
Journal of Computer Science 2 (6): 550-557, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Matthias Hovestadt, Paderborn Center for Parallel Computing, University of Paderborn, Germany
550

Operation of an SLA-aware Grid Fabric

Matthias Hovestadt

Paderborn Center for Parallel Computing, University of Paderborn, Germany

Abstract: Research on Grid Computing started under purely technical questions of how to realize the
virtualization of distributed resources. Now, the commercial user should be attracted to use the Grid.
Future applications of the Next Generation Grid will demand for flexible negotiation mechanisms
supporting various ways of Quality-of-Service (QoS) guarantees. In this context a Service Level
Agreement (SLA) is a powerful instrument for describing all obligations and expectations within a
business partnership. Many research projects already focus on realizing SLAs within the Grid
middleware. However this is not sufficient. Resource Management Systems also have to be SLA-aware,
since these systems provide their resources to Grid infrastructures. In this study we present the EU-
funded project HPC4U (Highly Predictable Clusters for Internet Grids), which aims at realizing such an
RMS by means of SLA-negotiation and scheduling and application-transparent fault tolerance.

Key words: SLA, QoS, Grid computing, resource management, fault tolerance

INTRODUCTION

 Nowadays, Grid Computing is not only a major
research topic, it is also already in use. Many companies
recognized the potentials, so that the application of Grid
technology is not limited to research only. Companies
like IBM, Hewlett Packard and Microsoft currently
invest noticeable efforts on research and the support of
research communities. Common goal of commercial
and academic researchers is to attract commercial users
for Grid Computing. In this context, the European
Commission convened a group of experts to clarify the
demands of future Grid systems and which properties
and capabilities are missing in currently existing Grid
infrastructures. Their work resulted in the idea of the
Next Generation Grid (NGG)[1].
 Among the demands on such an NGG are transpar-
ency and the guaranteed provision of reliability and a
defined level of quality of service (QoS). Compared
with the capabilities of current Grid systems, these are
challenging demands. When using a Grid infrastructure
today, the user gets best-effort services only. Obviously
this is not adequate for commercial users, who want to
use the Grid for computing business critical jobs. Such
a user demands for guarantees, so that he can count on
getting the requested and required service level.
Assuming a weather service as commercial customer, it
must be able to rely on getting the computed weekend
weather forecast in time. This underlines the necessity
of the NGG, not only focusing on predictable and
reliable operation of a single Grid resource, but also on
the orchestrated execution of a Grid workflow.
 In this context, a Service Level Agreement (SLA)
is a powerful instrument for describing all expectations
and obligations in the business relationship between

customer and service provider[2] (Fig. 1). Such an SLA
specifies the QoS requirement profile of a job. At the
layer of Grid middleware many research activities
already focus on integrating SLA functionality.

Fig. 1: Elements of an SLA

 However, there is a gap between the requirements
of an SLA-aware Grid middleware and the capabilities
of currently available Resource Management Systems
(RMS), offering only best-effort service. Local resource
management systems provide their resources to Grid
systems, which transfer jobs from Grid users to these
provided resources. Hence, SLAs guaranteed by the
Grid middleware must be realized by the local RMS

[3].
However, if the local RMS operates at best-effort, Grid
middleware can not assure specific service levels.
 Within the project “Highly Predictable Cluster for
Internet-Grids” (HPC4U)[4], which is funded by the EU,
an SLA-aware RMS is developed. This RMS will
utilize the service of process- storage- and network-
subsystem for realizing a guaranteed level of
application-transparent fault tolerance. The HPC4U
project will allow the Grid to negotiate on Service Level
Agreements. It will also feature mechanisms like
process and storage checkpointing to realize fault
tolerance and to assure the adherence with given SLAs.

Terms R-Type: HW, OS, Compiler, Software Packages, …
R-Quantity: Number CPUs, main memory, …
R-Quality: CPU>2GHz, Network Bandwidth, …
Deadline: Date, Time,…
Policies: Demands on Security and Privacy, …

Price for Resource Consumtion (fulfilled SLA)
Penalty Fee in case of SLA violation

