
Journal of Computer Science 2 (6): 513-520, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author : Umberto Villano, Università del Sannio
513

Predictive Autonomicity of Web Services in the MAWeS Framework

1Emilio P. Mancini, 2Massimiliano Rak, 2Roberto Torella and 1Umberto Villano

1RCOST and Dipartimento di Ingegneria, Università del Sannio, Italy
2Dipartimento di Ingegneria dell’Informazione, Seconda Università di Napoli

Abstract: In Web Services designs classical optimization techniques are not applicable. A possible
solution to guarantee critical requirements is the use of an autonomic architecture, able to auto-
configure and to auto-tune. This study presents MAWeS (MetaPL/HeSSE Autonomic Web Services), a
framework whose aim is to support the development of self-optimizing predictive autonomic systems
for Web service architectures. It adopts a simulation-based methodology, which allows to predict
system performance in different status and load conditions. The predicted results are used for a
feedforward control of the system, which self-tunes before the new conditions and the subsequent
performance losses are actually observed.

Key words: Autonomic, self-optimization, web services, performance prediction, simulation

INTRODUCTION

 The use of Web Services architectures is becoming
a customary approach for the development of open,
large-scale interoperable systems[1–5], and there are
many examples of “working” solutions. But reliability,
availability, performance and security of these
architectures are completely open issues. In Web
Services designs, due to architecture transparency,
classical techniques for system optimization (such as
ad-hoc tuning, performance engineered software
development, ...) are not applicable. In practice, the
only solution to guarantee critical requirements seems
to be the use of an architecture able to auto-configure
and to auto-tune, until the given requirements are met.
 Autonomic computing[6-9] whose name derives from
the autonomic nervous system, aims to bring automated
self-management capabilities into computing systems.
Autonomic capabilities are usually classified as:
* Self-configuring the system can dynamically adapt to

changing environments;
* Self-healing the system can discover, diagnose and

react to disruptions;
* Self-optimizing the system can monitor and tune

resources automatically;
* Self-protecting the system can anticipate, detect,

identify and protect itself against threats.
 Even if currently there are many simple examples
of application of autonomic concepts, and a toolkit for
building autonomic systems is available[10,11], all known
solutions are fairly “young” and rather unstable. The
majority of these solutions are based on reactive
autonomicity, or, stated another way, on feedback
control. The continuous analysis of system logs and/or
direct monitoring point out configuration or
performance problems. The system automatically reacts

applying new configurations or tuning policies.
Recently a new approach[12] based on predictive
autonomicity, i.e., on feedforward control, has been
proposed. In this case, the system detects and forecasts
variations in parameters and their impact on
performance, and self-tunes, anticipating the need.
 In this study we describe MAWeS (MetaPL/HeSSE
Autonomic Web Services), a framework whose aim is
to support the development of self-optimizing
predictive autonomic systems for Web Services
architectures. It adopts a simulation-based
methodology, which allows to predict system
performances in different status and load conditions.
The predicted results are used for a feedforward control
of the system, which self-tunes before the new
conditions and the subsequent performance losses are
actually observed.

METAPL/HESSE METHODOLOGY

 HeSSE (Heterogeneous System Simulation
Environment) is a simulation environment that allows
the user to simulate the performance behavior of a wide
range of distributed systems for a given application,
under different computing and network load conditions.
 The HeSSE compositional modeling approach
makes it possible to describe Distributed Heterogeneous
Systems by interconnecting simple components. Each
component reproduces the performance behavior of a
section of the complete system at a given level of detail.
A HeSSE component is basically an object, hard-coded
with the performance behavior of a section of the whole
system. More detailed, each component has to
reproduce both the functional and temporal behavior of
the subsystem it represents. In HeSSE, the functional
behavior of a component is the service set exported to

