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Abstract: In Web Services designs classical optimization techniques are not applicable. A possible 
solution to guarantee critical requirements is the use of an autonomic architecture, able to auto-
configure and to auto-tune. This study presents MAWeS (MetaPL/HeSSE Autonomic Web Services), a 
framework whose aim is to support the development of self-optimizing predictive autonomic systems 
for Web service architectures. It adopts a simulation-based methodology, which allows to predict 
system performance in different status and load conditions. The predicted results are used for a 
feedforward control of the system, which self-tunes before the new conditions and the subsequent 
performance losses are actually observed.  
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INTRODUCTION 

 
 The use of Web Services architectures is becoming 
a customary approach for the development of open, 
large-scale interoperable systems[1–5], and there are 
many examples of “working” solutions. But reliability, 
availability, performance and security of these 
architectures are completely open issues. In Web 
Services designs, due to architecture transparency, 
classical techniques for system optimization (such as 
ad-hoc tuning, performance engineered software 
development, ...) are not applicable. In practice, the 
only solution to guarantee critical requirements seems 
to be the use of an architecture able to auto-configure 
and to auto-tune, until the given requirements are met. 
 Autonomic computing[6-9] whose name derives from 
the autonomic nervous system, aims to bring automated 
self-management capabilities into computing systems. 
Autonomic capabilities are usually classified as:  
* Self-configuring the system can dynamically adapt to 

changing environments; 
* Self-healing the system can discover, diagnose and 

react to disruptions; 
* Self-optimizing the system can monitor and tune 

resources automatically; 
* Self-protecting the system can anticipate, detect, 

identify and protect itself against threats. 
 Even if currently there are many simple examples 
of application of autonomic concepts, and a toolkit for 
building autonomic systems is available[10,11], all known 
solutions are fairly “young” and rather unstable. The 
majority of these solutions are based on reactive 
autonomicity, or, stated another way, on feedback 
control. The continuous analysis of system logs and/or 
direct monitoring point out configuration or 
performance problems. The system automatically reacts 

applying new configurations or tuning policies. 
Recently a new approach[12] based on predictive 
autonomicity, i.e., on feedforward control, has been 
proposed. In this case, the system detects and forecasts 
variations in parameters and their impact on 
performance, and self-tunes, anticipating the need. 
 In this study we describe MAWeS (MetaPL/HeSSE 
Autonomic Web Services), a framework whose aim is 
to support the development of self-optimizing 
predictive autonomic systems for Web Services 
architectures. It adopts a simulation-based 
methodology, which allows to predict system 
performances in different status and load conditions. 
The predicted results are used for a feedforward control 
of the system, which self-tunes before the new 
conditions and the subsequent performance losses are 
actually observed. 
 

METAPL/HESSE METHODOLOGY 
 

 HeSSE (Heterogeneous System Simulation 
Environment) is a simulation environment that allows 
the user to simulate the performance behavior of a wide 
range of distributed systems for a given application, 
under different computing and network load conditions. 
 The HeSSE compositional modeling approach 
makes it possible to describe Distributed Heterogeneous 
Systems by interconnecting simple components. Each 
component reproduces the performance behavior of a 
section of the complete system at a given level of detail. 
A HeSSE component is basically an object, hard-coded 
with the performance behavior of a section of the whole 
system. More detailed, each component has to 
reproduce both the functional and temporal behavior of 
the subsystem it represents. In HeSSE, the functional 
behavior of a component is the service set exported to 
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the other components. So, connected components can 
ask other components for services. The temporal 
behavior of a component describes the time spent 
servicing. 
 HeSSE uses traces to describe applications. When 
the application is not available, e.g., it is still being 
developed, they can be generated using prototypal 
languages. In the past years, we defined an XML-based 
meta-language for parallel programs description, 
MetaPL[13,14]. It is language independent, and can 
support different programming paradigms or 
communication libraries. The core MetaPL notation can 
be extended through Language Extensions (XML 
DTDS), which introduce new constructs into the 
language. Starting from a MetaPL program description, 
a set of extensible filters makes it possible to produce 
different program views, among which are the trace files 
that can be used to feed the HeSSE simulation engine. 
Among available MetaPL extensions, are ones that 
enable the description of remote services interfaces, 
client calls to remote services and stub creation. The 
detailed description of the MetaPL approach to program 
description, and of the trace generation process, is out 
of the scope of this study and can be found in references 
14 and 15. 
 

