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Abstract: We propose the design of output codes for solving the classification problem in Fast 

Covering Learning Algorithm (FCLA).  For a complex multi-class problem normally the classifiers are 

constructed by combining the outputs of  several binary ones.  In this paper, we use the basic methods 

of decomposition; one per class (OPC) and Error Correcting Output Code (ECOC) with FCLA, binary 

to binary mapping algorithm as a base binary learner.  The methods have been tested on Fisher’s well-

known Iris data set and experimental results show that the classification ability is improved by using 

ECOC method.  
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INTRODUCTION 

 

 In the last two decades, binary neural networks 

(BNNs) have attracted attention of many researchers 

and now there have been many established approaches 

for the construction of BNNs.  They include Boolean 

Like Training Algorithm (BLTA)
[3]
, Improved Expand 

and Truncated Learning (IETL)
[8]
.  In these methods, 

predefined output codes are used for the representation 

of multiple classes.  Using predefined output codes 

makes the problem independent of  the specific 

application and class of hypotheses used to construct 

binary classifiers
[9]
.  Experimental work has shown that 

output coding  can greatly improve various performance 

parameters like generalization, prediction accuracy
[1]
 

etc.  Several output coding methods have been 

suggested and tested so far, such as comparing each 

class against the rest (One Per Class: OPC), comparing 

all pairs of classes (Pair Wise Coupling: PWC), random 

codes, exhaustive codes, Error Correcting Output 

Codes, Margin Classfiers
[1,5,6,7]

. 

 In this paper, we extend Fast Covering Learning 

Algorithm (FCLA)
[2]
 for multi-class problem (i.e., K-

classes, where K>2).  Further, this paper addresses the 

design of output codes for a binary to binary mapping 

learning.  In our work, we use two output coding 

schemes One-Per-Class (OPC) and Error Correcting 

Output Code (ECOC).  Output Coding of multi-class 

problems is composed of two stages.  In the training 

stage , we need to construct hidden layer by  

independent K binary classifiers where K is the number 

of classes to be learned.  The output layer is then 

constructed by training of number of neurons as per the 

coding scheme used.  In the second stage, the 

classification part, the applied sample is predicted by 

combining various binary classifiers. OPC separates one 

class from all other classes  and   ECOC consists of 

several dichotomizers with class redundancy to get 

robustness in case some dichotomizers fail
[5,6,7]

.  ECOC 

approach improves the generalization performance
[1,5,7]

.  

These coding schemes are used for output coding for 

the training phase of the neural network.  In the 

reconstruction stage, when new samples come, some 

similarity measure is required to find out the class to 

which it belongs, if the generated string is in binary 

form, the hamming distance criteria is being used for 

deciding the class to which new sample belongs
[5,7]

. 

 In case of OPC, for the training of output layer, a 

class is separated from the rest of the classes.  

Therefore, at the output layer, a single neuron per 

dichotomizer is taken to collect the outputs from the 

hidden layer neurons of their respective class.  The 

weights and thresholds in the output layer are set to one 

for each of the dichotomizer/neuron. 

In ECOC
[1]
, each class is assigned a unique binary 

string.  We refer to these strings as codewords.  Then 

we train K classifiers at the hidden layer and l number 

of output neurons at the output layer (where l is the 

length of the codeword).  The predicted class is one 

whose codeword is closest to the output generated.  The 

similarity measure is the Hamming distance ; (i.e., the 

number of bits different from the codeword bits). 

 We show that the use of ECOC method for FCLA 

improves the generalization capabilities over the OPC.  
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This comparison has been tested by experimenting on 

Iris data set.  Also, utilizing binary to binary mapping 

algorithm, convergence problem has been resolved as 

compared to backpropagation algorithm.  Thus training 

time has been reduced.  The use of integer weights and 

thresholds reduces prediction time also, as computations 

have been reduced.  

