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Abstract: Research on Grid Computing started under purely technical questions of how to realize the 
virtualization of distributed resources. Now, the commercial user should be attracted to use the Grid. 
Future applications of the Next Generation Grid will demand for flexible negotiation mechanisms 
supporting various ways of Quality-of-Service (QoS) guarantees. In this context a Service Level 
Agreement (SLA) is a powerful instrument for describing all obligations and expectations within a 
business partnership. Many research projects already focus on realizing SLAs within the Grid 
middleware. However this is not sufficient. Resource Management Systems also have to be SLA-aware, 
since these systems provide their resources to Grid infrastructures. In this study we present the EU-
funded project HPC4U (Highly Predictable Clusters for Internet Grids), which aims at realizing such an 
RMS by means of SLA-negotiation and scheduling and application-transparent fault tolerance. 
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INTRODUCTION 

 
 Nowadays, Grid Computing is not only a major 
research topic, it is also already in use. Many companies 
recognized the potentials, so that the application of Grid 
technology is not limited to research only. Companies 
like IBM, Hewlett Packard and Microsoft currently 
invest noticeable efforts on research and the support of 
research communities. Common goal of commercial 
and academic researchers is to attract commercial users 
for Grid Computing. In this context, the European 
Commission convened a group of experts to clarify the 
demands of future Grid systems and which properties 
and capabilities are missing in currently existing Grid 
infrastructures. Their work resulted in the idea of the 
Next Generation Grid (NGG)[1]. 
 Among the demands on such an NGG are transpar-
ency and the guaranteed provision of reliability and a 
defined level of quality of service (QoS). Compared 
with the capabilities of current Grid systems, these are 
challenging demands. When using a Grid infrastructure 
today, the user gets best-effort services only. Obviously 
this is not adequate for commercial users, who want to 
use the Grid for computing business critical jobs. Such 
a user demands for guarantees, so that he can count on 
getting the requested and required service level. 
Assuming a weather service as commercial customer, it 
must be able to rely on getting the computed weekend 
weather forecast in time. This underlines the necessity 
of the NGG, not only focusing on predictable and 
reliable operation of a single Grid resource, but also on 
the orchestrated execution of a Grid workflow.  
 In this context, a Service Level Agreement (SLA) 
is a powerful instrument for describing all expectations 
and obligations in the business relationship between 

customer and service provider[2] (Fig. 1). Such an SLA 
specifies the QoS requirement profile of a job. At the 
layer of Grid middleware many research activities 
already focus on integrating SLA functionality. 
 

 
Fig. 1: Elements of an SLA 
 
 However, there is a gap between the requirements 
of an SLA-aware Grid middleware and the capabilities 
of currently available Resource Management Systems 
(RMS), offering only best-effort service. Local resource 
management systems provide their resources to Grid 
systems, which transfer jobs from Grid users to these 
provided resources. Hence, SLAs guaranteed by the 
Grid middleware must be realized by the local RMS 