Contract Parties, Responsible Persons

ID or Description of SLA Name

Context

J. Computer Sci., 2 (6): 550-557, 2006

 551

Related work: The worldwide research in Grid
computing resulted in numerous different Grid
packages. Besides many commodity Grid systems,
general purpose toolkits exist such as UNICORE[5] or
Globus[6]. Although Globus represents the de-facto
standard for Grid toolkits, all these systems have
proprietary designs and interfaces. To ensure future
interoperability of Grid systems as well as the
opportunity to customize installations, the OGSA (Open
Grid Services Architecture) working group within the
GGF[7] aims to develop the archi-tecture for an open
Grid infrastructure[8].
 In[1], important requirements for the Next
Generation Grid (NGG) were described. Among those
needs, one of the major goals is to support resource-
sharing in virtual organizations all over the world. Thus
attracting commercial users to use the Grid, to develop
Grid enabled applications and to offer their resources in
the Grid. Mandatory prerequisites are flexibility,
transparency, reliability and the application of SLAs to
guarantee a negotiated QoS level.
 An architecture that supports the co-allocation of
multiple resource types, such as processors and network
bandwidth, was presented in[9]. The Globus Architecture
for Reservation and Allocation (GARA) provides
"wrapper" functions to enhance a local RMS not
capable of supporting advance reservations with this
functionality. This is an important step towards an
integrated QoS aware resource management. In our
study, this approach is enhanced by SLA and
monitoring facilities. These enhancements are needed in
order to guarantee the compliance with all accepted
SLAs. This means, it has to be ensured that the system
works as expected at any time, not only at the time a
reservation is made. The GARA component of Globus
currently does neither support the definition of SLAs or
malleable reservations, nor does it support resilience
mechanisms to handle resource outages or failures.
 The requirements and procedures of a protocol for
negotiating SLAs were described in SNAP[10].
However, the important issue of how to map, implement
and assure those SLAs during the whole lifetime of a
request on the RMS layer remains to be solved. This
issue is also addressed by the architecture presented in
this study.
 The inadequacy of current systems for emerging
Grid requirements has been underlined by MacLaren et
al.[11]: neither the best-effort approach of batch
schedulers nor the inflexible nature of advance
reservation is suitable for future RMS. Mechanisms are
required which support SLAs, "negotiated between the
client (user, superscheduler, or broker) and the
scheduler". Unlike other approaches for providing SLA-
awareness and service quality guarantees, MacLaren et
al. propose the development of novel RMS scheduling
mechanisms, which are able to negotiate with SLA-

requesting customers coming from Grid. Similar ideas
and demands also have been presented in[12]. In a
subsequent study to[11], Yarmolenko et al. evaluated
policies for negotiation with resources[13]. The study
does not focus on local RMS, but on a central service at
Grid middleware, acting as a broker between user
requests and available resources. However, solely the
RMS has full control over the resources, therefore
questions on fault tolerance and QoS provision can not
be answered only at level of Grid middleware. Hence,
the presented mechanisms form a complementing
counterpart to the architecture presented in this study.
 The Grid community has identified the need for a
standard for SLA description and negotiation. This led
to the development of WS-Agreement/-Negotiation[14].
These upcoming standards rely on the new Web
Services Resource Framework (WSRF[15]) which will
supersede the OSGI specification. We will follow these
developments closely and will stick to these standards.

Architecture of HPC4U: The goal of the HPC4U
project (Highly Predictable Cluster for Internet Grids) is
to provide an application-transparent and software-only
solution of a reliable RMS. It will allow the Grid to
negotiate on Service Level Agreements and it will also
feature mechanisms like process and storage
checkpointing to realize Fault Tolerance and to assure
the adherence with given SLAs. The HPC4U solution
will act as an active Grid component, using available
Grid resources for further improving its level of Fault
Tolerance.
 The HPC4U results will provide Next Generation
Grids with the possibility to guarantee the completion of
Grid jobs and leverage the larger uptake of Grid
environments. The HPC4U software will be
customizable and interoperable with other Grids and
will open new perspectives to the usage of Grids for
additional services as they are today strongly required
by the industry. HPC4U will extend well accepted
technologies and integrate them with innovative features
(such as Grid embedded Fault Tolerance), for all the
components required for a dependable Grid (storage,
communication, resource management).
 The outcomes of HPC4U will be a mix of open
source and proprietary software embedded in two
outcomes. The SLA-aware and Grid-enabled RMS
includes SLA negotiation, multi-site SLA-aware
scheduling, security and interfaces for storage,
checkpointing and networking support. It will be multi-
platform in nature and available as open source. The
second HPC4U outcome will be a vertically integrated
commercial product with proprietary Linux-specific
developments for checkpointing, networking and
storage. This outcome will demonstrate the ready-to-use
HPC4U functionality (job checkpointing, migration and
restart) for Grids based on Linux architectures.