J. Computer Sci., 2 (6): 513-520, 2006

 514

the other components. So, connected components can
ask other components for services. The temporal
behavior of a component describes the time spent
servicing.
 HeSSE uses traces to describe applications. When
the application is not available, e.g., it is still being
developed, they can be generated using prototypal
languages. In the past years, we defined an XML-based
meta-language for parallel programs description,
MetaPL[13,14]. It is language independent, and can
support different programming paradigms or
communication libraries. The core MetaPL notation can
be extended through Language Extensions (XML
DTDS), which introduce new constructs into the
language. Starting from a MetaPL program description,
a set of extensible filters makes it possible to produce
different program views, among which are the trace files
that can be used to feed the HeSSE simulation engine.
Among available MetaPL extensions, are ones that
enable the description of remote services interfaces,
client calls to remote services and stub creation. The
detailed description of the MetaPL approach to program
description, and of the trace generation process, is out
of the scope of this study and can be found in references
14 and 15.

MAWES FRAMEWORK

 HeSSE and MetaPL allow users to perform system
performance analysis without actual execution of the
application on the target environment. In previous
studies, we have presented the whole development
procedure, the validation of the results and their
analysis, showing pros and cons of the approach[13-17].
In this study we tackle a new problem, i.e., how to
automatize the simulation and performance prediction
process, in order to develop self-optimization
autonomic systems for Web Services architectures.
 In the systems which are the object of this study,
i.e., in distributed systems running Web Services
applications, it is possible to exploit self-optimization
techniques at three different, non exclusive, levels:
* Server Level the autonomic system affects the

underlying distributed system, i.e., the optimization
actions are performed at the operating system and
network levels;

* Service Provider Level the autonomic system affects
the service provider, i.e., the optimization actions
have impact on the tuning of parameters and on the
workload management policies of each offered
service;

* Application level the autonomic system affects user
applications, modifying their resource use and the
order of the actions they perform.

The stress in this study will be on the use of self-
optimization techniques at application level.
 As mentioned before, the solution we have devised
for the development of autonomic Web Services
applications hinges on the use of the MAWeS
framework, which (partially) hides the presence of a
simulation environment exploited through a web service
interface.
 The MAWeS framework (Fig. 1) is structured in
three layers, as follows:
* Frontend made up of the software modules used by

final users to access the MAWeS services;
* Core composed of the software and the services that

manage MetaPL files and make optimization
decisions;

* WS interface the set of Web Services used to obtain
simulations and predictions through MetaPL and
HeSSE.

 In its current implementation, the MAWeS
Frontend provides a standard client application
interface, MHAWeSclient, which has to be extended
by developers with their actual application code. The
MHAWeSclient client accepts as input a MetaPL file
describing the application code. It should be explicitly
noted that the final objective of our research is
automatic generation of application code from a skeletal
MetaPL description. However, currently the writing of
application code from its high-level MetaPL description
is still performed manually.
 The MAWeS Core exploits environment services
(i.e. the services offered by the environment to monitor
and to manage itself) and the MetaPL/HeSSE Web
Services interface using the application information
contained in the MetaPL description to find out optimal
execution conditions. It is a software unit provided both
as a web service and integrated into the
MHAWeSclient.
 The MetaPL/HeSSE WS interface, thoroughly
described in the following section, defines a set of
services that make it possible to automatize the
methodology application.
 The sequence of events and calls that allow the
execution of an application with optimal values of
parameters is also shown in Fig. 1.
 The MAWeS client submits the MetaPL
application description to the MAWeS core (1). Then
the services of the framework automatically find out the
set of simulations needed, perform them (2,3,4), and
return the set of optimal parameters for the target
application (5). Finally, MHAWeSclient starts the
application code, passing to it the set of optimized
parameters (6).

J. Computer Sci., 2 (6): 513-520, 2006

 515

MAWeSclientMAWeSclient MAWeS CoreMetaPL/HeSSE
WS Interface

MAWeS CoreMAWeS Core

HeSSEws

MetaPLws

External services
Environment

Services

Frontend Core WS Interface

External services
Target

Services

1. submit MetaPL
description

Repeat

2. create the project

3. generate Traces

4. simulate
5. return
optimal

parameters

6. execute application

User
Developed
Application

Interface
Unit

Decision
Unit

MetaPL
Description

MAWeS
Interface

M/H
Client

Fig. 1: The MAWeSclient and the MAWeS services

 The critical point of the whole autonomic
optimization procedure is to point out the set of
parameters that mostly affect performance, in order to
find automatically the best application configuration.
New MetaPL extensions have been developed for this
purpose. These will be described in the following. The
following sections will describe in detail each of the
three layers of the framework, starting from the lowest
level services (WS interface), to the highest level of
abstraction (Frontend).

