
Journal of Computer Science 2 (1): 48-52, 2006
ISSN1549-3636
© 2006 Science Publications

Corresponding Author: Y.Talwar, Guru Gobind Singh Indraprastha University, Delhi & National Informatics Centre, Delhi,
India

48

On Partial Linearization of Byte Substitution Transformation of Rijndael-The AES

1Y.Talwar, 2C.E.Veni Madhavan and 3Navin Rajpal

1Guru Gobind Singh Indraprastha University, Delhi and National Informatics Centre, Delhi, India
2Indian Institute of Science, Bangalore, India

3Guru Gobind Singh Indraprastha University, Delhi, India

Abstract: Rijndael-The AES[1-3] is 128-bit block cipher based on an elegant algebraic structure over F2
8.

This cipher employs a simple approach to its substitution, permutation (SP) operations. We take a close
look at its internals; the byte substitution transformation function is the only non-linear function in
Rijndael - The AES. This transformation comprises of two steps operating on each byte. Here we are
trying to remodel this to one step operation using indicator vector matrix representation. This
representation is further extended to mathematically represent one complete encryption or decryption
round of Rijndael the using indicator vector matrix representation that can be explored for better crypto-
analysis[4,5] of the cipher.

Key words: Rijndael, byte substitution transformation, indicator vector matrix

INTRODUCTION

 Rijndael Algorithm[1-3] was designed by two
Belgian cryptographers: Vincent Rijmen and John
Daemen, as one of the candidates for the Advanced
Encryption Standard (AES) selection. The AES
committee was formulated by the U.S. Government
under the umbrella of National Institute of Standards
and Technology (NIST) to find another cryptographic
algorithm in order to replace the existing 64-bit block
cipher of 1977 - the Data Encryption Standards (DES)
to protect sensitive digital information over the next
few decades.
 After a stringent qualifying process of three rounds
involving the whole world’s cryptographic
community[6], Rijndael algorithm was proposed by the
AES committee as Advanced Encryption Standard –
The AES on Nov. 26, 2001. Later on May 26, 2002
NIST endorsed it as Federal Information Processing
Standard namely FIPS-197 replacing DES (FIPS-46).
 Rijndael possesses an elegant algebraic structure
over F2

8[7-10]. It supports a variable block size and
variable key size of 128, 160, 192, 224 or 256 bits each.
But for the AES, its block size is fixed to 128-bits and
keeping the variable key size of 128, 192 and 256 bits.
It has 10, 12 or 14 iterations of round transformations
depending on the key size of 128, 192 or 256 bits
respectively in conjunction with an initial round of key
addition. Each (except the last) round transformation
function is composed of the four sub transformation
functions: Byte Substitution or bs, Row Shift or rs, Mix
Column or mc and Add Round Key or ak. The last
round transformation does not include the mc function.

In this study we present an analysis of the block cipher
Rijndael while concentrating on its 128-bit version.
This cipher employs a simple approach to its
substitution, permutation (SP) operations. We take a
close look at its internals, recast some of these and
present the cipher in a manner amenable for better
analysis.

Notations: We fix the block size and key size to 128
bit. We consider the 10 round version. We use the
following notations.
Let for all round index i 0, ,10= ⋅⋅ ⋅ and byte index

15,,0 ⋅⋅⋅=j :

iX : jj th text byte of i-th round (in particular, 0Xj is the

initial input plain text byte and is fixed
11X : jj

th cipher text byte.

iK : jj th expanded key byte of i-th round (in particular 0Kj

is the user defined key : 0K : k , k , k , ,k0 1 2 15j ⋅ ⋅ ⋅

 W[i] = i-th key word of 32 bits.
kn: nth key byte, { }175,,2,1,0 �=n
Nk = (key size)/32 = 128/32 = 4.
Nb = (block size)/32 = 128/32 = 4.
Nr = No. of cipher rounds = 10.

 We use the standard convention of representing
elements of F2

8 as polynomials of degree 7, over F2.
We also adopt the standard practice of treating the
elements of F2

8 as integers in the range 0, … ,255.
Thus for example, F 82

α ∈ with 7 6 2 1x x x x 1α = + + + +

would be referred as 199α = , without ambiguity.