[3]. 
However, if the local RMS operates at best-effort, Grid 
middleware can not assure specific service levels.  
 Within the project “Highly Predictable Cluster for 
Internet-Grids” (HPC4U)[4], which is funded by the EU, 
an SLA-aware RMS is developed. This RMS will 
utilize the service of process- storage- and network-
subsystem for realizing a guaranteed level of 
application-transparent fault tolerance. The HPC4U 
project will allow the Grid to negotiate on Service Level 
Agreements. It will also feature mechanisms like 
process and storage checkpointing to realize fault 
tolerance and to assure the adherence with given SLAs. 
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Related work: The worldwide research in Grid 
computing resulted in numerous different Grid 
packages. Besides many commodity Grid systems, 
general purpose toolkits exist such as UNICORE[5] or 
Globus[6]. Although Globus represents the de-facto 
standard for Grid toolkits, all these systems have 
proprietary designs and interfaces. To ensure future 
interoperability of Grid systems as well as the 
opportunity to customize installations, the OGSA (Open 
Grid Services Architecture) working group within the 
GGF[7] aims to develop the archi-tecture for an open 
Grid infrastructure[8]. 
 In[1], important requirements for the Next 
Generation Grid (NGG) were described. Among those 
needs, one of the major goals is to support resource-
sharing in virtual organizations all over the world. Thus 
attracting commercial users to use the Grid, to develop 
Grid enabled applications and to offer their resources in 
the Grid. Mandatory prerequisites are flexibility, 
transparency, reliability and the application of SLAs to 
guarantee a negotiated QoS level. 
 An architecture that supports the co-allocation of 
multiple resource types, such as processors and network 
bandwidth, was presented in[9]. The Globus Architecture 
for Reservation and Allocation (GARA) provides 
"wrapper" functions to enhance a local RMS not 
capable of supporting advance reservations with this 
functionality. This is an important step towards an 
integrated QoS aware resource management. In our 
study, this approach is enhanced by SLA and 
monitoring facilities. These enhancements are needed in 
order to guarantee the compliance with all accepted 
SLAs. This means, it has to be ensured that the system 
works as expected at any time, not only at the time a 
reservation is made. The GARA component of Globus 
currently does neither support the definition of SLAs or 
malleable reservations, nor does it support resilience 
mechanisms to handle resource outages or failures. 
 The requirements and procedures of a protocol for 
negotiating SLAs were described in SNAP[10]. 
However, the important issue of how to map, implement 
and assure those SLAs during the whole lifetime of a 
request on the RMS layer remains to be solved. This 
issue is also addressed by the architecture presented in 
this study. 
 The inadequacy of current systems for emerging 
Grid requirements has been underlined by MacLaren et 
al.[11]: neither the best-effort approach of batch 
schedulers nor the inflexible nature of advance 
reservation is suitable for future RMS. Mechanisms are 
required which support SLAs, "negotiated between the 
client (user, superscheduler, or broker) and the 
scheduler". Unlike other approaches for providing SLA-
awareness and service quality guarantees, MacLaren et 
al. propose the development of novel RMS scheduling 
mechanisms, which are able to negotiate with SLA- 
 

requesting customers coming from Grid. Similar ideas 
and demands also have been presented in[12]. In a 
subsequent study to[11], Yarmolenko et al. evaluated 
policies for negotiation with resources[13]. The study 
does not focus on local RMS, but on a central service at 
Grid middleware, acting as a broker between user 
requests and available resources. However, solely the 
RMS has full control over the resources, therefore 
questions on fault tolerance and QoS provision can not 
be answered only at level of Grid middleware. Hence, 
the presented mechanisms form a complementing 
counterpart to the architecture presented in this study. 
 The Grid community has identified the need for a 
standard for SLA description and negotiation. This led 
to the development of WS-Agreement/-Negotiation[14]. 
These upcoming standards rely on the new Web 
Services Resource Framework (WSRF[15]) which will 
supersede the OSGI specification. We will follow these 
developments closely and will stick to these standards. 
 