METAPL AND HESSE WEB SERVICES
INTERFACE

 MetaPL descriptions and HeSSE simulation make
it possible for system and program developers to
identify performance bottlenecks and to tune both the
system and the final applications. Even if these tools
can be used through a command-line or graphical
interface[17], we have developed a set of Web Services
that allow the user to perform the description,
simulation and analysis steps. This Web Service
interface can be exploited by developers, who want to
access the simulator and to perform analysis manually,
or by software tools such as the MAWeS core to
automatize the performance analysis process. In the
following, we will briefly describe the newly developed
Web Services interface.

HeSSEws: The input for HeSSE simulations is a set of
files, namely, configuration and trace files. The
simulator outputs log files containing all the events and
timings of the simulated model. Unlike in previous
versions of the simulator, currently the logs are
produced in XML format, which can be more easily
managed through automatic tools. The HeSSE Web
Service HeSSEws gives a good level of control over
the simulator through a number of methods that make it
possible to make a new directory into the Web Service
base folder and to create a file (mkDir,
createFile), to start the simulation using the
contents of a folder and to read the simulator output
(runSimulation, readOutput).

MetaPLws: MetaPL operates on a set of files, namely
MetaPL documents, schemas, filters and final views
(simulation traces are a particular type of view).
Therefore the MetaPL Web Service interface
components offer a set of services able to store, modify
and generate these documents. MetaPLws publishes the
Web Services applyFilter, which applies a filter to
a MetaPL document, and execute, which executes a
script (typically applying a sequence of filters). These
make it possible to implement the methodology outlined
in the previous Section.
 The system stores internally the set of DTDs,
Schemas, and XSLT files needed to validate or to
transform a MetaPL file, but it can also use public or
private (submitted by the user) repositories. The
applyFilter service accepts as input the MetaPL
file and the name of the filter to apply, and returns the
views generated by the filter.
 It is often necessary to apply multiple filters, thus
generating multiple output files. In these cases, it is
useful to resort to the execute service. This service
accepts as input a file attached to the SOAP message
that contains a compressed folder. The service extracts
the attachment, and gives the result to the software unit
that manages the script files (MetaFilter), which
interprets the script describing the actions to be
performed and executes them.

THE MAWES CORE

 The MAWeS Core is invoked by the MAWeS-
client, as previously shown in Fig. 1, in a way
completely transparent to the application. The core
contains all the autonomic “intelligence” of the
framework, in that it has the task to find the optimal
parameters for application execution. Each time that the
client calls the service, the MAWeS Core finds which
simulations are needed, generates all the traces required
for simulation and performs the simulations. Then, it
analyzes the results and chooses the optimal parameter
configuration.

 The MAWeS Core is structured in three modules, as
shown in Fig. 2.
* Interface this unit has the task to recover all the

information on the target application needed for
optimization. In particular, it extracts from the
MetaPL description of the application the MetaPL
autonomic extension tags and passes them to the
Decision unit;

* Decision this unit contains the intelligence of the
autonomic environment. It chooses the possible
values to evaluate, predicts the (future) system status,
defines the optimal optimization criteria, queries the
simulation engine through the M/H client, and makes
the final decisions;

* M/H client this unit executes the simulations and the
analysis defined by the decision unit, using the
MetaPL/HeSSE Web Service interface.

J. Computer Sci., 2 (6): 513-520, 2006

 516

MAWeS Core
MAWeS Core

Decision
Unit

M/H
Client

Interface
Unit Optimization

M odule

MetaPL

Optimization
Parameters

MetaPL,
Configuration Files
Script

Simulation
Results

M onitor
M odule

Fig. 2: The MAWeS Core structure

These modules are in turn described below.

