
Journal of Computer Science 2 (7): 565-571, 2006

ISSN 1549-3636

© 2006 Science Publications

Corresponding Author : Aruna Tiwari, Computer Engineering Department,Shri G. S. Institute of Technology and

Science (SGSITS), 23, Park Road, Indore 452003 (M.P.) INDIA

565

Design of Output Codes for Fast Covering Learning using Basic Decomposition Techniques

Aruna Tiwari
1
 and

Narendra S. Chaudhari

2
,

1
Faculty of Computer Engineering Department, Shri G. S. Institute of Technology & Science (SGSITS),

23, Park Road, Indore 452003 (M.P.) INDIA
2
 Faculty of School of Computer Engineering(SCE), Nanyang Technological University(NTU),

50,Nanyang Avenue, Nanyang Technological University(NTU), Singapore 639798 SINGAPORE

Abstract: We propose the design of output codes for solving the classification problem in Fast

Covering Learning Algorithm (FCLA). For a complex multi-class problem normally the classifiers are

constructed by combining the outputs of several binary ones. In this paper, we use the basic methods

of decomposition; one per class (OPC) and Error Correcting Output Code (ECOC) with FCLA, binary

to binary mapping algorithm as a base binary learner. The methods have been tested on Fisher’s well-

known Iris data set and experimental results show that the classification ability is improved by using

ECOC method.

Key words: Binary neural network , One per class, Error correcting output code.

INTRODUCTION

 In the last two decades, binary neural networks

(BNNs) have attracted attention of many researchers

and now there have been many established approaches

for the construction of BNNs. They include Boolean

Like Training Algorithm (BLTA)
[3]
, Improved Expand

and Truncated Learning (IETL)
[8]
. In these methods,

predefined output codes are used for the representation

of multiple classes. Using predefined output codes

makes the problem independent of the specific

application and class of hypotheses used to construct

binary classifiers
[9]
. Experimental work has shown that

output coding can greatly improve various performance

parameters like generalization, prediction accuracy
[1]

etc. Several output coding methods have been

suggested and tested so far, such as comparing each

class against the rest (One Per Class: OPC), comparing

all pairs of classes (Pair Wise Coupling: PWC), random

codes, exhaustive codes, Error Correcting Output

Codes, Margin Classfiers
[1,5,6,7]

.

 In this paper, we extend Fast Covering Learning

Algorithm (FCLA)
[2]
 for multi-class problem (i.e., K-

classes, where K>2). Further, this paper addresses the

design of output codes for a binary to binary mapping

learning. In our work, we use two output coding

schemes One-Per-Class (OPC) and Error Correcting

Output Code (ECOC). Output Coding of multi-class

problems is composed of two stages. In the training

stage , we need to construct hidden layer by

independent K binary classifiers where K is the number

of classes to be learned. The output layer is then

constructed by training of number of neurons as per the

coding scheme used. In the second stage, the

classification part, the applied sample is predicted by

combining various binary classifiers. OPC separates one

class from all other classes and ECOC consists of

several dichotomizers with class redundancy to get

robustness in case some dichotomizers fail
[5,6,7]

. ECOC

approach improves the generalization performance
[1,5,7]

.

These coding schemes are used for output coding for

the training phase of the neural network. In the

reconstruction stage, when new samples come, some

similarity measure is required to find out the class to

which it belongs, if the generated string is in binary

form, the hamming distance criteria is being used for

deciding the class to which new sample belongs
[5,7]

.

 In case of OPC, for the training of output layer, a

class is separated from the rest of the classes.

Therefore, at the output layer, a single neuron per

dichotomizer is taken to collect the outputs from the

hidden layer neurons of their respective class. The

weights and thresholds in the output layer are set to one

for each of the dichotomizer/neuron.

In ECOC
[1]
, each class is assigned a unique binary

string. We refer to these strings as codewords. Then

we train K classifiers at the hidden layer and l number

of output neurons at the output layer (where l is the

length of the codeword). The predicted class is one

whose codeword is closest to the output generated. The

similarity measure is the Hamming distance ; (i.e., the

number of bits different from the codeword bits).

 We show that the use of ECOC method for FCLA

improves the generalization capabilities over the OPC.