J. Computer Sci., 2 (6): 550-557, 2006

 552

Resource management system: As it has been stated
above, the RMS plays a central role within the HPC4U
architecture. Since it is an SLA-aware RMS, it has to
keep an overview about all SLA-related activities within
the system. First, it has to negotiate with customers on
new SLAs. These users may be located somewhere in
the Grid system, accessing the SLA-negotiation
interface of the middleware system. The RMS will first
decide on starting a negotiation process (a negotiation
request may be rejected due to local policies), then
actively negotiating on the contents of the requested
agreement. In this negotiation process, the current
system condition has to be considered.
 Therefore it is necessary, that the RMS has the
complete overview about the resources in its own
domain (the compute cluster which is operated by the
HPC4U system). This encompasses available resources
(e.g. number, type and equipment of compute nodes,
topology and characteristics of the interconnect between
these compute nodes, or characteristics and capabilities
of the available storage system). Beside these static
aspects, the RMS also has to be aware of dynamic
attributes. The validity period of such dynamic
attributes normally is really short, as these aspects
represent the current condition of the overall system.
 The RMS is also responsible for planning not only
the current system usage, but also the future. Therefore
it holds a schedule of all accepted SLA-jobs. According
to this schedule, the general static information, the
dynamic information representing the current system
condition and the requirements of the new SLA request,
such a request will be accepted or rejected. It is
important to stress, that the RMS is the only element
within the HPC4U architecture which has direct contact
with the Grid system. The subsystems of HPC4U are
only contacted by the RMS, but not from the Grid user.
 To be able to plan requests with assigned SLAs
(e.g. a guaranteed minimal bandwidth) an RMS
scheduler not only has to count free resources (e.g.
compute nodes), it also has to respect system specific
constraints like the topology of a high speed network.
The RMS used in HPC4U does this by dividing the
scheduling process into two parts, a hardware-
dependent called Machine Manager (MM) and a
hardware-independent part called Planning Manager
(PM). This separation allows to consider system
specific requirements (e.g. location of I/O-nodes or
network topologies) at which the MM part may be
adapted to different resource configurations without
changing the basic scheduling part (the PM). The MM
verifies whether or not a schedule computed by the PM
can be realized with the available hardware. The MM
checks this by mapping the user given specification with
the static (e.g. topology) and dynamic (e.g. node
availability) information on the system resources.
Information provided by the subsystems are
incorporated in this mapping procedure. If the MM is

not able to find an SLA conform mapping of the jobs
onto the resources at the time scheduled by the PM it
tries to find alternatives. The resulting list is sent back
to the PM which accepts the schedule or computes a
new one based on the schedule given by the MM.
 SLA-aware RMSs are responsible for fulfilling the
contents of all SLAs, which have been acknowledged.
This implies that the RMS has to take appropriate
actions in case of resource outages (e.g. power failure of
a compute node). Hence, jobs have to be supervised
during their whole lifetime. For this purpose, the MM
monitors the running jobs and the affected resources. In
case of an error (e. g. a resource failure) the MM is able
to migrate the job to another matching resource. Since
the MM always knows the current schedule this may be
done without violating the current schedule. In HPC4U,
the RMS will utilize the functionalities of the
underlying HPC4U subsystems to provide fault
tolerance, thus guaranteeing the adherence with the
negotiated SLAs. In situations where such a conflict
situation can not be resolved internally (due to resource
failures the system does no longer have sufficient
resources to match with all agreed deadlines), the
HPC4U system can benefit from the available Grid
infrastructure by requesting resources from the Grid. By
knowing the requirement profile defined in the SLA, the
RMS tries to find appropriate resources at a remote
Grid site. If such resources were found, the system may
start a job migration process to this remote resource,
such that the agreed deadline can be held.
 The RMS also has interfaces to the three HPC4U
subsystems mentioned above. These are located in the
MM part of the RMS since the MM controls the
execution of jobs. Using these interfaces the RMS may
register callback routines which are called in case a
subsystem notices an error and is not able to solve the
problem alone. For instance we assume a job with an
SLA guaranteeing a minimal bandwidth. It may now
happen that due to a resource failure (not necessarily
used by the concerned application) the networking
subsystem is forced to change its routing tables. The
subsystem tries to fulfill the SLA since the RMS started
the application with this constraint. If the networking
subsystem is not able to keep the agreed minimal
bandwidth it informs the RMS about the problem. The
RMS then has to decide what to do: migrating the
concerned application or suspending another one.
 The RMS consists of numerous sub-components.
The service of all components has to be orchestrated, so
that the adherence with agreed SLAs can be ensured.
Within this architecture, the Planning Manager is of
central importance. In the following, the tasks and
interaction between these blocks is to be explained.
 In the design of the RMS, a compromise has to be
found between two conflicting goals: on the one hand
the design of the RMS should utilize available resources
(e.g. processors, network and storage) optimally. On the

J. Computer Sci., 2 (6): 550-557, 2006

 553

other hand, the system should not be tailored to one
specific configuration or technology, but be able to be
deployed and ported to arbitrary usage scenarios.
 HPC4U provides novel mechanisms to the RMS.
Instead of cancelling a job, the RMS can use the fault
tolerance mechanisms of the HPC4U subsystems to
ensure the adherence with the accepted SLA.