 In section 2 we discuss the basic concepts for 

extending the FCLA framework.  In section 3 and 4, we 

present the formulae used under training and training 

algorithm of FCLA.  In section 5, the extension of the 

FCLA framework is presented.  Section 6 gives one 

illustrative example and in section 7 performance 

comparison is given, In section 8 we give concluding 

remarks. 

 

 

BASIC CONCEPTS 

 

Let s={x1,x2,….,xm} are the training examples.  The 

proposed learning algorithm learns the classification 

function f(x) that takes these training examples and 

classifies it into one of k-classes: f(x) ∈ {c1, c2,….ck}.  

To learn this classification function, the algorithm 

analyzes a set of training examples {(x1,f(x1)), (x2,f(x2)), 

… , (xm,f(xm))}.  Each training example is a pair 

consisting of a description of an object xi and its correct 

classification, f(xi). 

 

 The FCLA algorithm is designed for solving any 

binary (2-class) classification problems in three layer 

network structure  as shown in fig 1. 

 

 
Fig. 1 : FCLA Three layer network structure 

 

  For each of the k classes, FCLA
[2]
 algorithm can be 

applied separately for the training of hidden layer.  Thus 

for each of the k-classes the FCLA algorithm can be 

applied in parallel in order to find out the hidden layer 

neurons with respect to each and every class.  For 

combining the outputs of the hidden layer neurons, 

FCLA approach can be extended for the training of 

output layer by using either of the two coding schemes: 

OPC or ECOC and three layered network structure is 

formed as depicted in the figure 2. 

 

 
Fig. 2 : FCLA Three layer network structure used for 

multi-class problem 

 

 For deciding the output codes for each of the class, let 

s1,s2,…sk be k distinct binary strings of length L.  The 

length of the string will depend on the type of 

decomposition method used: OPC or ECOC.  We call 

each string Si the codeword for class ci.  Now define L 

hypotheses i.e.  f1,f2,…,fl. 

 

 For OPC, f1,f2,…,fk hypotheses are learned, one 

function fi is defined for each class, such that fi(x)=1 if 

f(x)=ci and zero otherwise.  During learning, a set of 

hypotheses , {f1,f2,…,fk} is learned.  To classify a new 

example, x′, we compute the value of fi(x′) for each i.  

The predicted value of f(x′) is the class ci for which 

fi(x′) is generating 1. 

 

 For ECOC, L hypotheses f1,f2,…,fl for a class ci if  

i=1, then fi=1 for all i=1 to L otherwise there are 

alternating runs of 2
k-i
 zeroes and 2

k-i
 ones. 

 

 During learning, the hidden layer neurons are trained 

using two class learning algorithm to learn each of gj 

function of x1,x2,….,xm examples.  The output layer 

neurons are trained depending on the coding scheme 

used for the classification OPC or ECOC, presented in 

the next section.  The output layer have L hypotheses 

{f1,f2,…,fl}. 

 To classify a new example, x′, we apply each of the 

learned function gj to compute binary string s′=<f(
'

1
x ), 

f(
'

2
x ), … , f(

'

m
x )> .  Then we determine which 

codeword si is nearest to this s′ .  The predicted value of 
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f(x′) is the class ci corresponding to the nearest 

codeword (having minimum Hamming distance) si. 

 

 

FORMULAE USED: FAST COVERING 

LEARNING ALGORITHM  

 

While constructing the BNN, suppose that {x1, 

x2,…,xv} are v (true) vertices included in one 

hypersphere.  The centre is defined as follows
[2]
: 
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formulae for weights and threshold value of a neuron: 
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TRAINING FOR THE CONSTRUCTION OF  

NETWORK 

 

 For our extension, there are two broad steps involved 

in the construction of network: 

 

A. Training  of hidden layer: The training of hidden 

layer is done  in parallel for each of k classes using 

FCLA
[2]
 as follows: 

  

 Algorithm 1 

 
1. For a given class Ck, take set of true vertices 

(x1,x2…xm), each vertex is   n-bit long represented as 
j

i
x , where 1≤ j≤ n. 