MAWES FRAMEWORK 
 
 HeSSE and MetaPL allow users to perform system 
performance analysis without actual execution of the 
application on the target environment. In previous 
studies, we have presented the whole development 
procedure, the validation of the results and their 
analysis, showing pros and cons of the approach[13-17]. 
In this study we tackle a new problem, i.e., how to 
automatize the simulation and performance prediction 
process, in order to develop self-optimization 
autonomic systems for Web Services architectures. 
 In the systems which are the object of this study, 
i.e., in distributed systems running Web Services 
applications, it is possible to exploit self-optimization 
techniques at three different, non exclusive, levels: 
* Server Level the autonomic system affects the 

underlying distributed system, i.e., the optimization 
actions are performed at the operating system and 
network levels;  

* Service Provider Level the autonomic system affects 
the service provider, i.e., the optimization actions 
have impact on the tuning of parameters and on the 
workload management policies of each offered 
service;  

* Application level the autonomic system affects user 
applications, modifying their resource use and the 
order of the actions they perform.  

The stress in this study will be on the use of self-
optimization techniques at application level. 
 As mentioned before, the solution we have devised 
for the development of autonomic Web Services 
applications hinges on the use of the MAWeS 
framework, which (partially) hides the presence of a 
simulation environment exploited through a web service 
interface. 
 The MAWeS framework (Fig. 1) is structured in 
three layers, as follows: 
* Frontend made up of the software modules used by 

final users to access the MAWeS services;  
* Core composed of the software and the services that 

manage MetaPL files and make optimization 
decisions;  

* WS interface the set of Web Services used to obtain 
simulations and predictions through MetaPL and 
HeSSE.  

 In its current implementation, the MAWeS 
Frontend provides a standard client application 
interface, MHAWeSclient, which has to be extended 
by developers with their actual application code. The 
MHAWeSclient client accepts as input a MetaPL file 
describing the application code. It should be explicitly 
noted that the final objective of our research is 
automatic generation of application code from a skeletal 
MetaPL description. However, currently the writing of 
application code from its high-level MetaPL description 
is still performed manually. 
 The MAWeS Core exploits environment services 
(i.e. the services offered by the environment to monitor 
and to manage itself) and the MetaPL/HeSSE Web 
Services interface using the application information 
contained in the MetaPL description to find out optimal 
execution conditions. It is a software unit provided both 
as a web service and integrated into the 
MHAWeSclient. 
 The MetaPL/HeSSE WS interface, thoroughly 
described in the following section, defines a set of 
services that make it possible to automatize the 
methodology application. 
 The sequence of events and calls that allow the 
execution of an application with optimal values of 
parameters is also shown in Fig. 1. 
 The MAWeS client submits the MetaPL 
application description to the MAWeS core (1). Then 
the services of the framework automatically find out the 
set of simulations needed, perform them (2,3,4), and 
return the set of optimal parameters for the target 
application (5). Finally, MHAWeSclient starts the 
application code, passing to it the set of optimized 
parameters (6). 
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Fig. 1: The MAWeSclient and the MAWeS services 
 
 The critical point of the whole autonomic 
optimization procedure is to point out the set of 
parameters that mostly affect performance, in order to 
find automatically the best application configuration. 
New MetaPL extensions have been developed for this 
purpose. These will be described in the following. The 
following sections will describe in detail each of the 
three layers of the framework, starting from the lowest 
level services (WS interface), to the highest level of 
abstraction (Frontend). 
 

