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Abstract: The quest to arrive at a better model for signal transformation for speech has resulted in 
striving to develop better signal representations and algorithm. The article explores the word model 
which is a concatenation of state dependent senones as an alternate for phoneme. The Research Work 
has an objective of involving the senone with the Input signal processing an algorithm which has been 
tried with phoneme and has been quite successful and try to compare the performance of senone with 
ISP and Phoneme with ISP and supply the result analysis. The research model has taken the SPHINX 
IV[4] speech engine for its implementation owing to its flexibility to the new algorithm, robustness and 
performance consideration. 
 
Key words:  Signal transformation, speech engine, senonic baseform, new algorithm 

 
INTRODUCTION 

 
HMM signal representations: In statistically based 
automatic speech recognition, the speech waveform is 
sampled at a rate between 6.6 kHz and 20 kHz and 
processed to produce a new representation as a 
sequence of vectors containing values of what are 
generally called parameters. The vectors (y(t) in the 
notation used in section) typically comprise between 10 
and 20 parameters and are usually computed every 10 
or 20 msec. These parameter values are then used in 
succeeding stages in the estimation of the probability 
that the portion of waveform just analyzed corresponds 
to a particular phonetic event that occurs in the phone-
sized or whole-word reference unit being hypothesized. 
In practice, the representation and the probability 
estimation interact strongly: what one person sees as 
part of the representation another may see as part of the 
probability estimation process. For most systems, 
though, we can apply the criterion that if a process is 
applied to all speech it is part of the representation, 
while if its application is contingent on the phonetic 
hypothesis being tested it is part of the later matching 
stage.  
 Representations aim to preserve the information 
needed to determine the phonetic identity of a portion 
of speech while being as impervious as possible to 
factors such as speaker differences, effects introduced 
by communications channels and paralinguistic factors 
such as the emotional state of the speaker. They also 
aim to be as compact as possible.  
 
The language representation: A speech recognizer 
converts the observed acoustic signal into the 
corresponding orthographic representation of the 

spoken sentence. The recognizer chooses its guess from 
a finite vocabulary of words that can be recognized. For 
simplicity, we assume that a word is uniquely identified 
by its spelling.  
 Dramatic progress has been demonstrated in 
solving the speech recognition problem via the use of a 
statistical model of the joint distribution p(W,O) of the 
sequence of spoken words W and the corresponding 
observed sequence of acoustic information O. This 
approach, pioneered by the IBM Continuous Speech 
Recognition group, is called the source-channel model. 
In this approach, the speech recognizer determines an 
estimate � of the identity of the spoken word sequence 
from the observed acoustic evidence O by using the a 
posteriori distribution p(O|W). To minimize its error 
rate, the recognizer chooses that word sequence that 
maximizes the a posteriori distribution:  
� =argmax p(W|O) = argmax   p(W) p(O|W) 
      w w  p(O) 
where p(W) is the probability of the sequence of n-
words W and p(O|W) is the probability of observing the 
acoustic evidence O when the sequence W is spoken. 
The a priori distribution p(W) of what words might be 
spoken (the source) is referred to as a language model 
(LM). The observation probability model  p(O|W) (the 
channel) is called the acoustic model. We discuss in this 
section, various approaches and issues for building the 
language model.  
 The source-channel model has also been used in 
optical character recognition (OCR) where the 
observation sequence is the image of the printed 
characters, in handwriting recognition where the 
observation is the sequence of strokes on a tablet, or in 
machine translation (MT) where the observation is a 
sequence of words in one language and we represents 
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the desired translation in another language. For all these 
applications, a language model is key. Therefore, the 
work on language modeling has a wide spectrum of 
applications.  
 
Word models: Word models are able to capture within-
word phonological variations since the same phone is 
assimilated by different models when it is realized 
differently in different words. For example, the 
expected acoustic realization of phone /T/ in ten, the 
flapped /T/ in thirty and the deleted /T/ in twenty are 
modeled by different parameters within the respective 
word models. Words are also the most natural units of 
speech because they are exactly what we want to 
recognize. For small vocabulary tasks, word models 
may be suitable since it is not difficult to collect enough 
utterance samples for each word. For large vocabulary 
speech recognition, word modeling becomes difficult 
because many repetitions of each word are needed to 
obtain reliable estimates. Moreover, acoustic examples 
of one word are exclusively used for training that 
particular word; no other word can benefit from them. 
Furthermore, when a new word is added to a system, 
there is no way to obtain a model for the new word 
without collecting utterance samples for this word.  
 