The interface unit: The task of the Interface Unit is to
find all the parameters that may affect the application
performance and to pass this information to the
Decision Unit. In order to do so, it extracts from the
MetaPL application description all information that may
possibly be used to optimize the application. At least in
theory, optimization parameters could be automatically
extracted from MetaPL application description.
However, in the current implementation of the
framework, the user has to choose them manually.
 The Web Services MetaPL extensions allow the
description of service-oriented applications. Further
metalanguage extensions are needed to automatize the
self-optimization steps. MetaPL descriptions consist
essentially of code prototypes, enriched with task-to-
processor mapping (Mapping tag). The Autonomic
MetaPL extensions define new language elements for
this section. They introduce the Autonomic tag,
included in Mapping element, which describes the
target simulation configurations that can be used for
application execution.
 As mentioned before, the Autonomic MetaPL
extensions provide new tags to be included in the
Autonomic element:
* Parameter identifies a variable inside the

description that affects the overall performance, and
thus one whose optimal value has to be evaluated by
the framework. The (optional) attributes min and
max represent the minimum and maximum values the
variable can assume. In alternative, it is possible to
insert into the Parameter element content the list
of the values that the parameter can assume.

* Target identifies the output parameter adopted for
system optimization. In the MAWeS current
implementation, the only possible optimization target
is response time minimization, and hence the only
target of optimization is a minimization rule. Future
versions of the framework will also provide an
attribute to express alternative objective functions.

 The Core interface exposes its services to final user
as Web Services. Future implementations of the

framework may integrate it directly into the MAWeS
Frontend, moving the overhead from the server to the
client in order to reduce communication costs. In fact,
for the time being, the Core offers only a single service,
MAWeSoptimization, which starts the application
performance optimization procedure. The interface
receives the MetaPL description and extracts all the
information contained in the autonomic extensions, then
calls the MAWeS decision unit with the description and
the optimization data as parameters.

The decision unit: As mentioned before, the Decision
Unit contains all the framework autonomic intelligence,
and applies the optimization rules defined by the
framework administrator to optimize the target
applications by means of the feedforward approach
described in the introduction. More detailed, whenever
the Decision Unit has to make an optimization decision
(typical examples are when an application is launched,
or at periodic intervals in time), it queries the
underlying target system through a Monitoring Module.
This is interfaced to a distributed monitoring subsystem,
and returns the current system load (e.g., CPU load of
the component nodes, current network traffic, ...). This
information is used by the Decision Unit to predict the
future system load (in the two mentioned examples,
during the following application run, or during the next
time interval, respectively). The description of the
method used to foresee the load in a future interval in
time is out of the scope of this study. Roughly speaking,
it is possible to exploit previous knowledge to do so
(e.g., in systems where there is a typical load profile in
time), or to make predictions based on the current trend
of system load. Whatever the method used, the Decision
Unit optimizes the system before the new load condition
is observed, performing a set of simulations (through
the M/H client) to find the best operating condition in
the predicted load status. The optimization criteria used
are applied by a suitable sub-unit, the Optimization
Module.
 Independently of the load prediction method
adopted and of optimization criteria chosen, the unit
always works as follows:
* it obtains from the MAWeS Interface the

application MetaPL description and the list of
parameters to be optimized;

* it builds the application MetaPL description and
the simulator configuration files;

* it builds a set of metafilter scripts;
* it starts as many M/H clients as the number of

different simulations required;
* it collects all the simulation results, analyzes them

and finds the optimal parameter values.
 It should be explicitly noted that in order to build
the configuration files it is necessary to exploit the unit
intelligence, as described above. Stated another way,
finding the “useful” simulations to be performed