METAPL AND HESSE WEB SERVICES 
INTERFACE 

 
 MetaPL descriptions and HeSSE simulation make 
it possible for system and program developers to 
identify performance bottlenecks and to tune both the 
system and the final applications. Even if these tools 
can be used through a command-line or graphical 
interface[17], we have developed a set of Web Services 
that allow the user to perform the description, 
simulation and analysis steps. This Web Service 
interface can be exploited by developers, who want to 
access the simulator and to perform analysis manually, 
or by software tools such as the MAWeS core to 
automatize the performance analysis process. In the 
following, we will briefly describe the newly developed 
Web Services interface. 
 
HeSSEws: The input for HeSSE simulations is a set of 
files, namely, configuration and trace files. The 
simulator outputs log files containing all the events and 
timings of the simulated model. Unlike in previous 
versions of the simulator, currently the logs are 
produced in XML format, which can be more easily 
managed through automatic tools. The HeSSE Web 
Service HeSSEws gives a good level of control over 
the simulator through a number of methods that make it 
possible to make a new directory into the Web Service 
base folder and to create a file (mkDir, 
createFile), to start the simulation using the 
contents of a folder and to read the simulator output 
(runSimulation, readOutput).  

MetaPLws: MetaPL operates on a set of files, namely 
MetaPL documents, schemas, filters and final views 
(simulation traces are a particular type of view). 
Therefore the MetaPL Web Service interface 
components offer a set of services able to store, modify 
and generate these documents. MetaPLws publishes the 
Web Services applyFilter, which applies a filter to 
a MetaPL document, and execute, which executes a 
script (typically applying a sequence of filters). These 
make it possible to implement the methodology outlined 
in the previous Section. 
 The system stores internally the set of DTDs, 
Schemas, and XSLT files needed to validate or to 
transform a MetaPL file, but it can also use public or 
private (submitted by the user) repositories. The 
applyFilter service accepts as input the MetaPL 
file and the name of the filter to apply, and returns the 
views generated by the filter. 
 It is often necessary to apply multiple filters, thus 
generating multiple output files. In these cases, it is 
useful to resort to the execute service. This service 
accepts as input a file attached to the SOAP message 
that contains a compressed folder. The service extracts 
the attachment, and gives the result to the software unit 
that manages the script files (MetaFilter), which 
interprets the script describing the actions to be 
performed and executes them. 
 

THE MAWES CORE 
 
 The MAWeS Core is invoked by the MAWeS-
client, as previously shown in Fig. 1, in a way 
completely transparent to the application. The core 
contains all the autonomic “intelligence” of the 
framework, in that it has the task to find the optimal 
parameters for application execution. Each time that the 
client calls the service, the MAWeS Core finds which 
simulations are needed, generates all the traces required 
for simulation and performs the simulations. Then, it 
analyzes the results and chooses the optimal parameter 
configuration. 

  The MAWeS Core is structured in three modules, as 
shown in Fig. 2. 
* Interface this unit has the task to recover all the 

information on the target application needed for 
optimization. In particular, it extracts from the 
MetaPL description of the application the MetaPL 
autonomic extension tags and passes them to the 
Decision unit;  

* Decision this unit contains the intelligence of the 
autonomic environment. It chooses the possible 
values to evaluate, predicts the (future) system status, 
defines the optimal optimization criteria, queries the 
simulation engine through the M/H client, and makes 
the final decisions;  

* M/H client  this unit executes the simulations and the 
analysis defined by the decision unit, using the 
MetaPL/HeSSE Web Service interface.  
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Fig. 2: The MAWeS Core structure 
 
These modules are in turn described below. 
 