Architecture of HPC4U: The goal of the HPC4U 
project (Highly Predictable Cluster for Internet Grids) is 
to provide an application-transparent and software-only 
solution of a reliable RMS. It will allow the Grid to 
negotiate on Service Level Agreements and it will also 
feature mechanisms like process and storage 
checkpointing to realize Fault Tolerance and to assure 
the adherence with given SLAs. The HPC4U solution 
will act as an active Grid component, using available 
Grid resources for further improving its level of Fault 
Tolerance. 
 The HPC4U results will provide Next Generation 
Grids with the possibility to guarantee the completion of 
Grid jobs and leverage the larger uptake of Grid 
environments. The HPC4U software will be 
customizable and interoperable with other Grids and 
will open new perspectives to the usage of Grids for 
additional services as they are today strongly required 
by the industry. HPC4U will extend well accepted 
technologies and integrate them with innovative features 
(such as Grid embedded Fault Tolerance), for all the 
components required for a dependable Grid (storage, 
communication, resource management). 
 The outcomes of HPC4U will be a mix of open 
source and proprietary software embedded in two 
outcomes. The SLA-aware and Grid-enabled RMS 
includes SLA negotiation, multi-site SLA-aware 
scheduling, security and interfaces for storage, 
checkpointing and networking support. It will be multi-
platform in nature and available as open source. The 
second HPC4U outcome will be a vertically integrated 
commercial product with proprietary Linux-specific 
developments for checkpointing, networking and 
storage. This outcome will demonstrate the ready-to-use 
HPC4U functionality (job checkpointing, migration and 
restart) for Grids based on Linux architectures. 
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Resource management system:  As it has been stated 
above, the RMS plays a central role within the HPC4U 
architecture. Since it is an SLA-aware RMS, it has to 
keep an overview about all SLA-related activities within 
the system. First, it has to negotiate with customers on 
new SLAs. These users may be located somewhere in 
the Grid system, accessing the SLA-negotiation 
interface of the middleware system. The RMS will first 
decide on starting a negotiation process (a negotiation 
request may be rejected due to local policies), then 
actively negotiating on the contents of the requested 
agreement. In this negotiation process, the current 
system condition has to be considered. 
 Therefore it is necessary, that the RMS has the 
complete overview about the resources in its own 
domain (the compute cluster which is operated by the 
HPC4U system). This encompasses available resources 
(e.g. number, type and equipment of compute nodes, 
topology and characteristics of the interconnect between 
these compute nodes, or characteristics and capabilities 
of the available storage system). Beside these static 
aspects, the RMS also has to be aware of dynamic 
attributes. The validity period of such dynamic 
attributes normally is really short, as these aspects 
represent the current condition of the overall system. 
 The RMS is also responsible for planning not only 
the current system usage, but also the future. Therefore 
it holds a schedule of all accepted SLA-jobs. According 
to this schedule, the general static information, the 
dynamic information representing the current system 
condition and the requirements of the new SLA request, 
such a request will be accepted or rejected. It is 
important to stress, that the RMS is the only element 
within the HPC4U architecture which has direct contact 
with the Grid system. The subsystems of HPC4U are 
only contacted by the RMS, but not from the Grid user. 
 To be able to plan requests with assigned SLAs 
(e.g. a guaranteed minimal bandwidth) an RMS 
scheduler not only has to count free resources (e.g. 
compute nodes), it also has to respect system specific 
constraints like the topology of a high speed network. 
The RMS used in HPC4U does this by dividing the 
scheduling process into two parts, a hardware-
dependent called Machine Manager (MM) and a 
hardware-independent part called Planning Manager 
(PM). This separation allows to consider system 
specific requirements (e.g. location of I/O-nodes or 
network topologies) at which the MM part may be 
adapted to different resource configurations without 
changing the basic scheduling part (the PM). The MM 
verifies whether or not a schedule computed by the PM 
can be realized with the available hardware. The MM 
checks this by mapping the user given specification with 
the static (e.g. topology) and dynamic (e.g. node 
availability) information on the system resources. 
Information provided by the subsystems are 
incorporated in this mapping procedure. If the MM is 

not able to find an SLA conform mapping of the jobs 
onto the resources at the time scheduled by the PM it 
tries to find alternatives. The resulting list is sent back 
to the PM which accepts the schedule or computes a 
new one based on the schedule given by the MM. 
 SLA-aware RMSs are responsible for fulfilling the 
contents of all SLAs, which have been acknowledged. 
This implies that the RMS has to take appropriate 
actions in case of resource outages (e.g. power failure of 
a compute node). Hence, jobs have to be supervised 
during their whole lifetime. For this purpose, the MM 
monitors the running jobs and the affected resources. In 
case of an error (e. g. a resource failure) the MM is able 
to migrate the job to another matching resource. Since 
the MM always knows the current schedule this may be 
done without violating the current schedule. In HPC4U, 
the RMS will utilize the functionalities of the 
underlying HPC4U subsystems to provide fault 
tolerance, thus guaranteeing the adherence with the 
negotiated SLAs. In situations where such a conflict 
situation can not be resolved internally (due to resource 
failures the system does no longer have sufficient 
resources to match with all agreed deadlines), the 
HPC4U system can benefit from the available Grid 
infrastructure by requesting resources from the Grid. By 
knowing the requirement profile defined in the SLA, the 
RMS tries to find appropriate resources at a remote 
Grid site. If such resources were found, the system may 
start a job migration process to this remote resource, 
such that the agreed deadline can be held. 
 The RMS also has interfaces to the three HPC4U 
subsystems mentioned above. These are located in the 
MM part of the RMS since the MM controls the 
execution of jobs. Using these interfaces the RMS may 
register callback routines which are called in case a 
subsystem notices an error and is not able to solve the 
problem alone. For instance we assume a job with an 
SLA guaranteeing a minimal bandwidth. It may now 
happen that due to a resource failure (not necessarily 
used by the concerned application) the networking 
subsystem is forced to change its routing tables. The 
subsystem tries to fulfill the SLA since the RMS started 
the application with this constraint. If the networking 
subsystem is not able to keep the agreed minimal 
bandwidth it informs the RMS about the problem. The 
RMS then has to decide what to do: migrating the 
concerned application or suspending another one. 
 The RMS consists of numerous sub-components. 
The service of all components has to be orchestrated, so 
that the adherence with agreed SLAs can be ensured. 
Within this architecture, the Planning Manager is of 
central importance. In the following, the tasks and 
interaction between these blocks is to be explained. 
 In the design of the RMS, a compromise has to be 
found between two conflicting goals: on the one hand 
the design of the RMS should utilize available resources 
(e.g. processors, network and storage) optimally. On the 
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other hand, the system should not be tailored to one 
specific configuration or technology, but be able to be 
deployed and ported to arbitrary usage scenarios. 
 HPC4U provides novel mechanisms to the RMS. 
Instead of cancelling a job, the RMS can use the fault 
tolerance mechanisms of the HPC4U subsystems to 
ensure the adherence with the accepted SLA. 
 