J. Computer Sci., 2 (7): 565-571, 2006

 566

This comparison has been tested by experimenting on

Iris data set. Also, utilizing binary to binary mapping

algorithm, convergence problem has been resolved as

compared to backpropagation algorithm. Thus training

time has been reduced. The use of integer weights and

thresholds reduces prediction time also, as computations

have been reduced.

 In section 2 we discuss the basic concepts for

extending the FCLA framework. In section 3 and 4, we

present the formulae used under training and training

algorithm of FCLA. In section 5, the extension of the

FCLA framework is presented. Section 6 gives one

illustrative example and in section 7 performance

comparison is given, In section 8 we give concluding

remarks.

BASIC CONCEPTS

Let s={x1,x2,….,xm} are the training examples. The

proposed learning algorithm learns the classification

function f(x) that takes these training examples and

classifies it into one of k-classes: f(x) ∈ {c1, c2,….ck}.

To learn this classification function, the algorithm

analyzes a set of training examples {(x1,f(x1)), (x2,f(x2)),

… , (xm,f(xm))}. Each training example is a pair

consisting of a description of an object xi and its correct

classification, f(xi).

 The FCLA algorithm is designed for solving any

binary (2-class) classification problems in three layer

network structure as shown in fig 1.

Fig. 1 : FCLA Three layer network structure

 For each of the k classes, FCLA
[2]
 algorithm can be

applied separately for the training of hidden layer. Thus

for each of the k-classes the FCLA algorithm can be

applied in parallel in order to find out the hidden layer

neurons with respect to each and every class. For

combining the outputs of the hidden layer neurons,

FCLA approach can be extended for the training of

output layer by using either of the two coding schemes:

OPC or ECOC and three layered network structure is

formed as depicted in the figure 2.

Fig. 2 : FCLA Three layer network structure used for

multi-class problem

 For deciding the output codes for each of the class, let

s1,s2,…sk be k distinct binary strings of length L. The

length of the string will depend on the type of

decomposition method used: OPC or ECOC. We call

each string Si the codeword for class ci. Now define L

hypotheses i.e. f1,f2,…,fl.

 For OPC, f1,f2,…,fk hypotheses are learned, one

function fi is defined for each class, such that fi(x)=1 if

f(x)=ci and zero otherwise. During learning, a set of

hypotheses , {f1,f2,…,fk} is learned. To classify a new

example, x′, we compute the value of fi(x′) for each i.

The predicted value of f(x′) is the class ci for which

fi(x′) is generating 1.

 For ECOC, L hypotheses f1,f2,…,fl for a class ci if

i=1, then fi=1 for all i=1 to L otherwise there are

alternating runs of 2
k-i
 zeroes and 2

k-i
 ones.

 During learning, the hidden layer neurons are trained

using two class learning algorithm to learn each of gj

function of x1,x2,….,xm examples. The output layer

neurons are trained depending on the coding scheme

used for the classification OPC or ECOC, presented in

the next section. The output layer have L hypotheses

{f1,f2,…,fl}.

 To classify a new example, x′, we apply each of the

learned function gj to compute binary string s′=<f(
'

1
x),

f(
'

2
x), … , f(

'

m
x)> . Then we determine which

codeword si is nearest to this s′ . The predicted value of

J. Computer Sci., 2 (7): 565-571, 2006

 567

f(x′) is the class ci corresponding to the nearest

codeword (having minimum Hamming distance) si.

FORMULAE USED: FAST COVERING

LEARNING ALGORITHM

While constructing the BNN, suppose that {x1,

x2,…,xv} are v (true) vertices included in one

hypersphere. The centre is defined as follows
[2]
:

 ∑
=

=

v

k

k

i

i

v

x

c

1

 (1)

 three radii are defined as follows:

 ()
2

1
1

2

1
max∑

=

=

−=

n

i

i

k

i

v

k

cxr (2)

 1
2

1

2

2
+= rr (3)

 1
2

2

2

3
+= rr (4)

formulae for weights and threshold value of a neuron:

 vxw

v

k

k

ij −= ∑
=1

2 (5)

 ∑
=

=

=

n

i

k

ii

v

k

xwt

1
1

1
min (6)

 vtt −=
12

 (7)

 vtt 2
13
−= (8)

TRAINING FOR THE CONSTRUCTION OF

NETWORK

 For our extension, there are two broad steps involved

in the construction of network:

A. Training of hidden layer: The training of hidden

layer is done in parallel for each of k classes using

FCLA
[2]
 as follows:

 Algorithm 1

1. For a given class Ck, take set of true vertices

(x1,x2…xm), each vertex is n-bit long represented as
j

i
x , where 1≤ j≤ n.