J. Computer Sci., 2 (6): 513-520, 2006

 517

requires the future load to be predicted, and the
optimization logic to be applied. All the simulations the
M/H module is asked for, are independent of each
other. Hence they can be executed as services on one, or
even on multiple MAWeS service providers.
 The modular structure of the Decision Unit, and the
use of a separate Optimization Module, promotes the
integration of new optimization criteria in the tool. For
simplicity's sake, in the exposition that follows we will
present a trivial optimization algorithm, based on full
factorial exploration of all the possible configurations.
In particular, we assume that each optimization
parameter Pi can assume only a finite number of values
Ni, and therefore a total of iN∏ distinct simulations

are to be performed. As this is the most inefficient
choice as far as the framework overhead is concerned (it
requires the highest number of simulations before an
optimization decision is made), it is worth pointing out
explicitly that:
* Due to the use of this approach, the overhead figures

that will be presented later can be considered (with
some caveats) a higher bound for actual framework
overheads;

* The factorial exploration of all possible configurations
is limited to the set of values explicitly enumerated in
the MetaPL description.

M/H client: The M/H (MetaPL/HeSSE) Client is a
software unit that implements a client for the
MetaPL/HeSSE web service interface. Its
implementation is threaded, in that each client instance
runs as a new thread. This makes it possible for the
MAWeS core to start in parallel as many M/H clients as
are necessary. Each client invokes the services needed
to perform the simulation and analysis for each different
configuration, and gets the corresponding results. The
Decision Unit collects all the results, compares them
and makes its decisions.

MAWES FRONTEND

 The current implementation of the MAWeS
Frontend is composed of three classes, which should be
extended by the final user, and enriched with the
application MetaPL description. From the point of view
of the application developer, the whole development
process consists of the following steps:
* description in MetaPL of the application and of the

application parameters;
* selection of needed services and of their service

provider;
* generation of application code from the MetaPL

description.
 It should be noted once again that the parameters to
be optimized and the optimization target are to be
explicitly declared by the user. We aim to automatize

this step in the future, developing filters able to extract
this information from a MetaPL description.
 Once the code has been developed, the developer
just starts the application, which, in a completely
automated way, calls the framework services. These
evaluate optimal values of the parameters, and run the
re-configured and optimized application on the target
system.

MAWES FRAMEWORK CASE STUDY

 The proposed framework lets Web Services
oriented application self-tune, without any intervention
from the service provider or from the final user. The
approach works independently of the presence of a local
or global scheduler, even if it can take their presence
into account. The main drawback linked to the presence
of the autonomic framework is the introduced overhead.
In cases where the framework is used to launch new
instances of an application with optimized parameters
adapting to the (expected) system load, as in the
example proposed below, this leads to an increase of
application startup time. This is due to the time spent in
simulation and analysis before the (optimized)
application instance can be executed.
 In order to evaluate the framework performance,
we present here a simple case study, based on a service-
oriented tool for log file analysis. In our tests, we will
measure the application response times, comparing the
results obtained with and without the autonomic
framework. Then we will also assess the impact of the
choice of the feedforward approach for autonomic
optimizations.

The LogAnalysis application: The Log Analysis
application is a simple but realistic case study that
shows how the framework affects the application
execution performance. We have set up a web service
provider, a simple set of services, and a WS-based
application. The response time of the latter is the target
of the framework optimizations.
 The services exposed by the LogAnalysis server
make it possible to perform Apache log file analysis.
They are the following: getLogLength, which
returns the log file dimension (in lines),
getLogFragment, which accepts as parameters a
size and a position into the log file, and returns a
fragment of the log starting from the line given and of
the given size, and Unique, which accepts as
parameter a log file fragment and returns the IP
addresses of the web clients logged in the fragment.
 As regards the LogAnalysis client application, it
periodically (every T seconds) evaluates the number of
accesses of each web client (denoted by its IP address)
scanning the log file by means of the above-described
LogAnalysis services. The client can perform this