Monophone models: To achieve parameter sharing 
across different words, subword units like phonetic 
models are often used because they are both trainable 
and sharable. Since there are only about 50 phones in 
English, phones can be sufficiently trained with just a 
few thousand sentences. Hence, unlike word models, 
monophone models have no training problem. Word 
models are formed by concatenating a sequence of 
phones, or networking a set of alternative phonetic 
pronunciations. Thus, different words that contain the 
same phone share the same phone model and thus 
utterances of one word provide training data for parts of 
the other words. A new word can be easily added to a 
system without collecting utterance samples. Despite 
these many advantages, monophone modeling assumes 
that a phone produced in one context is equivalent to 
the same phone in any other context. This is far from 
the truth . Although we may try to say each word as a 
concatenated sequence of independent phones, phones 
are not produced independently because our articulators 
cannot move instantaneously from one position to 
another. Thus, the realization of a phone is strongly 
affected by its surrounding phones.  
 
Multi-phone models: One way to share parameters and 
at the same time keep detailed and consistent models is 
to use multi-phone units. Examples of these include 
syllables demisyllables  and traditional diphones . Each 
of these models cover a sequence of phones that contain 
the most severe contextual effects. However, while the 
co-articulations in the middle portions of these units are 
well modeled, the beginning and ending portions are 

still susceptible to some contextual effects. Even when 
we define multiple-phone units by breaking word 
pronunciations at points where contextual effects are as 
small as possible, we find that the cost of the 
information we lose at these multiple-phone-unit 
boundaries is not recovered by the superior modeling of 
the middle portions . The large number of multi-phone 
models presents another considerable problem for large 
vocabulary tasks, as there are over 20,000 syllables in 
English. Although there are fewer syllable models than 
word models in a very large vocabulary, reliable 
estimation of these parameter values is still not possible 
with a typical amount of available data (20,000 
sentences). Moreover, as with word models, there is no 
parameter sharing between different multi-phone 
models and thus adequate occurrences in the training 
data for every single unit must be guaranteed to obtain 
reliable estimates 
 
Subphonetic models: With regard to choosing a 
speech unit as the basic modeling unit, we have 
reviewed word models, multi-phone models (including 
syllables), monophone and context-dependent phone 
models. IBM  first proposed senones as front-end based 
subphonetic units in 1987. Meanwhile, Dragon 
presented subphonetic segments  and PELs (phonetic 
elements)  for constructing triphone or PIC (phoneme-
in-context) model. Soon after, GEC-Marconi presented 
phonicles, or phonetic particles . In 1992 ATR 
InterpretingTelephony Research Laboratories in Japan 
proposed the hiddenMarkov network (HMnet) 
constructed by the SSS (Successive State Splitting) 
algorithm , which conceptually resembles our work but 
is very distinct in its implementation. Among the above 
work, senones and senones are probably most 
successful and well known.  
 
Subphonetic modeling using senones: The 
subphonetic unit we investigate is the existing Markov 
state in phonetic HMMs transformed to senones for 
research purpose. 
 
Generalization at a subphonetic level: The goal of 
generalized triphones—grouping acoustically similar 
triphones into a single model—is to reduce the number 
of free parameters in the system’s acoustic models. 
However, since it clusters acoustic events at a relatively 
crude unit, an entire phoneme, it may render over 
generalized phonetic models. When two triphone 
HMMs are merged, all pairs of corresponding Markov-
state information (the output distributions) are 
averaged. Partial sharing is not supported. One solution, 
which is explored in this thesis, is to analyze each 
subphonetic event carefully and group only at the 
subphonetic level in order to avoid over-generalization. 
We propose to extract the information associated with 
Markov states of phonetic models (the output 
distribution and/or the transition probabilities) and 
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Result 
class 

Result.getFrameNumber() * WindowShiftInMs(35ms) =Length of the result 

Compare the Input signal with the Length of the result and optimize speed 

locate similar ones. With this approach, it is possible 
for two triphones to share only some common states.  