Process subsystem:  The HPC4U process subsystem 
will include an operating system-driven check-pointing. 
The process subsystem will create a “virtual bubble” 
around the process, presenting a virtual environment, 
e.g. consisting of virtual network devices and virtual 
process IDs. This virtual environment allows the 
checkpointing of a process without the necessity of 
linking additional special purpose libraries into the 
environment. It is remarkable, that the virtual bubble 
has only minimal impact on the runtime of a job. Since 
no recompilation is required, arbitrary applications can 
be checkpointed and benefit from an increased level of 
fault tolerance. Hence, also in commercial Grid 
environments, the RMS can guarantee the adherence 
with given deadlines. 
 If a checkpoint has to be created, the process 
subsystem checkpoints this bubble completely. Since no 
recompilation of applications is necessary, this 
checkpoint process is transparent for running 
applications, so that arbitrary applications can be 
checkpointed. Even commercial applications (for which 
the source code is normally not available) can benefit 
from this mechanism. This is a major advancement 
compared to already existing solutions. Most of them do 
not support (MPI-) parallel applications or require that 
the application is linked against specific libraries (e.g. 
Condor[16]). This prevents the general applicability as 
well as the application-transparency of fault tolerance 
mechanisms. Other solutions do not require relinking, 
but do not provide full virtualization of resources (e.g. 
Berkeley Lab Checkpoint/Restart[17]) which hinders the 
migration of checkpointed applications to other 
resources. 
 If checkpointing parallel jobs, the process 
subsystem will utilize mechanisms of the network 
subsystem to ensure that also packets currently 
transmitted over the network are checkpointed. 
 A major task within the checkpointing subsystem is 
the retrieval of compatible resources for a given 
checkpoint. Only if the target system is compatible to 
the source system, where the checkpoint has been 
generated, the checkpoint will be able to restart. This 
question does not only affect issues like processor type 
or kernel version. Since an application normally 
accesses shared libraries, also these libraries must be 
available and compatible. If the RMS tries to resume a 
checkpointed application on a non-compatible node, at 
best the application would crash immediately at best. At 
worst, an incompatibility between two library version 

would not crash the application, but causing in incorrect 
results. 
  Therefore, the checkpointing subsystem will 
generate a requirement profile of each checkpointed 
job. In such a profile all relevant characteristics of a job 
are stated, e.g. CPU type, kernel version and versions of 
loaded libraries. This profile will then be used by the 
RMS for querying for compatible resources. These 
resources may be located on the same cluster system, 
but also on different cluster systems within the same 
administrative domain, or even somewhere in the Grid. 
 