J. Computer Sci., 2 (6): 513-520, 2006

 518

operation in a single step, thus interacting with only one
LogAnalysis server, or in multiple steps (using the
getLogFragment service and calling the Unique
service on each fragment). In the second case, there can
be a sharing of load between multiple LogAnalysis
servers, all of which are provided with a copy of the
same Apache log. As the client application is
multithreaded, every fragment of the log file is
processed concurrently by a different thread.
 Every time that the log scansion is launched (i.e.,
every T seconds) the modulation of the number of
LogAnalysis client threads, of the number of available
LogAnalysis servers and the assignment of clients and
servers, makes it possible to vary the load injected in
the compute nodes and in the network, and hence the
overall application response time. In the tests that will
be presented below, we assume that the only CPU and
network load present is the one generated (directly or
indirectly) by the LogAnalysis application. However,
the HeSSE simulation environment makes it possible to
take into account the presence of additional load
generated by other applications running concurrently
with the software system under analysis. It is worth
pointing out that studying the effect of these parameter
modulations is not trivial, not to mention finding
optimal values in every working condition (i.e., under
different compute nodes and network loads).
 The MetaPL description of the LogAnalysis client,
not shown here for brevity’s sake, explicitly points out
the optimization variables, which are:
* NumberOfProcesses the number of LogAnalysis

client threads. This parameter is linked to the
dimension of the log file fragments (each fragment
dimension is given by the total log file dimension
divided by the number of clients);

* NumberOfServers the number of LogAnalysis
servers;

* ServerChoicePolicy the LogAnalysis server
choice policy adopted. Each client thread can ask any
of the available servers for the services it needs.
Among all possible policies, we only consider here a
static and a dynamic one. Using the static policy, each
client thread asks for services always to the same
LogAnalysis server. The dynamic policy instead
assumes that a client thread asks to different
LogAnalysis servers.

 The LogAnalysisClient execution is performed as
follows. Every time that a log analysis scan is to be
launched (every T seconds), the client asks the
framework for the optimal number of client threads, of
LogAnalysis servers and for the server choice policy
(static or dynamic) to be used. The framework executes
a set of preliminary simulations to find the optimal
value for the described parameters in the forthcoming

environmental conditions (compute node loads,
network traffic), predicted for the next application run.
The LogAnalysis client receives this information and
starts the log analysis using optimal parameters.
 The strong points of LogAnalysis as test
application are that it is tunable using only application-
dependent parameters, and that the repetitive nature of
the log scansions performed allows its adaptation to
system load without any run-time reconfiguration.

Framework performance evaluation: In order to
evaluate the performance of the autonomic framework,
we have performed a wide number of tests where
multiple instances of the LogAnalysis client application
are launched. As mentioned above, each of these
instances performs a log scansion every T = 240
seconds. We assume that all the compute and network
load is directly or indirectly generated by the
LogAnalysis clients (i.e., the impact of further active
sources of load is negligible), and that the log scansions
generated by the active clients can be considered
synchronized (i.e., they start at approximately the same
time). Under these assumptions, a variation of system
load can be emulated by varying the number of active
LogAnalysis clients. For testing purposes, we will use
the reference system load profile shown in Fig. 3 (solid
line). At successive steps in time (the interval between
two steps is equal to T) the number of active
LogAnalysis clients varies according to the diagram,
thus varying the system load. In order to get results that
can be easily interpreted, we assume that the load
prediction made by the Decision Unit is the one shown
with the dotted curve in the same diagram. The
predicted and actual loads are almost always very
similar, with the exception of the time steps 12 and 13
(slight misprediction), and of the steps between 19 and
22, where a completely wrong prediction is purposely
used to study its effect on performance. In any case, the
only measured result will be the mean response time of
all active clients, for a single log scansion.
 The environment used to test the application is the
Orion Cluster, at the Second University of Naples. The
cluster, based on the Rocks Linux Distribution, is
composed of a front-end (dual Intel Xeon 2.8 GHz) and
a blade system with 7 compute nodes (dual Xeon 2.8
GHz). During the tests, we assign only one role to each
compute node. Hence each node can exclusively be or a
generic service provider (provider that offers the
services used by the target application), or a MAWeS
server (provider that offers the MAWeS services), or a
client (on which the application client is executed). In
the whole test environment there can be multiple servers
(of every type) and clients.