Process subsystem: The HPC4U process subsystem
will include an operating system-driven check-pointing.
The process subsystem will create a “virtual bubble”
around the process, presenting a virtual environment,
e.g. consisting of virtual network devices and virtual
process IDs. This virtual environment allows the
checkpointing of a process without the necessity of
linking additional special purpose libraries into the
environment. It is remarkable, that the virtual bubble
has only minimal impact on the runtime of a job. Since
no recompilation is required, arbitrary applications can
be checkpointed and benefit from an increased level of
fault tolerance. Hence, also in commercial Grid
environments, the RMS can guarantee the adherence
with given deadlines.
 If a checkpoint has to be created, the process
subsystem checkpoints this bubble completely. Since no
recompilation of applications is necessary, this
checkpoint process is transparent for running
applications, so that arbitrary applications can be
checkpointed. Even commercial applications (for which
the source code is normally not available) can benefit
from this mechanism. This is a major advancement
compared to already existing solutions. Most of them do
not support (MPI-) parallel applications or require that
the application is linked against specific libraries (e.g.
Condor[16]). This prevents the general applicability as
well as the application-transparency of fault tolerance
mechanisms. Other solutions do not require relinking,
but do not provide full virtualization of resources (e.g.
Berkeley Lab Checkpoint/Restart[17]) which hinders the
migration of checkpointed applications to other
resources.
 If checkpointing parallel jobs, the process
subsystem will utilize mechanisms of the network
subsystem to ensure that also packets currently
transmitted over the network are checkpointed.
 A major task within the checkpointing subsystem is
the retrieval of compatible resources for a given
checkpoint. Only if the target system is compatible to
the source system, where the checkpoint has been
generated, the checkpoint will be able to restart. This
question does not only affect issues like processor type
or kernel version. Since an application normally
accesses shared libraries, also these libraries must be
available and compatible. If the RMS tries to resume a
checkpointed application on a non-compatible node, at
best the application would crash immediately at best. At
worst, an incompatibility between two library version

would not crash the application, but causing in incorrect
results.
 Therefore, the checkpointing subsystem will
generate a requirement profile of each checkpointed
job. In such a profile all relevant characteristics of a job
are stated, e.g. CPU type, kernel version and versions of
loaded libraries. This profile will then be used by the
RMS for querying for compatible resources. These
resources may be located on the same cluster system,
but also on different cluster systems within the same
administrative domain, or even somewhere in the Grid.

Storage subsystem: In the case of resource outages,
the HPC4U system will restart affected jobs on suitable
spare resources using previously generated process
checkpoints. Since a job may constantly change its
storage partition, inconsistencies between the resumed
process and the storage partition may occur (e.g. data
has been written since the last process checkpoint, so
the job's storage partition is at a different stage as the
restarted job). Therefore the storage subsystem will
allow to checkpoint the job's storage partition.
 If the job is resumed on a spare resource, the
storage partition is restored from the checkpointed state.
This way, both checkpoints (checkpoint of the process
and checkpoint of the storage partition) are consistent.
 The HPC4U project does not only focus on fault
tolerance on a single cluster, but also on multiple
clusters and even the Internet Grid. Hence, a job may be
resumed on resources of a completely different cluster
system. At this, not only the data of the checkpointed
process has to be transferred to the new system, but also
the according checkpoint of the storage partition. As
storage partitions may be huge, this might be a time
consuming process which would prevent to meet the
agreed deadline of a job. Therefore the storage
subsystem will provide mechanisms for a background
replication of storage data to remote systems.
 Since HPC4U will support migration to Grid-
resources. As storage partitions may be huge, this might
be a time consuming process which would prevent to
meet the agreed deadline of a job. Therefore the storage
subsystem will provide mechanisms for a background
replication of storage data to remote systems.