2.   For each of the input data- 

For i=1 to m do 

Begin 

         if (i=1) then 

              -add a new neuron with respect to this input 

(xi) therefore evaluate following parameters- 

            -Center C ( using equation (1)) 

         -Radius r1, r2 ,r3 (using equations (2), (3), (4)) 

     -Weights (w1 , w2 ,… wn)   represented as weight 

vector W (using equations (5)) 

-Thresholds(t1,t2,t3) (using equations(6), (7), (8)) 

else 

begin  

                -check this input data(xi) with respect to the 

existing neurons  

                -for each of the p
th
 neuron do the following 

checks 

 

<Cond1> if(Wxi >= t1) then  

                 -this input is already covered by the p
th 

neuron so simply exit & take next 

input(match region) 

 

<Cond2> if(t2 <= Wxi <=t1) 

                -input data is within the claim region 

                  -update the parameters of p
th 
neuron by using 

the formulae in section 3 

                    -center C, radius, weights, threshold 

               -exit & take next input 

 

<Cond3> if(t3 > Wxi) 

 -if this condition is true for all the neurons 

then a new neuron is being added. 

 -Evaluating all the parameters center, 

radius, weight & thresholds in section 3 

 

<Cond4> if(t3<=Wxi < t2) 

-the vertex is within the boundary region 

of the neuron, so we first 

-examine whether other available neurons 

can claim it? 

-if it can not be included in any other 

available neuron, we “put aside” for 

reconsideration after other vertices are 

processed. 

-inclusion of other vertices to existing 

neurons results in the expansion of  

“match” & “claim” regions of the neurons; 

other vertices “putaside” may be claimed.  

<Cond1> & <Cond2> is being retested. 

       End else 

End for 1 

3. Modification process: Apply all vertices belonging to 

other classes (say, false vertices) to the hidden layer 

neurons trained for a class.  If the output is zero then 

omit it.  If output is one then we will represent the 

wrongly represented vertices by additional hidden 

neurons by applying step 2. 

4. Repeat steps 2 and 3 for each of the class. 

5. Stop. 

 

B. Training the output layer 

According to FCLA
[2]
, at the output layer a single 

neuron is needed to collect the outputs of all the hidden 
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neurons with respect to a two class problem as depicted 

in fig.1. Let 
o

j
w  represents the weights from j

th
 hidden 

neuron to the o
th
 output neuron. The total number of 

neurons for a given class are ‘nc’, out of which q 

represents the number of hidden neurons learned true 

vertices with generalization and the remaining 

(q+1,…nc) are the neurons which learned the false 

vertices. The weights and threshold of the output 

neurons are assigned as follows: 

 

  
o

j
w  ={

qj

ncqj

if

ifq

,...,1

,...,1

1
=

+=
−

       

 

and threshold of the neuron can be assigned as 

      t
o 
= 1          (9) 

 

 

EXTENSION OF  FCLA FRAMEWORK 

 

We now use coding schemes for extending the FCLA 

framework for solving classification problems figure 3.  

We use two coding schemes for the construction of 

output layer : (1) OPC scheme, (2) ECOC scheme. The 

number of neurons required at the output layer depends 

on the coding scheme used.   

 

 
 

 

 

 

A. Construction of hidden layer 

             

For a given K-Class problem {G1,G2,……….Gk}, for 

each & every class, we separately apply FCL
[2]
 

Algorithm 1.  Thus hidden neurons are evaluated for 

each of the classes.  After this, for collecting the outputs 

of the hidden neurons, we propose the approach in the 

next section. 

  

B. Training Of Output Layer  

 

The outputs generated by the hidden layer are combined 

at the  output layer.  The number of Output neurons are 

decided on the basis of the coding scheme used OPC or 

ECOC. As stated earlier, in OPC , the number of 

neurons are equal to the number of classes i.e. K.  In 

ECOC, the number of neurons are 2
k-1
-1. Thresholds of 

the output neurons are set to 1 in both the schemes.  