Storage subsystem:  In the case of resource outages, 
the HPC4U system will restart affected jobs on suitable 
spare resources using previously generated process 
checkpoints. Since a job may constantly change its 
storage partition, inconsistencies between the resumed 
process and the storage partition may occur (e.g. data 
has been written since the last process checkpoint, so 
the job's storage partition is at a different stage as the 
restarted job). Therefore the storage subsystem will 
allow to checkpoint the job's storage partition. 
 If the job is resumed on a spare resource, the 
storage partition is restored from the checkpointed state. 
This way, both checkpoints (checkpoint of the process 
and checkpoint of the storage partition) are consistent.  
 The HPC4U project does not only focus on fault 
tolerance on a single cluster, but also on multiple 
clusters and even the Internet Grid. Hence, a job may be 
resumed on resources of a completely different cluster 
system. At this, not only the data of the checkpointed 
process has to be transferred to the new system, but also 
the according checkpoint of the storage partition. As 
storage partitions may be huge, this might be a time 
consuming process which would prevent to meet the 
agreed deadline of a job. Therefore the storage 
subsystem will provide mechanisms for a background 
replication of storage data to remote systems.  
 Since HPC4U will support migration to Grid-
resources. As storage partitions may be huge, this might 
be a time consuming process which would prevent to 
meet the agreed deadline of a job. Therefore the storage 
subsystem will provide mechanisms for a background 
replication of storage data to remote systems.  
 
Network subsystem:  The commercial outcome of the 
HPC4U project will use the SCI network[18] as 
interconnect between the nodes of a cluster system. The 
network subsystem will enhance the network 
management of this SCI network and supports other 
HPC4U subsystem in providing fault tolerance.  
 As described above, the process subsystem will 
create checkpoints of running applications. The network 
subsystem will ensure that also packets are saved which 
are transmitted over the network at the time of the 
checkpoint. This way, the created checkpoint is 
consistent over all nodes of the job. Furthermore, the 
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network subsystem will provide sophisticated 
mechanisms to the process subsystem, which can be 
used for checkpointing MPI-parallel jobs. 
 The RMS will query the network subsystem for 
static and dynamic information about the network, e.g. 
basic network topology or currently available network 
bandwidth. This information is necessary for SLA 
negotiation and scheduling. At runtime, the network 
subsystem will monitor the consumed network 
bandwidth of a job and enforce bandwidth limits, if 
specified. Moreover, it will allow the RMS to separate 
the SCI network into virtual subnets. 
  
Phases of operation: The main goal of HPC4U is to 
provide future Next Generation Grids with reliable and 
predictable compute resources. To be interoperable with 
Grid middleware environments, thus providing an 
application transparent service to Grid customers, the 
HPC4U system will provide an interface to Grid 
middleware. 
 This interface will enable the Grid to negotiate on 
an Service Level Agreements. If the HPC4U cluster 
middleware has agreed to provide a fixed service level, 
it will realize this level with mechanisms like process 
checkpointing and storage snapshotting. The HPC4U 
solution will act as an active Grid component, using 
available Grid resources to further improve its level of 
Fault Tolerance. 
 As the HPC4U system will be integrated into 
existing Grid middleware systems, adherence to existing 
standards and protocols is vital. To provide maximum 
flexibility and compatibility with other research projects 
and software systems, HPC4U will follow well-defined 
standards developed by the GRAAP (Grid Resource 
Allocation Agreement Protocol) working group of the 
Global Grid Forum (GGF). This will ensure that 
HPC4U achievements can be integrated into Grid 
middleware systems like the Globus Toolkit or 
UNICORE. 
 Beside the computation of a job on an allocated 
resource, also other phases of operation can be 
identified (Fig. 2), where the system handles the job. 
Within the first phase, both parties (the HPC4U cluster 
middleware system and the Grid customer) try to agree 
on the contents of an SLA, which defines the 
requirements of the customer's job. 
 In the next phase, the pre-runtime phase, the 
validity period of the SLA has not actually started, the 
system has to prepare itself for this new job. This 
means, that the network has to be configured, the 
assigned compute nodes have to be initialized and the 
storage has to be provided. 
 The main phase of operation is the runtime phase, 
which starts at the beginning of the validity period of 
the SLA. First, all input data is transferred from the 
Grid customer to the compute resource, followed by the 
computation of the job. At this, the HPC4U cluster  

 
 
 
 
 
 
 
Fig. 2: Phases of operation in HPC4U 
 
middleware has to ensure the compliance with all QoS 
statements of the SLA. If the computation has finished, 
result data will be transferred back to the customer 
(stage out). 
 After the validity period of the SLA has ended, the 
job has terminated and all output data has left the 
system, the post-runtime phase starts. In this phase the 
system can be reconfigured to “normal” operation. 
 