The interface unit: The task of the Interface Unit is to 
find all the parameters that may affect the application 
performance and to pass this information to the 
Decision Unit. In order to do so, it extracts from the 
MetaPL application description all information that may 
possibly be used to optimize the application. At least in 
theory, optimization parameters could be automatically 
extracted from MetaPL application description. 
However, in the current implementation of the 
framework, the user has to choose them manually. 
 The Web Services MetaPL extensions allow the 
description of service-oriented applications. Further 
metalanguage extensions are needed to automatize the 
self-optimization steps. MetaPL descriptions consist 
essentially of code prototypes, enriched with task-to-
processor mapping (Mapping tag). The Autonomic 
MetaPL extensions define new language elements for 
this section. They introduce the Autonomic tag, 
included in Mapping element, which describes the 
target simulation configurations that can be used for 
application execution.  
 As mentioned before, the Autonomic MetaPL 
extensions provide new tags to be included in the 
Autonomic element: 
* Parameter identifies a variable inside the 

description that affects the overall performance, and 
thus one whose optimal value has to be evaluated by 
the framework. The (optional) attributes min and 
max represent the minimum and maximum values the 
variable can assume. In alternative, it is possible to 
insert into the Parameter element content the list 
of the values that the parameter can assume.  

* Target identifies the output parameter adopted for 
system optimization. In the MAWeS current 
implementation, the only possible optimization target 
is response time minimization, and hence the only 
target of optimization is a minimization rule. Future 
versions of the framework will also provide an 
attribute to express alternative objective functions.  

 The Core interface exposes its services to final user 
as Web Services. Future implementations of the 

framework may integrate it directly into the MAWeS 
Frontend, moving the overhead from the server to the 
client in order to reduce communication costs. In fact, 
for the time being, the Core offers only a single service, 
MAWeSoptimization, which starts the application 
performance optimization procedure. The interface 
receives the MetaPL description and extracts all the 
information contained in the autonomic extensions, then 
calls the MAWeS decision unit with the description and 
the optimization data as parameters. 
 
The decision unit: As mentioned before, the Decision 
Unit contains all the framework autonomic intelligence, 
and applies the optimization rules defined by the 
framework administrator to optimize the target 
applications by means of the feedforward approach 
described in the introduction. More detailed, whenever 
the Decision Unit has to make an optimization decision 
(typical examples are when an application is launched, 
or at periodic intervals in time), it queries the 
underlying target system through a Monitoring Module. 
This is interfaced to a distributed monitoring subsystem, 
and returns the current system load (e.g., CPU load of 
the component nodes, current network traffic, ...). This 
information is used by the Decision Unit to predict the 
future system load (in the two mentioned examples, 
during the following application run, or during the next 
time interval, respectively). The description of the 
method used to foresee the load in a future interval in 
time is out of the scope of this study. Roughly speaking, 
it is possible to exploit previous knowledge to do so 
(e.g., in systems where there is a typical load profile in 
time), or to make predictions based on the current trend 
of system load. Whatever the method used, the Decision 
Unit optimizes the system before the new load condition 
is observed, performing a set of simulations (through 
the M/H client) to find the best operating condition in 
the predicted load status. The optimization criteria used 
are applied by a suitable sub-unit, the Optimization 
Module. 
 Independently of the load prediction method 
adopted and of optimization criteria chosen, the unit 
always works as follows: 
* it obtains from the MAWeS Interface the 

application MetaPL description and the list of 
parameters to be optimized; 

* it builds the application MetaPL description and 
the simulator configuration files; 

* it builds a set of metafilter scripts; 
* it starts as many M/H clients as the number of 

different simulations required; 
* it collects all the simulation results, analyzes them 

and finds the optimal parameter values. 
 It should be explicitly noted that in order to build 
the configuration files it is necessary to exploit the unit 
intelligence, as described above. Stated another way, 
finding the “useful” simulations to be performed 
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requires the future load to be predicted, and the 
optimization logic to be applied. All the simulations the 
M/H module is asked for, are independent of each 
other. Hence they can be executed as services on one, or 
even on multiple MAWeS service providers. 
 The modular structure of the Decision Unit, and the 
use of a separate Optimization Module, promotes the 
integration of new optimization criteria in the tool. For 
simplicity's sake, in the exposition that follows we will 
present a trivial optimization algorithm, based on full 
factorial exploration of all the possible configurations. 
In particular, we assume that each optimization 
parameter Pi can assume only a finite number of values 
Ni, and therefore a total of iN∏  distinct simulations 

are to be performed. As this is the most inefficient 
choice as far as the framework overhead is concerned (it 
requires the highest number of simulations before an 
optimization decision is made), it is worth pointing out 
explicitly that: 
* Due to the use of this approach, the overhead figures 

that will be presented later can be considered (with 
some caveats) a higher bound for actual framework 
overheads; 

* The factorial exploration of all possible configurations 
is limited to the set of values explicitly enumerated in 
the MetaPL description. 