Further weight setting is done as follows: 

 

1. OPC: Weight values for the i
th
 class from j

th
 neuron 

of hidden layer to the q
th
 neuron of output layer is 

decided as follows: 

 1=
jqi

w   if   i=q; 

          0=              otherwise 

2. ECOC: Weight setting is done using following 

algorithm: 

 

Algorithm 2 

 

1. For each of the i
th
 class 

2. For each of the j
th
 hidden layer neuron with respect to 

this class 

3. Make the following assignment :   

current_op_neuron=1 

4. For each of the q
th
 output layer neuron 

5. For the current_op_neuron to the 

(current_op_neuron+2
k-i
-1) 

Assign weight value: 0=
jqi

w  

6. For subsequent output neuron to the 

(current_op_neuron+2
k-i
-1) 

Assign weight value: 1=
jqi

w  

7. Repeat the steps 5 to 6 for each of the output neuron. 

8. Repeat the steps 3 to 7 for each of the hidden neuron. 

9. Repeat the steps 2 to 8 for each of the class. 

 

 

ILLUSTRATIVE EXAMPLE 

 

We illustrate the proposed approach with an example 

mentioned below: 

Approximation of the following regions mentioned  as 

A, B, C, D, E in the figure can be done by 6*6 grid. 

Table 1 gives the approximation of these regions 

through 6-bit binary values. 

 

Fig. 4: Approximation of regions 

   

  

Fig. 3: Partial network showing the use of 

coding schemes for training the output layer 
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Table 1:Data sets  with respect to the approximated regions. 

 

 

 

 

 

 

 

 

 

 

 

 

Applying Algorithm 1 of section 2, the results of the construction of hidden layer is as follows: 

 

Table 2 : Hidden layer solution

 

Output layer weights for two methods: 

 

Table 3 : Ouput layer weights  and thresholds using  OPC (One Per Class). 

Hidden layer Neuron/output layer neurons  f1 f2 f3 f4 f5 Thresholds Regions/ 

classes 

1 

2 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

 

 

A 

1 

2 

3 

0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

 

 

B 

1 

2 

0 

0 

0 

0 

1 

1 

 

0 

0 

0 

0 

1 

1 

 

C 

 

1 0 0 0 1 0 1 D 

1 0 0 0 0 1 1 E 

 

Intput datas Region/Classes 

{000100, 000101, 001101, 000011, 001100, 

010101} 

A 

{100101, 101101, 101100, 011101, 100100, 

101011} 

B 

{100000,101000, 101001, 011000, 100001, 

101010} 

C 

{000000, 001000, 000001, 000010, 001001, 

010000} 

D 

{010010, 010011, 011010, 011011} E 

Inputs Neuro

ns 

W1 W2 W3 W4 W5 W6 t1 t2 t3 Region/ 

classes 

{000100, 

000101,001101,000011, 

001100, 010101} 

 

1 

2 

-5 

-1 

-3 

-1 

-1 

-1 

5 

-1 

-5 

1 

1 

1 

3 

2 

-2 

1 

-7 

0 

 

A 

{100101,101101, 

101100,011101, 100100, 

101011} 

1 

2 

3 

4 

-1 

1 

-4 

1 

-1 

0 

1 

1 

4 

1 

-1 

-4 

-1 

1 

0 

1 

1 

8 

4 

4 

4 

3 

3 

0 

2 

2 

 

 

B 

{100000,101000, 

101001,011000, 100001, 

101010} 

1 

2 

5 

-1 

-5 

1 

1 

1 

-5 

-1 

-3 

-1 

-1 

-1 

3 

2 

 

-2 

1 

-7 

0 

 

C 

{000000,001000, 

000001,000010, 001001, 

010000} 

 

1 

 

-6 

 

-4 

 

-2 

 

-6 

 

-4 

 

-2 

 

-4 

 

-10 

 

-16 

 

 

D 

{010010,010011,011010,01101

1} 

1 

 

-4 4 0 -4 4 0 8  4 0 E 
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Table 4: output layer weights using  ECOC (Error Correcting Output Code). 