Network subsystem: The commercial outcome of the
HPC4U project will use the SCI network[18] as
interconnect between the nodes of a cluster system. The
network subsystem will enhance the network
management of this SCI network and supports other
HPC4U subsystem in providing fault tolerance.
 As described above, the process subsystem will
create checkpoints of running applications. The network
subsystem will ensure that also packets are saved which
are transmitted over the network at the time of the
checkpoint. This way, the created checkpoint is
consistent over all nodes of the job. Furthermore, the

J. Computer Sci., 2 (6): 550-557, 2006

 554

Stage
In

Negotiation Pre-
Runtime

Runtime

Lifetime
of SLA

Allocation
of system
resources

Post-
Runtime

time

Acceptance
(or rejection)

of SLA Compu-
tation

Stage
Out

network subsystem will provide sophisticated
mechanisms to the process subsystem, which can be
used for checkpointing MPI-parallel jobs.
 The RMS will query the network subsystem for
static and dynamic information about the network, e.g.
basic network topology or currently available network
bandwidth. This information is necessary for SLA
negotiation and scheduling. At runtime, the network
subsystem will monitor the consumed network
bandwidth of a job and enforce bandwidth limits, if
specified. Moreover, it will allow the RMS to separate
the SCI network into virtual subnets.

Phases of operation: The main goal of HPC4U is to
provide future Next Generation Grids with reliable and
predictable compute resources. To be interoperable with
Grid middleware environments, thus providing an
application transparent service to Grid customers, the
HPC4U system will provide an interface to Grid
middleware.
 This interface will enable the Grid to negotiate on
an Service Level Agreements. If the HPC4U cluster
middleware has agreed to provide a fixed service level,
it will realize this level with mechanisms like process
checkpointing and storage snapshotting. The HPC4U
solution will act as an active Grid component, using
available Grid resources to further improve its level of
Fault Tolerance.
 As the HPC4U system will be integrated into
existing Grid middleware systems, adherence to existing
standards and protocols is vital. To provide maximum
flexibility and compatibility with other research projects
and software systems, HPC4U will follow well-defined
standards developed by the GRAAP (Grid Resource
Allocation Agreement Protocol) working group of the
Global Grid Forum (GGF). This will ensure that
HPC4U achievements can be integrated into Grid
middleware systems like the Globus Toolkit or
UNICORE.
 Beside the computation of a job on an allocated
resource, also other phases of operation can be
identified (Fig. 2), where the system handles the job.
Within the first phase, both parties (the HPC4U cluster
middleware system and the Grid customer) try to agree
on the contents of an SLA, which defines the
requirements of the customer's job.
 In the next phase, the pre-runtime phase, the
validity period of the SLA has not actually started, the
system has to prepare itself for this new job. This
means, that the network has to be configured, the
assigned compute nodes have to be initialized and the
storage has to be provided.
 The main phase of operation is the runtime phase,
which starts at the beginning of the validity period of
the SLA. First, all input data is transferred from the
Grid customer to the compute resource, followed by the
computation of the job. At this, the HPC4U cluster

Fig. 2: Phases of operation in HPC4U

middleware has to ensure the compliance with all QoS
statements of the SLA. If the computation has finished,
result data will be transferred back to the customer
(stage out).
 After the validity period of the SLA has ended, the
job has terminated and all output data has left the
system, the post-runtime phase starts. In this phase the
system can be reconfigured to “normal” operation.

Negotiation: If the Grid user wants to negotiate on
resource usage with the HPC4U system, the user first
submits a negotiation request, which reaches the
HPC4U system via the upper layer interface. The
HPC4U system now decides if it wants to accept this
request, thus starting an SLA negotiation with the
requesting Grid user. If HPC4U declines the request, no
SLA negotiation will start. The reason for this
cancellation may be manifold, e.g. if the requestor is not
member of a trusted domain or if accounting is not
guaranteed. This decision process will be policy driven.
 In case the HPC4U system accepts the request, the
whole negotiation process is steered by a negotiation
module within the RMS, as only the RMS has a
complete sight about all resources and resource
conditions within the RMS administrative domain (AD).
Such an AD may be seen as a pool of resources with the
same set of policies, describing which resources are
visible and accessible. ADs may be nested. Policies may
also be tailored to specific user groups, e.g. providing
access only to users from specific domains.
 The negotiation module now initiates a new SLA
negotiation with the requesting Grid user by creating a
Grid service for this specific negotiation instance. This
Grid service creates a template for an SLA and returns
it to the requestor, together with the endpoint reference
of the recently instantiated negotiation Grid service.
The SLA template represents a general framework for
all further negotiation activities. It gives a formal
structure for negotiation as well as Service Description
Terms (SDT), which may be topic of the negotiation
process.
 The requestor now starts the SLA negotiation by
utilizing the received SLA template. He creates an SLA
request based on this template which specifies all his
resource and QoS requirements and transmits it back to
the HPC4U system.
 Now, the negotiation module of the RMS is in
charge of verifying the statements of the received SLA