2. For each of the input data-

For i=1 to m do

Begin

 if (i=1) then

 -add a new neuron with respect to this input

(xi) therefore evaluate following parameters-

 -Center C (using equation (1))

 -Radius r1, r2 ,r3 (using equations (2), (3), (4))

 -Weights (w1 , w2 ,… wn) represented as weight

vector W (using equations (5))

-Thresholds(t1,t2,t3) (using equations(6), (7), (8))

else

begin

 -check this input data(xi) with respect to the

existing neurons

 -for each of the p
th
 neuron do the following

checks

<Cond1> if(Wxi >= t1) then

 -this input is already covered by the p
th

neuron so simply exit & take next

input(match region)

<Cond2> if(t2 <= Wxi <=t1)

 -input data is within the claim region

 -update the parameters of p
th
neuron by using

the formulae in section 3

 -center C, radius, weights, threshold

 -exit & take next input

<Cond3> if(t3 > Wxi)

 -if this condition is true for all the neurons

then a new neuron is being added.

 -Evaluating all the parameters center,

radius, weight & thresholds in section 3

<Cond4> if(t3<=Wxi < t2)

-the vertex is within the boundary region

of the neuron, so we first

-examine whether other available neurons

can claim it?

-if it can not be included in any other

available neuron, we “put aside” for

reconsideration after other vertices are

processed.

-inclusion of other vertices to existing

neurons results in the expansion of

“match” & “claim” regions of the neurons;

other vertices “putaside” may be claimed.

<Cond1> & <Cond2> is being retested.

 End else

End for 1

3. Modification process: Apply all vertices belonging to

other classes (say, false vertices) to the hidden layer

neurons trained for a class. If the output is zero then

omit it. If output is one then we will represent the

wrongly represented vertices by additional hidden

neurons by applying step 2.

4. Repeat steps 2 and 3 for each of the class.

5. Stop.

B. Training the output layer

According to FCLA
[2]
, at the output layer a single

neuron is needed to collect the outputs of all the hidden

J. Computer Sci., 2 (7): 565-571, 2006

 568

neurons with respect to a two class problem as depicted

in fig.1. Let
o

j
w represents the weights from j

th
 hidden

neuron to the o
th
 output neuron. The total number of

neurons for a given class are ‘nc’, out of which q

represents the number of hidden neurons learned true

vertices with generalization and the remaining

(q+1,…nc) are the neurons which learned the false

vertices. The weights and threshold of the output

neurons are assigned as follows:

o

j
w ={

qj

ncqj

if

ifq

,...,1

,...,1

1
=

+=
−

and threshold of the neuron can be assigned as

 t
o
= 1 (9)

EXTENSION OF FCLA FRAMEWORK

We now use coding schemes for extending the FCLA

framework for solving classification problems figure 3.

We use two coding schemes for the construction of

output layer : (1) OPC scheme, (2) ECOC scheme. The

number of neurons required at the output layer depends

on the coding scheme used.

A. Construction of hidden layer

For a given K-Class problem {G1,G2,……….Gk}, for

each & every class, we separately apply FCL
[2]

Algorithm 1. Thus hidden neurons are evaluated for

each of the classes. After this, for collecting the outputs

of the hidden neurons, we propose the approach in the

next section.

B. Training Of Output Layer

The outputs generated by the hidden layer are combined

at the output layer. The number of Output neurons are

decided on the basis of the coding scheme used OPC or

ECOC. As stated earlier, in OPC , the number of

neurons are equal to the number of classes i.e. K. In

ECOC, the number of neurons are 2
k-1
-1. Thresholds of

the output neurons are set to 1 in both the schemes.