 

 
Fig. 1: Phonetic model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: ISP model 
 
 This flexibility results in accurate modeling at 
every state and at the same time achieves the goal of 
parameter reduction. 
 Conceptually, this searching of Markov state 
prototypes is similar to VQ clustering, where matches 
are sought among a set of prototype vectors. 
Implementation, output distributions and/or transition 
probabilities are probabilities rather than simple 
vectors. Therefore, their distortion measures (which 
make the notion of "match" precise) need to be defined 
differently. After clustering similar Markov states of 
triphone models, the original Markov states are labeled 
by the cluster identification, according to the clustering 
result. The resulting clusters are named senones, after 
senones, because they are state-dependent and are 
analogous to senones. The set of clusters becomes the 
contents of a "senone codebook". In SPHINX-IV, each 
state is identified by its associated output distribution 
(because many researchers share the same experience 
that transition probabilities play a minor role in the 
HMM methodology). Thus, a senone is essentially a 
representative of the output distributions associated 
with the Markov states in the same cluster. States 
labeled by the same cluster share the same senone (or 
interchangeably output distribution). The set of HMMs 
that share output distributions through senones are 

called shared-distribution models (SDMs). When 
senones are used, we have the luxury of using more 
states for each phonetic model to achieve more detailed 
acoustic modeling. We rely on the clustering procedure 
to tie redundant states. Given the sharing structure, we 
then train the HMM parameters so that the likelihood of 
generating the training data is maximized under the 
senone sharing constraint. The shared distribution 
model has proved to be significantly better than 
generalized triphones. For instance, on the 1000-word 
Resource Management speaker-independent continuous 
speech recognition task (using the standard bigram 
language   model), the senone-based SDM 
outperformed  generalized triphones by 19% in the 
word error rate.  
 
Our work: One solution, which is explored in this 
thesis, is to analyze each subphonetic event carefully 
and group only at the subphonetic level in order to 
avoid over-generalization. We propose to extract the 
information associated with Markov states of phonetic 
models (the output distribution and/or the transition 
probabilities) and locate similar ones by either a 
bottom-up or top-down clustering procedure. With this 
approach, it is possible for two triphones to share only 
some common states. This flexibility results in accurate 
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modeling at every state and at the same time achieves 
the goal of parameter reduction. 
 The main goal of this thesis is to demonstrate the 
superiority of modeling subphonetic units over 
modeling phones. The subphonetic unit we investigate 
is the Markov state in phonetic HMMs. We compare 
the experiments did with phonetic model using ISP[11] a 
concept arrived by us for sphinx4 with the experiments 
we did for subphonetic model in this research work  
 
Phonetic model with ISP: Our model considers 
sphinx4 with a new componet ISP.  The ISP model[11] is 
proposed with the confidence that the input signal speed 
can be fine tuned for better realization by the Speech 
Engine (Sphinx). To explain it technically we 
configured the Result.getFrameNumber() function in 
the Result class by multipliying with the 
windowShiftInMs (a property of  edu.cmu.sphinx. 
frontend.window.RaisedCosineWindower), which 10 
milliseconds by default, to get the length of the result. 
We have also taken a standard reference to identify the 
silence as well as the speech based on several repeated 
experiments. we have also  lowered the speech 
classifier 'threshold' property in the config files to make 
the input signal to be loud enough for the Sphinx engine 
to recognize.  By using repeated experiment results we 
have set a standard for optimal speed for the input 
signal and configured the module (ISP) which identifies 
whether the speaker is speaking slowly or quickly and 
do the necessary performance modification to increase 
the efficiency. 
 In this experiment, we applied the concept of ISP 
only to the train data. The algorithm first estimated the 
phone segments in the testing utterance by running the 
decoder. It then used the hypothesized phone segments 
to find the sentence-based normalization factor, ρ��Table 
1 shows 16.5% error rate reduction by interpolating the 
cepstrum frames on dev-fast train data. The 
normalization factor ρ �was determined by AveragePeak 
as defined by formula (2)��The normalization factors of 
the utterances in dev-fast varied between 0.92 and 1.47 
 
Table 1:  Shows Error reduction  by interpolating cepstral frame 
Training data  Original Interpolation 
Original 16.64% 13.90% 

 

 