J. Computer Sci., 2 (6): 550-557, 2006

 555

request. This is done in a first step by checking formal
requirements, e.g. constraints on available resources. If
static boundaries meet existing resource limits, the
negotiation module checks in a second step dynamical
aspects of the received SLA request. This affects the
question, whether or not the specified and requested
resource is available at the requested quality at the
requested time frame.
 According to the specifications of the SLA request,
the storage and network subsystem are included in this
process. In contrast, the availability is a static property
of a cluster node. The cluster configuration of the
HPC4U system specifies, whether or not the
checkpointing subsystem is available on given nodes.
Hence, the RMS can determine without any
communication to the checkpointing subsystem, if
checkpointing mechanisms can be provided.
 It is important to stress, that the specific requests on
QoS can not be regarded isolated from each other. In
fact, they interfere each other. In case of a deadline
bounded job, the storage subsystem has to provide
additional storage capacity for saving process
checkpoints. QoS requests even interfere within a single
subsystem: in case more than one storage snapshots
shall be saved, the storage capacity has to be aligned.

Pre-runtime phase: Each negotiated SLA has a unique
identifier which is used as reference in further
communication. In case of a successful negotiation
procedure, the SLA is saved in the SLA management of
the HPC4U middleware system.
 As the HPC4U system has an SLA-aware
scheduler, the contents of all negotiated SLAs are part
of the scheduling process. Hence, HPC4U awaits the
incoming job and assigns appropriate resources within
the HPC4U domain. To utilize these resources, further
communication concerning the SLA-bounded job
always refers to the unique identifier of the negotiated
SLA.
 At the moment where the new job enters the system
(this does not only imply the executable of the
application that should be executed, but also all input
data required by this application), the components
already have to be fully prepared for this new job. This
process of initialization is denoted as pre-runtime phase.
 It is important to consider this phase in the
scheduling process, as tasks may be time consuming
due to their complexity or communication intensity.
This task may range from the provision of specific
compilers up to an entire node environment.
 Comprising, in this phase the RMS initializes the
environment for the job execution, i.e. the configuration
of local cluster nodes, the network subsystem and the
storage subsystem. The emphasis of this process is on
establishing a fault tolerant environment, according to
the specifications of the SLA.

Runtime phase: After this first phase, the basic
environment of the job has been established. Now, the
stage-in of process data can proceed. Stage-in is
performed by mechanisms at the level of Grid
middleware, e.g. the Globus toolkit. Hence, the HPC4U
system does not have to provide these mechanisms on
its own. These stage-in mechanisms ensure that the
process will find its data at runtime. The HPC4U system
only has to ensure that storage capacity is available at
the agreed quality and quantity.
 Once all necessary data has been staged in, the
computation of the job may start. The main task of the
HPC4U cluster middleware is to ensure that all
resources are available as agreed in the SLA during
runtime. Therefore monitoring mechanisms have to be
used, checking if all resources are operating in normal
mode. If resource outages occur (e.g. dropout of a
compute node), appropriate failure tolerance
mechanisms have to be enforced. Due to adherence
reasons with all SLAs, it is of vital importance, that
resource failures are detected as soon as possible.
 For this purpose, the RMS has to checkpoint the
process, respectively snapshot the storage partition in
regular intervals. At this, it utilizes the mechanisms of
the underlying HCP4U subsystems. Normally, the
checkpointing will be executed together with
snapshotting, so that consistency between process and
its storage is ensured. However, both mechanisms can
be executed separately, if required. The time and
frequency of checkpoints/snapshots is calculated by the
RMS, depending on the contents of the agreed SLA.
 These checkpoint and snapshot datasets will be
used in case of failures for process migration.
Depending on the type of migration (e.g. migration
within the same cluster system, migration to a different
cluster within the same AD, or migration to a cluster
system somewhere in the Grid) specific requirements
arise. If migrating within a single cluster system, only
the checkpoint dataset has to be moved to a suitable
spare resource. In other scenarios, compatibility,
security and enforcement of policies have to be
observed.
 The RMS may use its checkpointing and
snapshoting subsystems also in case of anticipated
failures. If the monitoring subsystem of the RMS
detects such an anticipated failure, the running job may
be checkpointed before a resource outage actually
occurs. The checkpoint/snapshot dataset then may be
transferred to a suitable spare resource, where the job
may resume. This way, no computational results are
lost, since the job is transferred to spare resources,
before a resource outage would have caused the loss of
results.
 Checkpoint/snapshot mechanisms are also valuable
instruments for increasing the efficiency of system
management. If the administrator of a resource decides