 
M/H client: The M/H (MetaPL/HeSSE) Client is a 
software unit that implements a client for the 
MetaPL/HeSSE web service interface. Its 
implementation is threaded, in that each client instance 
runs as a new thread. This makes it possible for the 
MAWeS core to start in parallel as many M/H clients as 
are necessary. Each client invokes the services needed 
to perform the simulation and analysis for each different 
configuration, and gets the corresponding results. The 
Decision Unit collects all the results, compares them 
and makes its decisions. 
 

MAWES FRONTEND 
 
 The current implementation of the MAWeS 
Frontend is composed of three classes, which should be 
extended by the final user, and enriched with the 
application MetaPL description. From the point of view 
of the application developer, the whole development 
process consists of the following steps: 
* description in MetaPL of the application and of the 

application parameters; 
* selection of needed services and of their service 

provider; 
* generation of application code from the MetaPL 

description. 
 It should be noted once again that the parameters to 
be optimized and the optimization target are to be 
explicitly declared by the user. We aim to automatize 

this step in the future, developing filters able to extract 
this information from a MetaPL description. 
 Once the code has been developed, the developer 
just starts the application, which, in a completely 
automated way, calls the framework services. These 
evaluate optimal values of the parameters, and run the 
re-configured and optimized application on the target 
system. 
 

MAWES FRAMEWORK CASE STUDY 
 
 The proposed framework lets Web Services 
oriented application self-tune, without any intervention 
from the service provider or from the final user. The 
approach works independently of the presence of a local 
or global scheduler, even if it can take their presence 
into account. The main drawback linked to the presence 
of the autonomic framework is the introduced overhead. 
In cases where the framework is used to launch new 
instances of an application with optimized parameters 
adapting to the (expected) system load, as in the 
example proposed below, this leads to an increase of 
application startup time. This is due to the time spent in 
simulation and analysis before the (optimized) 
application instance can be executed. 
 In order to evaluate the framework performance, 
we present here a simple case study, based on a service-
oriented tool for log file analysis. In our tests, we will 
measure the application response times, comparing the 
results obtained with and without the autonomic 
framework. Then we will also assess the impact of the 
choice of the feedforward approach for autonomic 
optimizations. 
 
The LogAnalysis application: The Log Analysis 
application  is   a   simple  but  realistic  case  study  that 
shows how the framework affects the application 
execution performance. We have set up a web service 
provider, a simple set of services, and a WS-based 
application. The response time of the latter is the target 
of the framework optimizations. 
 The services exposed by the LogAnalysis server 
make it possible to perform Apache log file analysis. 
They are the following: getLogLength, which 
returns the log file dimension (in lines), 
getLogFragment, which accepts as parameters a 
size and a position into the log file, and returns a 
fragment of the log starting from the line given and of 
the given size, and Unique, which accepts as 
parameter a log file fragment and returns the IP 
addresses of the web clients logged in the fragment. 
 As regards the LogAnalysis client application, it 
periodically (every T seconds) evaluates the number of 
accesses of each web client (denoted by its IP address) 
scanning the log file by means of the above-described 
LogAnalysis services. The client can perform this  
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operation in a single step, thus interacting with only one 
LogAnalysis server, or in multiple steps (using the 
getLogFragment service and calling the Unique 
service on each fragment). In the second case, there can 
be a sharing of load between multiple LogAnalysis 
servers, all of which are provided with a copy of the 
same Apache log. As the client application is 
multithreaded, every fragment of the log file is 
processed concurrently by a different thread. 
 Every time that the log scansion is launched (i.e., 
every T seconds) the modulation of the number of 
LogAnalysis client threads, of the number of available 
LogAnalysis servers and the assignment of clients and 
servers, makes it possible to vary the load injected in 
the compute nodes and in the network, and hence the 
overall application response time. In the tests that will 
be presented below, we assume that the only CPU and 
network load present is the one generated (directly or 
indirectly) by the LogAnalysis application. However, 
the HeSSE simulation environment makes it possible to 
take into account the presence of additional load 
generated by other applications running concurrently 
with the software system under analysis. It is worth 
pointing out that studying the effect of these parameter 
modulations is not trivial, not to mention finding 
optimal values in every working condition (i.e., under 
different compute nodes and network loads). 
 The MetaPL description of the LogAnalysis client, 
not shown here for brevity’s sake, explicitly points out 
the optimization variables, which are: 
* NumberOfProcesses the number of LogAnalysis 