Negotiation:  If the Grid user wants to negotiate on 
resource usage with the HPC4U system, the user first 
submits a negotiation request, which reaches the 
HPC4U system via the upper layer interface. The 
HPC4U system now decides if it wants to accept this 
request, thus starting an SLA negotiation with the 
requesting Grid user. If HPC4U declines the request, no 
SLA negotiation will start. The reason for this 
cancellation may be manifold, e.g. if the requestor is not 
member of a trusted domain or if accounting is not 
guaranteed. This decision process will be policy driven. 
 In case the HPC4U system accepts the request, the 
whole negotiation process is steered by a negotiation 
module within the RMS, as only the RMS has a 
complete sight about all resources and resource 
conditions within the RMS administrative domain (AD). 
Such an AD may be seen as a pool of resources with the 
same set of policies, describing which resources are 
visible and accessible. ADs may be nested. Policies may 
also be tailored to specific user groups, e.g. providing 
access only to users from specific domains. 
 The negotiation module now initiates a new SLA 
negotiation with the requesting Grid user by creating a 
Grid service for this specific negotiation instance. This 
Grid service creates a template for an SLA and returns 
it to the requestor, together with the endpoint reference 
of the recently instantiated negotiation Grid service. 
The SLA template represents a general framework for 
all further negotiation activities. It gives a formal 
structure for negotiation as well as Service Description 
Terms (SDT), which may be topic of the negotiation 
process. 
 The requestor now starts the SLA negotiation by 
utilizing the received SLA template. He creates an SLA 
request based on this template which specifies all his 
resource and QoS requirements and transmits it back to 
the HPC4U system. 
 Now, the negotiation module of the RMS is in 
charge of verifying the statements of the received SLA 
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request. This is done in a first step by checking formal 
requirements, e.g. constraints on available resources. If 
static boundaries meet existing resource limits, the 
negotiation module checks in a second step dynamical 
aspects of the received SLA request. This affects the 
question, whether or not the specified and requested 
resource is available at the requested quality at the 
requested time frame. 
 According to the specifications of the SLA request, 
the storage and network subsystem are included in this 
process. In contrast, the availability is a static property 
of a cluster node. The cluster configuration of the 
HPC4U system specifies, whether or not the 
checkpointing subsystem is available on given nodes. 
Hence, the RMS can determine without any 
communication to the checkpointing subsystem, if 
checkpointing mechanisms can be provided. 
 It is important to stress, that the specific requests on 
QoS can not be regarded isolated from each other. In 
fact, they interfere each other. In case of a deadline 
bounded job, the storage subsystem has to provide 
additional storage capacity for saving process 
checkpoints. QoS requests even interfere within a single 
subsystem: in case more than one storage snapshots 
shall be saved, the storage capacity has to be aligned. 
 
Pre-runtime phase:  Each negotiated SLA has a unique 
identifier which is used as reference in further 
communication. In case of a successful negotiation 
procedure, the SLA is saved in the SLA management of 
the HPC4U middleware system. 
 As the HPC4U system has an SLA-aware 
scheduler, the contents of all negotiated SLAs are part 
of the scheduling process. Hence, HPC4U awaits the 
incoming job and assigns appropriate resources within 
the HPC4U domain. To utilize these resources, further 
communication concerning the SLA-bounded job 
always refers to the unique identifier of the negotiated 
SLA. 
 At the moment where the new job enters the system 
(this does not only imply the executable of the 
application that should be executed, but also all input 
data required by this application), the components 
already have to be fully prepared for this new job. This 
process of initialization is denoted as pre-runtime phase. 
 It is important to consider this phase in the 
scheduling process, as tasks may be time consuming 
due to their complexity or communication intensity. 
This task may range from the provision of specific 
compilers up to an entire node environment. 
 Comprising, in this phase the RMS initializes the 
environment for the job execution, i.e. the configuration 
of local cluster nodes, the network subsystem and the 
storage subsystem. The emphasis of this process is on 
establishing a fault tolerant environment, according to 
the specifications of the SLA. 