J. Computer Sci., 2 (6): 550-557, 2006

 556

to switch off a compute resource (e.g. due to
maintenance reasons), he may manually trigger the
checkpoint of the application running on this node.
Thus, the administrator benefits from these mechanisms
by means of increased flexibility. He neither has to
align his maintenance schedule to the current load
profile of his machine, nor does he have to block
resources for specific maintenance intervals. This
results in a higher utilization of the machine, as the
machine is not blocked and can be used by arbitrary
jobs, even if these jobs can not be finished before the
planned maintenance interval. As a matter of fact,
maintenance is not the only thinkable reason for
manually triggering the checkpoint/snapshot of a
running job.
 These mechanisms may also be used regularly by
the RMS to increase the system utilization. With these
mechanisms the RMS may use free slots between
reservations for computing other (low priority) jobs,
even if this slot is not sufficient for job completion. If
such a low priority job is running on a gap timeframe, it
may be checkpointed shortly before the end of the gap
timeframe. This way, the resource is available for the
reserved timeframe. As soon as another gap is available
again, the low priority job will be restarted again within
this new gap timeframe. This procedure may also be
used for running jobs without runtime estimation. Such
jobs can be checkpointed and resumed as long as job
completion is achieved. However, the effort for
checkpointing/snapshotting and resuming has to be kept
in mind. The smaller a used timeframe is, the less useful
it is. Normal or high priority jobs without runtime
estimation, which should be run to completion, should
run on reserved timeframes, which have a reasonable
size, so that the overall progress of the job can be
assured.
 The primary goal of all fault tolerance mechanisms
is the successful completion of a job. The result of a
successfully completed job normally is a result dataset.
This dataset has to be transferred back to the Grid
customer, the owner of the completed job. This transfer
is done in the stage-out process, which concludes this
phase. Just like the stage-in process, the stage-out
process will be performed by mechanisms of Grid
middleware.

Post-runtime phase: The post-runtime phase is the
last step of resource consumption. At this point, the
computation of the job has finished and all result data
has been transferred back to the service client. This
phase is the counterpart of the pre-runtime phase, since
specific configuration of the cluster system may have to
be revoked. This reconfiguration does not only affect
the configuration of the compute nodes, but also the
configuration of the storage or network subsystem.
Furthermore checkpoint/snapshot datasets can be

removed, since the job has been completed and these
datasets are not required anymore.
 Another important task of the post-runtime phase is
the analysis of the job runtime. As all monitoring data is
available at this point, a concluding analysis of these
logs can be accomplished. Goal of these checks is to
determine if all specifications of the SLA have been
fulfilled. In case of resource outages, it has to be
checked if the RMS has reacted as agreed. It is
important to emphasize that the HPC4U cluster
middleware is not able to agree the completion of a job,
since a job may also a fail due to failures within the
application. HPC4U can only assure the provision and
utilization of certain mechanisms to improve the overall
QoS level for the respective job.

CONCLUSION

 In this study we have outlined the basic ideas and
components of an HPC4U cluster middleware system.
HPC4U's main components are the SLA-aware RMS
and the subsystems for realizing fault tolerance on
process, storage and network.
 The goal of the HPC4U project is to provide an
application-transparent and software-only solution of a
reliable RMS. It will allow the Grid user to negotiate on
Service Level Agreements, which will be realized by
means of process and storage checkpointing and other
sophisticated mechanisms. By this, the HPC4U cluster
middleware will be an important building block for
realizing future Next Generation Grids.
 However, the HPC4U solution will not only
passively accept resource requests from Grid users, it
will also act as an active Grid component. If the HPC4U
system can not compensate resource outages, so that the
fulfillment of agreed SLAs is endangered, it may
request the Grid for suitable spare resources. If such
resources are found, the job will be transparently
migrated. This way, available Grid resources are used
for further improving the level of Fault Tolerance.
 Currently the HPC4U project is within the second
of four technological workpackages. This workpackage
addresses the first of three major steps in building up
this system, namely the realization of the needed fault
tolerance extensions to storage, communication and
system software in a single node environment. The
development and implementation of these basic
mechanisms serve as a fundament for merging single
nodes into an Intranet Grid and then for including the
Intranet Grid into the world wide Grids. The core tasks
in this workpackage are related to preparing the
building blocks for a grid-wide job migration and have
the main goal, to integrate the job checkpointing with
the storage and resource management component.
Furthermore, a RMS monitoring mechanism will collect
information about the available resources and their
status and publish this via RMS.