client threads. This parameter is linked to the 
dimension of the log file fragments (each fragment 
dimension is given by the total log file dimension 
divided by the number of clients);  

* NumberOfServers the number of LogAnalysis 
servers;  

* ServerChoicePolicy the LogAnalysis server 
choice policy adopted. Each client thread can ask any 
of the available servers for the services it needs. 
Among all possible policies, we only consider here a 
static and a dynamic one. Using the static policy, each 
client thread asks for services always to the same 
LogAnalysis server. The dynamic policy instead 
assumes that a client thread asks to different 
LogAnalysis servers.  

 The LogAnalysisClient execution is performed as 
follows. Every time that a log analysis scan is to be 
launched (every T seconds), the client asks the 
framework for the optimal number of client threads, of 
LogAnalysis servers and for the server choice policy 
(static or dynamic) to be used. The framework executes  
a set of preliminary simulations to find the optimal 
value  for  the described  parameters in  the forthcoming 

environmental conditions (compute node loads, 
network traffic), predicted for the next application run. 
The LogAnalysis client receives this information and 
starts the log analysis using optimal parameters. 
 The strong points of LogAnalysis as test 
application are that it is tunable using only application-
dependent parameters, and that the repetitive nature of 
the log scansions performed allows its adaptation to 
system load without any run-time reconfiguration. 
 
Framework performance evaluation: In order to 
evaluate the performance of the autonomic framework, 
we have performed a wide number of tests where 
multiple instances of the LogAnalysis client application 
are launched. As mentioned above, each of these 
instances performs a log scansion every T = 240 
seconds. We assume that all the compute and network 
load is directly or indirectly generated by the 
LogAnalysis clients (i.e., the impact of further active 
sources of load  is negligible), and that the log scansions 
generated by the active clients can be considered 
synchronized (i.e., they start at approximately the same 
time). Under these assumptions, a variation of system 
load can be emulated by varying the number of active 
LogAnalysis clients. For testing purposes, we will use 
the reference system load profile shown in Fig. 3 (solid 
line). At successive steps in time (the interval between 
two steps is equal to T) the number of active 
LogAnalysis clients varies according to the diagram, 
thus varying the system load. In order to get results that 
can be easily interpreted, we assume that the load 
prediction made by the Decision Unit is the one shown 
with the dotted curve in the same diagram. The 
predicted and actual loads are almost always very 
similar, with the exception of the time steps 12 and 13 
(slight misprediction), and of the steps between 19 and 
22, where a completely wrong prediction is purposely 
used to study its effect on performance. In any case, the 
only measured result will be the mean response time of 
all active clients, for a single log scansion. 
 The environment used to test the application is the 
Orion Cluster, at the Second University of Naples. The 
cluster, based on the Rocks Linux Distribution, is 
composed of a front-end (dual Intel Xeon 2.8 GHz) and 
a blade system with 7 compute nodes (dual Xeon 2.8 
GHz). During the tests, we assign only one role to each 
compute node. Hence each node can exclusively be or a 
generic service provider (provider that offers the 
services used by the target application), or a MAWeS 
server (provider that offers the MAWeS services), or a 
client (on which the application client is executed). In 
the whole test environment there can be multiple servers 
(of every type) and clients. 
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Fig. 3: Reference and predicted load profiles 
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Fig. 5: LogAnalysis response time, feedforward vs. 