 
Runtime phase:  After this first phase, the basic 
environment of the job has been established. Now, the 
stage-in of process data can proceed. Stage-in is 
performed by mechanisms at the level of Grid 
middleware, e.g. the Globus toolkit. Hence, the HPC4U 
system does not have to provide these mechanisms on 
its own. These stage-in mechanisms ensure that the 
process will find its data at runtime. The HPC4U system 
only has to ensure that storage capacity is available at 
the agreed quality and quantity. 
 Once all necessary data has been staged in, the 
computation of the job may start. The main task of the 
HPC4U cluster middleware is to ensure that all 
resources are available as agreed in the SLA during 
runtime. Therefore monitoring mechanisms have to be 
used, checking if all resources are operating in normal 
mode. If resource outages occur (e.g. dropout of a 
compute node), appropriate failure tolerance 
mechanisms have to be enforced. Due to adherence 
reasons with all SLAs, it is of vital importance, that 
resource failures are detected as soon as possible. 
 For this purpose, the RMS has to checkpoint the 
process, respectively snapshot the storage partition in 
regular intervals. At this, it utilizes the mechanisms of 
the underlying HCP4U subsystems. Normally, the 
checkpointing will be executed together with 
snapshotting, so that consistency between process and 
its storage is ensured. However, both mechanisms can 
be executed separately, if required. The time and 
frequency of checkpoints/snapshots is calculated by the 
RMS, depending on the contents of the agreed SLA. 
 These checkpoint and snapshot datasets will be 
used in case of failures for process migration. 
Depending on the type of migration (e.g. migration 
within the same cluster system, migration to a different 
cluster within the same AD, or migration to a cluster 
system somewhere in the Grid) specific requirements 
arise. If migrating within a single cluster system, only 
the checkpoint dataset has to be moved to a suitable 
spare resource. In other scenarios, compatibility, 
security and enforcement of policies have to be 
observed. 
 The RMS may use its checkpointing and 
snapshoting subsystems also in case of anticipated 
failures. If the monitoring subsystem of the RMS 
detects such an anticipated failure, the running job may 
be checkpointed before a resource outage actually 
occurs. The checkpoint/snapshot dataset then may be 
transferred to a suitable spare resource, where the job 
may resume. This way, no computational results are 
lost, since the job is transferred to spare resources, 
before a resource outage would have caused the loss of 
results. 
 Checkpoint/snapshot mechanisms are also valuable 
instruments for increasing the efficiency of system 
management. If the administrator of a resource decides 
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to switch off a compute resource (e.g. due to 
maintenance reasons), he may manually trigger the 
checkpoint of the application running on this node. 
Thus, the administrator benefits from these mechanisms 
by means of increased flexibility. He neither has to 
align his maintenance schedule to the current load 
profile of his machine, nor does he have to block 
resources for specific maintenance intervals. This 
results in a higher utilization of the machine, as the 
machine is not blocked and can be used by arbitrary 
jobs, even if these jobs can not be finished before the 
planned maintenance interval. As a matter of fact, 
maintenance is not the only thinkable reason for 
manually triggering the checkpoint/snapshot of a 
running job. 
 These mechanisms may also be used regularly by 
the RMS to increase the system utilization. With these 
mechanisms the RMS may use free slots between 
reservations for computing other (low priority) jobs, 
even if this slot is not sufficient for job completion. If 
such a low priority job is running on a gap timeframe, it 
may be checkpointed shortly before the end of the gap 
timeframe. This way, the resource is available for the 
reserved timeframe. As soon as another gap is available 
again, the low priority job will be restarted again within 
this new gap timeframe. This procedure may also be 
used for running jobs without runtime estimation. Such 
jobs can be checkpointed and resumed as long as job 
completion is achieved. However, the effort for 
checkpointing/snapshotting and resuming has to be kept 
in mind. The smaller a used timeframe is, the less useful 
it is. Normal or high priority jobs without runtime 
estimation, which should be run to completion, should 
run on reserved timeframes, which have a reasonable 
size, so that the overall progress of the job can be 
assured. 
 The primary goal of all fault tolerance mechanisms 
is the successful completion of a job. The result of a 
successfully completed job normally is a result dataset. 
This dataset has to be transferred back to the Grid 
customer, the owner of the completed job. This transfer 
is done in the stage-out process, which concludes this 
phase. Just like the stage-in process, the stage-out 
process will be performed by mechanisms of Grid 
middleware. 
 