J. Computer Sci., 2 (6): 513-520, 2006

 519

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Execution step

N
um

be
r
of

 C
lie

nt
s

Reference

Predicted

Fig. 3: Reference and predicted load profiles

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Execution step

R
es

po
ns

e
Ti

m
e

(m
s.

)

Best_Mean

Best_Unloaded

Autonomic

Fig. 4: Autonomic response time vs. two fixed

configurations

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Execution step

R
es

p
on

se
 T

im
e

(m
s.

)

Feedback

Autonomic

Fig. 5: LogAnalysis response time, feedforward vs.

feedback

 In Fig. 4, the LogAnalysis application autonomic
response time (for a single log scansion) is compared to
the behavior found for the same application in the
absence of autonomic optimizations, i.e., using a fixed
parameter configuration at all time steps and for all load
conditions. These two “reference” configurations
correspond to values of the optimization parameters
NumberOfProcesses, NumberOfServers and
ServerChoicePolicy (4, 4, static) and (1, 4,
dynamic). These two configurations are denoted by
Best_Unloaded and Best_Mean, as they correspond to
the parameter set able to obtain the shortest response
time in an completely unloaded environment, and to the
one that leads to the shortest mean response time
throughout all the tested load conditions, respectively.
The diagram shows that whenever reasonably good load
predictions are used for optimizations, the autonomic
version of the application performs much better than
Best_Unloaded, with response times very close to the
static configuration that a posteriori appears to be the
best on the average (Best_Mean). Stated another way,
the overhead introduced by the framework is negligible.
Even in the presence of a completely mispredicted load,
the autonomic performance is acceptable.

 As mentioned earlier in this study, a distinctive
feature of our proposal is the use of a feedforward
approach for autonomic optimizations. The framework
exploits the simulation tools to find the best working
condition for the system not in the current status, but in
the one predicted for the future, anticipating the need.
We have compared the results obtained using our
feedforward method to the ones that could be obtained
exploiting feedback data for optimizations. In the latter
case, the Decision Unit makes its optimizations using
the current system state, not the predicted one. Fig. 5
shows the LogAnalysis application response time using
feedforward and feedback approaches, under the same
load conditions and predictions (Fig. 3). The diagram
shows that the feedback-based approach performs better
than the feedforward only when the load is
mispredicted.

RELATED WORK

 Most of the times, autonomic computing models
rely on some sort of feedback control mechanism to
provide self-configuration and/or self-optimization
capabilities[5]. Following up the seminal study that
firstly introduced the use of predictive autonomicity[12],
further work based on feedforward control (or on the
joint use of feedforward and feedback) is currently
being developed[9].
 To authors' knowledge, the adoption of simulation-
based tools in the context of autonomic computing,
which is the main contribution of this study, has never
dealt with before. However, it should be pointed out
that the use of simulation for Web Services, and of Web
Services interfaces to simulation, is described in
reference 3. The necessity of the addition of autonomic
behavior to web services and to the underlying
messaging substrate for reliability purposes is instead
dealt with in reference 16 and 18, respectively.

RESULTS AND CONCLUSION

 In this study we propose an innovative approach to
development of self-optimizing autonomic systems for
Web Services architectures, based on the adoption of
simulation for performance prediction and feedforward
control. We have developed a set of web services that
enable web applications to obtain performance
predictions using the MetaPL/HeSSE methodology. The
web service interface to the simulation environment has
made possible the implementation of a framework for
the development of autonomic self-optimizing
applications. The framework exports a standard client
application to final users, which enables the interfacing
of web applications to the simulation environment.
MetaPL Web Services and autonomic extensions enable
the user to enrich an existing application with a model
that can be simulated to obtain performance predictions.

J. Computer Sci., 2 (6): 513-520, 2006

 520

The web application thus obtained runs, queries the
framework for optimal parameter values, and then
executes in an optimized way.
 The proposed framework opens a new way for the
development of autonomic systems that not only query
the local environment for self-optimizing information,
but also predict future load and network conditions,
preparing it to well-tuned executions under in the
future. We are currently involved in an expansion of the
framework described here. The short-term objective is
to add new, more complex, optimization rules for
parameters. Successively, we will test the validity of the
approach applying the optimizations also at service and
server levels.

