over head Point 

No. of Nodes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15: Effect of data range and number of nodes on execution time  
 

Result of Application : Series

1

10

100

1000

10000

100000

1000000

1-
10

00
0

1-
20

00
0

1-
50

00
0

1-
10

00
00

1-
20

00
00

1-
50

00
00

1-
10

00
00

0

1-
20

00
00

0

1-
30

00
00

0

1-
50

00
00

0

Data Range

T
im

e 
(M

ill
is
ec

o
n
d
s)

1

2
3

 
 
Fig. 16: Effect of data range on execution time of application series  
 

0

10

20

30

40

50

1 3 5 7 9 11

Number of Client Nodes

C
om

m
un

ic
at

io
n 

O
ve

rh
ea

d(
%

)

 
Fig. 17: Communication overhead vs. cluster size 
 
 

No. of 
Nodes 



J. Computer Sci., 2 (10): 798-806, 2006 

 806 

 
parameters and cluster size (ii) provides features for 
monitoring of cluster. The developed MCLUSTER 
model concentrates on reducing the communication 
overhead by using the mobility of code and bridging all 
system characteristics.  
  

CONCLUSION AND FUTURE WORK 
 
 Cluster computing undoubtedly is gaining 
importance as a substitute for very expensive Parallel 
computers. As depicted in my dissertation work, 
Cluster computing by appropriately combining the 
computational processing power of autonomous 
computers can significantly improve the performance of 
distributed applications. Cluster Computing on the 
other hand can deteriorate the performance of a 
problem if a proper check is not applied at the problem 
size as well as cluster size. Since the improper values of 
these two parameters will lead to the network 
congestion thereby resulting in the overwhelming of 
computation load by communication load. However 
this Network Congestion problem can be easily tackled 
by using the concept of Mobile Agent[11]. 
 Further we will implement Fault Tolerance in 
MCLUSTER model, i.e., to make sure that cluster 
functionality is not largely affected even if 
MCLUSTER server fails. It can be attained by 
replicating the functionalities of MCLUSTER server on 
some other nodes in the cluster.  
 

REFERENCES 
 
1. Baker, M. and R. Buya, 1999. Cluster computing: 

The commodity supercomputer. Software- 
Prentice, 29: 551-576. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. Becker, D. and P. Merkey. The Beowulf Project. 
http://www.beowulf.org. 

3. Message Passing Interface, MPI Forum- 
http://www.mpi-forum.org. 

4. Flynn, M.J. Very High Speed Computing Systems. 
Proc. IEEE, 54: 1901. 

5. Geist,A. and J. Schwidder, 1999. Managing 
multiple multi-user PC clusters. J. Parallel and 
Distributed Computing.  

6. Cheung, L. and A.P. Reeves, 1992.  High 
performance computing on a cluster of 
workstations. Proc. First Symp. High-Performance 
Distributed Computing. 

7. Jon, B.W. and A.S. Grimshaw, 1994. Network 
partitioning of data parallel computations. Proc. 
Third Intl. Symp. High Performance Distributed 
Computing (HPDC '94), April 2-5, 1994, San 
Francisco, CA, USA. IEEE Computer Society.  

8. Lemeire, J. and E. Dirkx, 2002. Causes of blocking 
overhead in message-passing programs. 10th Euro 
PVM/MPI 2002 Conference, Venice, Italy. 

9. Martin, R., A. Vahdat, D. Culler and T. Anderson, 
1997. Effects of communication latency, overhead 
and bandwidth in a cluster architecture. Proc. 24th 
Annual Intl. Symp. Computer Architecture (ISCA), 
pp: 85-97. 

10. Lange, D.B. Mobile Agents: The Future of 
Distributed Computing? General Magic, Inc. 
California.  

11. Walker, B. and D. Steel, 1999. Implementing a full 
single system image unixware cluster: Middleware 
vs. underware. Proc. Intl. Conf. Parallel and 
Distributed Processing Techniques and 
Applications(PDPTA’99),Las Vegas,USA.  

 