 
Fig. 3: Sub phonetic model 

Subphonetic model with ISP: Senones were tested on 
a 2000-word office correspondence task in a speaker-
dependent isolated-speech mode. Both the training and 
testing data sets each contained one utterance for each 
word in the vocabulary, from one speaker only. No 
language model was used. The word error rate using 
monophone models is shown in the first row of Table 
2.1. In the second experiment, a third utterance (other 
than the training and testing utterances) was used to 
obtain the fenonic baseform according to the sequence 
of VQ codewords. The learned fenonic baseforms were 
trained by the training corpus which consists of one 
sample for each word in the vocabulary. The third 
experiment used another 4 utterances for each word to 
obtain the fenonic baseform according to (2.1). With 
the same training corpus, the senonic baseform learned 
from 4 separate utterances performed significantly 
better than monophone models. 
 
Table 2: Word error rate  with monophone and senone 
Acoustic model No.of utterances for Word error rate 
 Learning senonic baseforms  
Monophone 0 5.2% 
Senone 1 7.4% 
Senone 4 2.2% 

 

 
Fig. 4: Senone codebook 

 
 Given multiple utterances of a particular word, we 
can estimate a word HMM by the forward backward 
algorithm. For each state in the estimated word HMM, 
a most similar senone is identified to replace the 
estimated output distribution. This concept of state 
quantization is the same as the one in the hybrid 
approach, except that the SQ distance measure may be 
different.  The Figure above explains the algorithm for 
constructing the senonic baseform for a word, given 
multiple utterances. The word model is allowed to be 
labeled by an arbitrary sequence of senones to provide 
the maximum freedom for automatically learned 
pronunciations reduced by 15% compared with the 
phonetic baseform. 
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 The senonic baseform is applied to two tasks. The 
vocabulary for the first task contains only the 26 letters 

of the English alphabet. 

Table 3: Comparison of results showing reduction in word error rate with the senones 
Acoustic Model Modeling of Unseen Contexts  Isolated Speech Word Error Rate Continuous Speech Word Error Rate 
Monophones  monophones 29.9% 45.3% 
Triphones  monophones 24.9% 42.7% 
Context-dependent Phonicles top-down knowledge-based clustering 13.8% 27.6% 
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 With a rich training corpus, each letter has ample 
training data and thus two senonic baseforms per letter 
are automatically learned in our experiments. With 
these purely acoustic-driven senonic baseforms, the 
word error rate is  
1. Compute the average duration (number of time-

frames) of the word, based on the given multiple 
utterance samples. 

2. Build a Basis word HMM with the number of 
states equal to a portion of the average duration. 

3. Run several iterations of the forward-backward 
algorithm on the word model, using the given 
utterance tokens. 

4. Quantize each state of the estimated word model 
with the senone codebook. 

 The second task attempts to attack the problem of 
learning a good senonic baseform in large vocabulary 
tasks when there are few training tokens. Unfortunately, 
with few training tokens, the algorithm  does not yield a 
highly-accurate senonic baseform, due to the high 
acoustic confusability implied in the vocabulary 
inventory. Interestingly, we find that the senonic 
baseform is indeed able to adapt to speakers, even with 
very few training samples. 
 

COMPARISON OF RESULTS 
 
 The senone codebook has better acoustic 
resolution, as there are usually a few thousand senones 
in a system. In addition, when training examples are 
unavailable, phonetic baseforms can be used together 
with the senonic baseforms for other words without any 
increase in the system complexity, since both phonetic 
and senonic baseforms share the same set of senones. 
Each senonic word model, built by the algorithm 

described in Fig. 4 generally has more states than the 
traditional phone-concatenated word model and hence 
is capable of modeling more acoustic details. Although 
it usually has more states, the senonic word model 
never increases the number of free parameters in the 
system. 
 The senonic baseform offers 15% word error 
reduction over the phonetic baseform on a small 
vocabulary task. Applying the senonic baseform to 
large vocabulary tasks has not yet proven to be 
successful. However, it does show promise for speaker 
adaptation and speaker-dependent applications.  
 

CONCLUSION 
 
 Further work, such as incorporating spelling 
information, should be done to improve the senonic 
baseform in order to take advantage of the adaptation 
capability. Another improvement would be to 
incorporate senone bigram models or other higher level 
models in the state quantization procedure 
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