Further weight setting is done as follows:

1. OPC: Weight values for the i
th
 class from j

th
 neuron

of hidden layer to the q
th
 neuron of output layer is

decided as follows:

 1=
jqi

w if i=q;

 0= otherwise

2. ECOC: Weight setting is done using following

algorithm:

Algorithm 2

1. For each of the i
th
 class

2. For each of the j
th
 hidden layer neuron with respect to

this class

3. Make the following assignment :

current_op_neuron=1

4. For each of the q
th
 output layer neuron

5. For the current_op_neuron to the

(current_op_neuron+2
k-i
-1)

Assign weight value: 0=
jqi

w

6. For subsequent output neuron to the

(current_op_neuron+2
k-i
-1)

Assign weight value: 1=
jqi

w

7. Repeat the steps 5 to 6 for each of the output neuron.

8. Repeat the steps 3 to 7 for each of the hidden neuron.

9. Repeat the steps 2 to 8 for each of the class.

ILLUSTRATIVE EXAMPLE

We illustrate the proposed approach with an example

mentioned below:

Approximation of the following regions mentioned as

A, B, C, D, E in the figure can be done by 6*6 grid.

Table 1 gives the approximation of these regions

through 6-bit binary values.

Fig. 4: Approximation of regions

Fig. 3: Partial network showing the use of

coding schemes for training the output layer

J. Computer Sci., 2 (7): 565-571, 2006

 569

Table 1:Data sets with respect to the approximated regions.

Applying Algorithm 1 of section 2, the results of the construction of hidden layer is as follows:

Table 2 : Hidden layer solution

Output layer weights for two methods:

Table 3 : Ouput layer weights and thresholds using OPC (One Per Class).

Hidden layer Neuron/output layer neurons f1 f2 f3 f4 f5 Thresholds Regions/

classes

1

2

1

1

0

0

0

0

0

0

0

0

1

1

A

1

2

3

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

1

1

1

B

1

2

0

0

0

0

1

1

0

0

0

0

1

1

C

1 0 0 0 1 0 1 D

1 0 0 0 0 1 1 E

Intput datas Region/Classes

{000100, 000101, 001101, 000011, 001100,

010101}

A

{100101, 101101, 101100, 011101, 100100,

101011}

B

{100000,101000, 101001, 011000, 100001,

101010}

C

{000000, 001000, 000001, 000010, 001001,

010000}

D

{010010, 010011, 011010, 011011} E

Inputs Neuro

ns

W1 W2 W3 W4 W5 W6 t1 t2 t3 Region/

classes

{000100,

000101,001101,000011,

001100, 010101}

1

2

-5

-1

-3

-1

-1

-1

5

-1

-5

1

1

1

3

2

-2

1

-7

0

A

{100101,101101,

101100,011101, 100100,

101011}

1

2

3

4

-1

1

-4

1

-1

0

1

1

4

1

-1

-4

-1

1

0

1

1

8

4

4

4

3

3

0

2

2

B

{100000,101000,

101001,011000, 100001,

101010}

1

2

5

-1

-5

1

1

1

-5

-1

-3

-1

-1

-1

3

2

-2

1

-7

0

C

{000000,001000,

000001,000010, 001001,

010000}

1

-6

-4

-2

-6

-4

-2

-4

-10

-16

D

{010010,010011,011010,01101

1}

1

-4 4 0 -4 4 0 8 4 0 E

J. Computer Sci., 2 (7): 565-571, 2006

 570

Table 4: output layer weights using ECOC (Error Correcting Output Code).

Hidden layer

Neuron/output

layer neuron

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f14

f15

regions

OR

classes

1

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

A

1

2

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

B

1

2

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

C

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 D

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 E

Next, tables 3 and 4 are depicted through the figures.

As discussed in section 2, figure 2, three layered

network structure is formed : input layer, hidden layer

and output layer. Input layer doesn’t contain any

processing element, these are just nodes for providing

inputs to the hidden layer. Hidden and output layers

contains the neurons. With respect to table 3, network

structure formed is depicted in figure 4. Network

structure for Table 4 is shown in figure 5.

Fig. 4: Example Solution using OPC scheme

We make use of the Fisher’s Iris data set for comparing

the performance of the coding schemes used OPC and

ECOC for the designing of classifiers in FCLA.