Post-runtime phase:  The post-runtime phase is the 
last step of resource consumption. At this point, the 
computation of the job has finished and all result data 
has been transferred back to the service client. This 
phase is the counterpart of the pre-runtime phase, since 
specific configuration of the cluster system may have to 
be revoked. This reconfiguration does not only affect 
the configuration of the compute nodes, but also the 
configuration of the storage or network subsystem. 
Furthermore checkpoint/snapshot datasets can be 

removed, since the job has been completed and these 
datasets are not required anymore. 
 Another important task of the post-runtime phase is 
the analysis of the job runtime. As all monitoring data is 
available at this point, a concluding analysis of these 
logs can be accomplished. Goal of these checks is to 
determine if all specifications of the SLA have been 
fulfilled. In case of resource outages, it has to be 
checked if the RMS has reacted as agreed. It is 
important to emphasize that the HPC4U cluster 
middleware is not able to agree the completion of a job, 
since a job may also a fail due to failures within the 
application. HPC4U can only assure the provision and 
utilization of certain mechanisms to improve the overall 
QoS level for the respective job. 
 

CONCLUSION 
 
 In this study we have outlined the basic ideas and 
components of an HPC4U cluster middleware system. 
HPC4U's main components are the SLA-aware RMS 
and the subsystems for realizing fault tolerance on 
process, storage and network. 
 The goal of the HPC4U project is to provide an 
application-transparent and software-only solution of a 
reliable RMS. It will allow the Grid user to negotiate on 
Service Level Agreements, which will be realized by 
means of process and storage checkpointing and other 
sophisticated mechanisms. By this, the HPC4U cluster 
middleware will be an important building block for 
realizing future Next Generation Grids. 
 However, the HPC4U solution will not only 
passively accept resource requests from Grid users, it 
will also act as an active Grid component. If the HPC4U 
system can not compensate resource outages, so that the 
fulfillment of agreed SLAs is endangered, it may 
request the Grid for suitable spare resources. If such 
resources are found, the job will be transparently 
migrated. This way, available Grid resources are used 
for further improving the level of Fault Tolerance. 
 Currently the HPC4U project is within the second 
of four technological workpackages. This workpackage 
addresses the first of three major steps in building up 
this system, namely the realization of the needed fault 
tolerance extensions to storage, communication and 
system software in a single node environment. The 
development and implementation of these basic 
mechanisms serve as a fundament for merging single 
nodes into an Intranet Grid and then for including the 
Intranet Grid into the world wide Grids. The core tasks 
in this workpackage are related to preparing the 
building blocks for a grid-wide job migration and have 
the main goal, to integrate the job checkpointing with 
the storage and resource management component. 
Furthermore, a RMS monitoring mechanism will collect 
information about the available resources and their 
status and publish this via RMS. 
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 The consistent realization of this vertical approach 
is based on existing software solutions of the HPC4U 
partners. A first prototype implementation of our 
architecture has already been finished. It enables the 
user to request for a fault tolerant handling of his single-
node running jobs. The HPC4U system starts such a job 
within a virtual bubble, using the subsystems for 
transparent checkpoint and migration within the same 
cluster system. Ongoing work within HPC4U focuses 
on providing checkpointing and migration also to 
parallel-node jobs and the realization of inter-cluster 
Grid migration. 
 Within the scope of the succeeding workpackage 
the existing FT mechanisms of the HPC4U system will 
be extended to multi-node/Intranet Grid environments 
on the one hand and to distributed running multi-node 
jobs on the other hand. The extension to Intranet Grids 
means, that the RMS must find suitable resources within 
this domain as a target for the job migration. This 
includes the suitability of the software and hardware 
architecture, the availability of the required resources 
and the compliance with the existing SLAs. Thus, for 
each migrated job, a start time for resumed processing 
will be assigned in a way that the given deadline can be 
reached, if the process duration information supplied by 
the user is correct. 
 The second extension to multi-node jobs is a large 
scientific challenge, as already existing mechanisms are 
limited to single-node jobs. The migration of multi-node 
jobs affects the checkpointing, migration and restart 
mechanisms on job-, storage- and communication-level, 
which must be able to deal with the specific 
characteristics of a multi-node job. The RMS has to be 
capable of handling multi-node jobs, since new 
requirements arise for compatibility, portability and 
migration. The HPC4U system resulting of this 
workpackage will be capable of cross-border migration, 
allowing an RMS to migrate jobs on resources within 
the own administrative domain or over multiple 
administrative domains. This will further increase the 
Fault Tolerance, as (temporarily) HW/SW/Network 
failures can be compensated with a higher probability, 
as the pool of appropriate resources is significantly 
enlarged by all cross-border resources. 
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