Hidden layer 

Neuron/output 

layer neuron  

 

f1 

 

f2 

 

f3 

 

f4 

 

f5 

 

f6 

 

f7 

 

f8 

 

f9 

 

f10 

 

f11 

 

f12 

 

f13 

 

f14 

 

f15 

regions

OR 

classes 

1 

2 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

 

 

A 

1 

2 

3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

 

 

B 

1 

2 

0 

0 

0 

0 

0 

0 

 

0 

0 

1 

1 

1 

1 

1 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

1 

1 

C 

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 D 

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 E 

 

Next, tables 3 and 4 are depicted through the figures.  

As discussed in section 2, figure 2, three layered 

network structure is formed : input layer, hidden layer 

and output layer.  Input layer doesn’t contain any 

processing element, these are just nodes for providing 

inputs to the hidden layer.  Hidden and output layers 

contains the neurons.  With respect to table 3, network 

structure formed is depicted in figure 4.  Network 

structure for Table 4 is shown in figure 5. 

 

 

 
Fig. 4: Example Solution using OPC scheme 

 

We make use of the Fisher’s Iris data set for comparing 

the performance of the coding schemes used OPC and 

ECOC for the designing of classifiers in FCLA.  

Fisher’s Iris Data Set contains 150 patterns for 

representing three classes
[10]

.  There are 50 patterns of 

each class.  There are four properties on the basis of 

combination of these properties, the classification have 

been done.  For applying the inputs to the network the 

each of the four properties of the original pattern have 

been represented by 7-bit binary equivalent.  Thus the 

 
Fig. 5: Example Solution using ECOC scheme 

 

 

PERFORMANCE COMPARISION 

 

input contains total of 28-bits. Hidden layer neurons 

have been found out by using FCLA approach.  Total of 

32 neurons are required in the  hidden layer.  For 

Setosa : 17 neurons are needed. For Versicolor:  9 

neurons and for Virginica: 6 neurons are needed. The 

number of output neurons are 3 for both the coding 

schemes used OPC or ECOC.  The weights and 

thresholds of the output layer neurons are given in the 

tables 5 and 6 as follows : 

 

Table 5 : Output layer neurons when using OPC scheme 

Classes/neurons f1 f2 f3 Threshold 

(1) Setosa 1 0 0 1 

(2)Versicolor 0 1 0 1 

(3) Virginica 0 0 1 1 
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Table 6 : Output layer neurons when using ECOC 

scheme 

Classes/neurons f1 f2 f3 Threshold 

(1) Setosa 1 1 1 1 

(2) Versicolor 0 0 1 1 

(3) Virginica 0 1 0 1 

 

 For testing over these pattern, we split each of the 50 

patterns for each of the class 40/10 (train/test) data.  

Testing results show that ECOC performs better in 

terms of classification accuracy.  For Setosa and 

Versicolor , ECOC is gives 100% accuracy(i.e. 

classifying all the 10 samples properly).  For Virginica, 

80% accuracy is achieved with ECOC.  Using OPC 

with the same case, results are not satisfactory. 

 

CONCLUSION 

 

 In this paper, we extend FCLA
[2]
 method for multi-

class problems by designing classifiers using coding 

schemes. The hidden layer trained is in modular form.  

Thus modules in the hidden layer corresponding to each 

class can be trained independently
[4]
 in parallel, thus 

reduces training time. For output layer training, the 

paper has examined the use of Error correcting coding 

and One Per Class coding scheme for binary to binary 

mapping learning algorithm.  The performance of the 

method has been compared on the Fisher’s well-known 

Iris dataset.  The results shows that ECOC gives more 

classification accuracy as compared to OPC. 
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