J. Computer Sci., 2 (6): 550-557, 2006

 557

 The consistent realization of this vertical approach
is based on existing software solutions of the HPC4U
partners. A first prototype implementation of our
architecture has already been finished. It enables the
user to request for a fault tolerant handling of his single-
node running jobs. The HPC4U system starts such a job
within a virtual bubble, using the subsystems for
transparent checkpoint and migration within the same
cluster system. Ongoing work within HPC4U focuses
on providing checkpointing and migration also to
parallel-node jobs and the realization of inter-cluster
Grid migration.
 Within the scope of the succeeding workpackage
the existing FT mechanisms of the HPC4U system will
be extended to multi-node/Intranet Grid environments
on the one hand and to distributed running multi-node
jobs on the other hand. The extension to Intranet Grids
means, that the RMS must find suitable resources within
this domain as a target for the job migration. This
includes the suitability of the software and hardware
architecture, the availability of the required resources
and the compliance with the existing SLAs. Thus, for
each migrated job, a start time for resumed processing
will be assigned in a way that the given deadline can be
reached, if the process duration information supplied by
the user is correct.
 The second extension to multi-node jobs is a large
scientific challenge, as already existing mechanisms are
limited to single-node jobs. The migration of multi-node
jobs affects the checkpointing, migration and restart
mechanisms on job-, storage- and communication-level,
which must be able to deal with the specific
characteristics of a multi-node job. The RMS has to be
capable of handling multi-node jobs, since new
requirements arise for compatibility, portability and
migration. The HPC4U system resulting of this
workpackage will be capable of cross-border migration,
allowing an RMS to migrate jobs on resources within
the own administrative domain or over multiple
administrative domains. This will further increase the
Fault Tolerance, as (temporarily) HW/SW/Network
failures can be compensated with a higher probability,
as the pool of appropriate resources is significantly
enlarged by all cross-border resources.

REFERENCES

1. Bal, H. et al., 2004. Next generation grids 2:

Requirements and options for european grids
research 2005-2010 and beyond.
ftp.cordis.lu/pub/ist/doc/ngg2_eg_final.pdf.

2. Sahai, A. et al., 2002. Specifying and monitoring
guarantees in commercial grids through SLA.
Internet Systems and Storage Laboratory. HP
Laboratories Palo Alto, Tech. Rep. HPL 2002-324.

3. Burchard, L.-O. et al., 2004. The virtual resource
manager: An architecture for SLA-aware resource
management. 4th Intl. IEEE/ACM Intl. Symp. on
Cluster Computing and the Grid (CCGrid),
Chicago, USA.

4. Highly Predictable Cluster for Internet Grids
(HPC4). EU-funded project IST-511531,
http://www.hpc4u.org.

5. UNICORE Forum e.V. http://www.unicore.org.
6. Globus Alliance: Globus Toolkit.

http://www.globus.org.
7. Global Grid Forum. http://www.ggf.org.
8. GGF Open Grid Services Architecture Working

Group (OGSA WG), 2003. Open Grid Services
Architecture: A Roadmap. http://www.
ggf.org/ogsa-wg.

9. Foster, I. et al., 1999. A distributed resource
management architecture that supports advance
reservations and co-allocations. 7th Intl. Workshop
on Quality of Service (IWQoS), London, UK.

10. Czajkowski, K. et al., 2002. SNAP: A protocol for
negotiating service level agreements and
coordinating resource management in distributed
systems. Job Scheduling Strategies for Parallel
Processing. 8th Intl. Workshop, Edinburgh,
U.S.E.D.G. Feitelson, L. Rudolph, Ed..

11. MacLaren, J. et al., 2002. Towards service level
agreement based scheduling on the grid. 14th Intl.
Conf. on Automated Planning and Scheduling
(ICAPS04), Whistler, B.C., Canada.

12. Heine, F., M. Hovestadt and O. Kao, 2004.
HPC4U: Providing highly predictable and SLA-
aware clusters for the next generation grid. 4th
Cracow Grid Workshop, Cracow, Poland.

13. Yarmolenko, V. et al., 2005. SLA based job
scheduling: A case study on policies for negotiation
with resources. 4th All Hans Meeting, Nottingham,
UK.

14. Andrieux, A. et al., 2004. Web services agreement
specification (WS-Agreement). http://www.
gridforum.org/Meetings/GGF11/Documents/draft-
ggf-graap-agreement.pdf.

15. Czajkowski, K. et al., 2004. The WS-resource
framework. http://www.globus.org/wsrf/specs/ ws-
wsrf.pdf.

16. Condow Project. http://www.cs.wisc.edu/condor.
17. Berkeley Lab Checkpoint/Restart. http://ftg.lbl.

gov/CheckpointRestart.shtml.
18. Dolphin Interconnect Solutions Inc., 2006.

http://www. dolphinics.com/products/.