Fisher’s Iris Data Set contains 150 patterns for

representing three classes
[10]

. There are 50 patterns of

each class. There are four properties on the basis of

combination of these properties, the classification have

been done. For applying the inputs to the network the

each of the four properties of the original pattern have

been represented by 7-bit binary equivalent. Thus the

Fig. 5: Example Solution using ECOC scheme

PERFORMANCE COMPARISION

input contains total of 28-bits. Hidden layer neurons

have been found out by using FCLA approach. Total of

32 neurons are required in the hidden layer. For

Setosa : 17 neurons are needed. For Versicolor: 9

neurons and for Virginica: 6 neurons are needed. The

number of output neurons are 3 for both the coding

schemes used OPC or ECOC. The weights and

thresholds of the output layer neurons are given in the

tables 5 and 6 as follows :

Table 5 : Output layer neurons when using OPC scheme

Classes/neurons f1 f2 f3 Threshold

(1) Setosa 1 0 0 1

(2)Versicolor 0 1 0 1

(3) Virginica 0 0 1 1

J. Computer Sci., 2 (7): 565-571, 2006

 571

Table 6 : Output layer neurons when using ECOC

scheme

Classes/neurons f1 f2 f3 Threshold

(1) Setosa 1 1 1 1

(2) Versicolor 0 0 1 1

(3) Virginica 0 1 0 1

 For testing over these pattern, we split each of the 50

patterns for each of the class 40/10 (train/test) data.

Testing results show that ECOC performs better in

terms of classification accuracy. For Setosa and

Versicolor , ECOC is gives 100% accuracy(i.e.

classifying all the 10 samples properly). For Virginica,

80% accuracy is achieved with ECOC. Using OPC

with the same case, results are not satisfactory.

CONCLUSION

 In this paper, we extend FCLA
[2]
 method for multi-

class problems by designing classifiers using coding

schemes. The hidden layer trained is in modular form.

Thus modules in the hidden layer corresponding to each

class can be trained independently
[4]
 in parallel, thus

reduces training time. For output layer training, the

paper has examined the use of Error correcting coding

and One Per Class coding scheme for binary to binary

mapping learning algorithm. The performance of the

method has been compared on the Fisher’s well-known

Iris dataset. The results shows that ECOC gives more

classification accuracy as compared to OPC.

REFERENCES

1. Thomas G. Dietterich, Ghulum. Bakiri,1995.

Solving Multiclass Learning Problems via Error-

Correcting Output Codes : Journal of Artificial

Intelligence Research, Vol. 2 : 263-286.

2. Di Wang and Narendra S. Chaudhari, 2004. An

Approach for Construction of Boolean Neural

Networks Based on Geometrical Expansion :

Neurocomputing, vol. 57, pp :455-461.

3. Donald L. Gray and Anthony N. Michel, 1992. A

training algorithm for binary feedforward neural

networks. IEEE Trans : Neural Networks, Vol. 3,

No. 2, IEEE, USA, pp :176-194.

4. Rangachari Anand, Kishan Mehrotra, Chilukuri K.

Mohan and Sanjay Ranka, 1995. Efficient

Classification of multiclass problem using Modular

Neural Network : IEEE transactions on Neural

Networks, vol.6, pp : 117-124.

5. Francesco Masulli., Giorgio Valentini, 2000.

Comparing Decomposition Methods for

Classification : Proc. Of International Conference

on Knowledge-based Intelligent Engineering

Systems & Allied Technologies, Vol. 2 : 788-791.

6. Erin L. Allwein, Robert E. Schapire, Yoram Singer,

2000. Reducing Multiclass to Binary: A Unifying

Approach for Margin Classifiers : Proc. Of
International Conference on Machine Learning , pp : 9-16.

7. Francesco Masulli, Giorgio Valentini, 2000.

Effectiveness of error-correcting output codes in

multiclass learning problems : In Proc. Of MCS

(2000), First International Workshop on Multiple

Classifier Systems, Cagliari, Italy.

8. Atsushi Yamamoto, Toshimichi Saito, 1997. An

improved Expand-and-Truncate Learning : Proc.

Of IEEE International Conference on Neural

Networks (ICNN), Vol. 2, pp : 1111-1116.

9. Koby Crammer, Yoram Singer, 2000. On the

learnability and design of output codes for

multiclass problems :In proceedings of Thirteenth

Annual Conference on Computational Learning

Theory, pp : 35-46.

10. Kishan Mehrotra, Chilukuri K. Mohan and Sanjay

Ranka, 1997. Elements of Artificial Neural

Networks : Cambridge, MA:MIT Press.