feedback 
 
 In Fig. 4, the LogAnalysis application autonomic 
response time (for a single log scansion) is compared to 
the behavior found for the same application in the 
absence of autonomic optimizations, i.e., using a fixed 
parameter configuration at all time steps and for all load 
conditions. These two “reference” configurations 
correspond to values of the optimization parameters 
NumberOfProcesses, NumberOfServers and 
ServerChoicePolicy (4, 4, static) and (1, 4, 
dynamic). These two configurations are denoted by 
Best_Unloaded and Best_Mean, as they correspond to 
the parameter set able to obtain the shortest response 
time in an completely unloaded environment, and to the 
one that leads to the shortest mean response time 
throughout all the tested load conditions, respectively. 
The diagram shows that whenever reasonably good load 
predictions are used for optimizations, the autonomic 
version of the application performs much better than 
Best_Unloaded, with response times very close to the 
static configuration that a posteriori appears to be the 
best on the average (Best_Mean). Stated another way, 
the overhead introduced by the framework is negligible. 
Even in the presence of a completely mispredicted load, 
the autonomic performance is acceptable. 

 As mentioned earlier in this study, a distinctive 
feature of our proposal is the use of a feedforward 
approach for autonomic optimizations. The framework 
exploits the simulation tools to find the best working 
condition for the system not in the current status, but in 
the one predicted for the future, anticipating the need. 
We have compared the results obtained using our 
feedforward method to the ones that could be obtained 
exploiting feedback data for optimizations. In the latter 
case, the Decision Unit makes its optimizations using 
the current system state, not the predicted one. Fig. 5 
shows the LogAnalysis application response time using 
feedforward and feedback approaches, under the same 
load conditions and predictions (Fig. 3). The diagram 
shows that the feedback-based approach performs better 
than the feedforward only when the load is 
mispredicted. 
 

RELATED WORK 
 
 Most of the times, autonomic computing models 
rely on some sort of feedback control mechanism to 
provide self-configuration and/or self-optimization 
capabilities[5]. Following up the seminal study that 
firstly introduced the use of predictive autonomicity[12], 
further work based on feedforward control (or on the 
joint use of feedforward and feedback) is currently 
being developed[9]. 
 To authors' knowledge, the adoption of simulation-
based tools in the context of autonomic computing, 
which is the main contribution of this study, has never 
dealt with before. However, it should be pointed out 
that the use of simulation for Web Services, and of Web 
Services interfaces to simulation, is described in 
reference 3. The necessity of the addition of autonomic 
behavior to web services and to the underlying 
messaging substrate for reliability purposes is instead 
dealt with in reference 16 and 18, respectively. 
 

RESULTS AND CONCLUSION 
 

 In this study we propose an innovative approach to 
development of self-optimizing autonomic systems for 
Web Services architectures, based on the adoption of 
simulation for performance prediction and feedforward 
control. We have developed a set of web services that 
enable web applications to obtain performance 
predictions using the MetaPL/HeSSE methodology. The 
web service interface to the simulation environment has 
made possible the implementation of a framework for 
the development of autonomic self-optimizing 
applications. The framework exports a standard client 
application to final users, which enables the interfacing 
of web applications to the simulation environment. 
MetaPL Web Services and autonomic extensions enable 
the user to enrich an existing application with a model 
that can be simulated to obtain performance predictions. 
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The web application thus obtained runs, queries the 
framework for optimal parameter values, and then 
executes in an optimized way. 
 The proposed framework opens a new way for the 
development of autonomic systems that not only query 
the local environment for self-optimizing information, 
but also predict future load and network conditions, 
preparing it to well-tuned executions under in the 
future. We are currently involved in an expansion of the 
framework described here. The short-term objective is 
to add new, more complex, optimization rules for 
parameters. Successively, we will test the validity of the 
approach applying the optimizations also at service and 
server levels. 
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