REFERENCES

1. Balasubramanian, V. and A. Bashian, 1998.

Document management and web technologies:
Alice marries the Mad Hatter. In Commun. ACM,
41: 107-115, ACM Press.

2. Booth, D., H. Haas, F. McCabe, E. Newcomer, M.
Champion, C. Ferris and D. Orchard, 2004. Web
Services Architecture. W3C Web Services
Architecture Working Group.

3. Chandrasekaran, S., J.A. Miller, G. Silver, I.
Arpinar and A.P. Sheth, 2003. Performance
analysis and simulation of composite web services.
Electronic Markets, 13: 120-132, USA. Routledge.

4. Chandrasekaran, S., G. Silver, J.A. Miller, J.
Cardoso and A.P. Sheth, 2002. Web service
technologies and their synergy with simulation.
Proc. Winter Simul. Conf., pp: 606-615, San Diego
(CA), USA. ACM.

5. Diao, Y., J.L. Hellerstein, S. Parekh and J.P. Bigus,
2003. Managing web server performance with
AutoTune agents. IBM Syst. J., 42: 136-149. IBM
Corp.

6. Birman, K.P., R. van Renesse and W. Vogels,
2004. Adding high availability and autonomic
behavior to web services. Proc. 26th Intl. Conf. on
Softw. Eng., pp: 17-26, Edinburgh, UK. IEEE
Computer Society.

7. IBM Corp., 2004. An architectural blueprint for
autonomic computing. IBM Corp.

8. Kephart, J.O. and D.M. Chess, 2003. The vision of
autonomic computing. Computer, 36: 41-50, IEEE
Press.

9. Zhang, Y., A. Liu and W. Qu, 2004. Software
architecture design of an autonomic system.
Proc. 5th Australasian Workshop on Softw. and
Syst. Arch., pp: 5-11, Melbourne, Australia.

10. Jacob, B., S. Basu, A. Tuli and P. Witten, 2004. A
First Look at Solution Installation for Autonomic
Computing. IBM Corp.

11. Jacob, B., R. Lanyon-Hogg, D.K. Nadgir and A.F.
Yassin, 2004. A Pratical Guide to IBM Autonomic
Computing Toolkit. IBM Corp.

12. Russell, L.W., S.P. Morgan and E.G. Chron, 2003.
Clockwork: A new movement in autonomic
systems. IBM Systems J., 42: 77-84, IBM Corp..

13. Mazzocca, N., M. Rak and U. Villano, 2001.
MetaPL a notation system for parallel program
description and performance analysis parallel
computing technologies. LNCS, 2127: 80-93,
Berlin (DE). Springer-Verlag.

14. Mazzocca, N., M. Rak and U. Villano, 2002. The
MetaPL approach to the performance analysis of
distributed software systems. Proc. of 3rd Intl.
Workshop on Softw. and Perf., pp: 142-149, IEEE
Press.

15. Mancini, E., N. Mazzocca, M. Rak, R. Torella and
U. Villano, 2005. Performance-driven development
of a web services application using
MetaPL/HeSSE. Proc. 13th Euromicro Conf. on
Par., Distr. and Network-based, pp: 12-19, Lugano,
CH.

16. Mazzocca, N., M. Rak and U. Villano, 2000. The
transition from a PVM program simulator to a
heterogeneous system simulator: The HeSSE
project. LNCS, 1908: 266-273, Berlin (DE).
Springer-Verlag.

17. Mazzocca, N., M. Rak, R. Torella, E. Mancini and
U. Villano, 2003. The HeSSE simulation
environment. Proc. European Simulation and
Modelling Conf., pp: 270-274, Naples, Italy.

18. Fox, G., Pallickara, S., Pierce, M. and D. Walker,
2003. Towards dependable grid and web services.
Ubiquity, 4: 25, 3-13. ACM Press.