J. Computer Sci., 2 (1): 48-52, 2006

 49

 We define three functions namely Rotbyte(.), Rc(.),
Rcon(.) & Iv[.] an indicator vector:

i. Rotbyte(.) rotates the bytes of key within the word,
when word oriented structure is considered for key
expansion mechanism. If k ,k ,k ,k0 1 2 3 are four bytes of
i-th key-word W[i] arranged in big endian format,

[]() []Rotbyte W k , k ,k , k W k , k , k , k0 1 2 3 1 2 3 0=

 The byte substitution transformation of Rijndael
uses an S-box, generated over F2

8 with

() ()()x 1 03base 16+ ≡ as primitive element and

() ()8 4 3g x x x x x 1= + + + + as the defining irreducible

polynomial along with an affine transformation

of () ()6 5x x x 1 63base16+ + + ≡ . Thus, bs, using S-box,

transforms the individual byte a(x) to bs(a(x)).
Mathematically:

()() ()
()() ()
6 5bs a x x x x 1

4 3 2 8c x x x x x 1 mod x 1

= + + +

� �+ + + + + +� �
� �

where () () ()()
1

c x a x mod g x
−

=

Similarly
[]()

() () () ()
b s W k , k , k , k0 1 2 3

W b s k , b s k , b s k , b s k0 1 2 3� �= 	

and
[]()()

() () () ()
R o tb yte b s W k , k , k , k0 1 2 3

W b s k , b s k , b s k , b s k1 2 3 0� �= 	

ii. Rc(a(x)) is another round dependent byte oriented
constant function defined over F2

8. POW(a(x)) contains
powers of a(x) in the field. Then

()() ()() ()()R c a x PO W a x m od g x=

In particular, for () { }a x 1, 2, ,10∈ �

()() { }Rc a x 1, 2, 4,8,16,32, 64,128, 27,54=

iii. Rcon(a(x)) is a round dependent word oriented
function such that ()() ()()()Rcon a x Rc a x ,0,0,0 .= Here the

commas define separation of each byte arranged in big
endian format.

iv. Indicator vector representing a byte, say

() 4 3a x x x 1 25,= + + ≡ is a 256x1 matrix with 1 only at
25th position and zeros elsewhere, i.e. the vector
representing a(x) has 1 at the place corresponding to the
numerical value of the byte and zero at all other
positions in the matrix 0 to 255. Hence it will be of the
form:

Iv[a(x)] : [0 0 0 0 0 … 0 1 0 0 … 0]T
 ↑0 ↑25 ↑255

Brief description of Rijndael internals: Rijndael has
an elegant algebraic structure over F2

8. The input plain
text or the output cipher text of block size of 128-bits is
viewed as a 4x4 matrix of 16 bytes arranged in a
column major format. Rijndael consists of an initial
round of key addition (ak) followed by 10 iterations of
round transformations for the key size of 128-bits. Each
(except the last) round transformation function is
composed of the four sub transformation functions:
Byte Substitution or bs, Row Shift or rs, Mix Column
or mc and Add Round Key or ak. The last round
transformation does not include the mc function.

Byte substitution transformation: bs: This is the only
non-linear transformation in the entire Rijndael
structure. It operates independently on each byte using
a substitution table (S-box). The S-box, which is
invertible in nature, is composed of two
transformations:
1. Taking multiplicative inverse of the desired byte in

the finite field GF(28) with () ()x 1 03base16+ ≡ as

primitive element and () ()8 4 3 1g x x x x x 1= + + + + as

the defining irreducible polynomial. The element

1600base is mapped to itself.

2. Applying an affine transformation of

()6 5 1x x x 1+ + + equivalently 63 base16 .

 Thus, the byte substitution operation transforms a
byte a(x) to bs(a(x)) as per the following relation. Let
1. () () ()()1c x a x m o d g x−=

2. ()() ()
()() ()()1mod1

1
81234

56

+++++
++++=

xxxxxxc

xxxxabs

 The inverse S-box is constructed by taking an
inverse affine transform followed by a multiplicative
inverse in the finite field F 82

.

1. () ()
()()() ()()1mod

1
836

2

+++
++=

xxxxxabs

xxc

 2. () () ()()1a x c x mod g x−=

Row shift transformation: rs: The 16 input bytes are
arranged in a column major format of a 4x4 matrix. To
achieve the desired confusion, a linear transformation rs
is applied. Here, the bytes in each row of the matrix are
given a cyclic left shift. For i = 1, 2, 3, 4 the bytes in the
i-th row are circularly left shifted by (i-1) bytes.
 The inverse of a row shift transformation is
obtained by cyclically shifting the bytes in the reverse
direction i.e. circularly right shifting 0, 1, 2, and 3 bytes
in the first, second, third and fourth row of the 4x4
input matrix, respectively.

J. Computer Sci., 2 (1): 48-52, 2006

 50

Mix column: mc: The linear transformation mix column
provides the diffusion by mixing the bits of each column. The
function β(z), given below, operates on the input column by
treating it as a degree three polynomial in []F z82

. This

polynomial is multiplied by a rotated version of a standard
polynomial () []m z F z82

∈ given by

() 3 2 1m z 03z 01z 01z 02= + + +� �	
 and reduced modulo the

polynomial () []4z 1 F z82
+ ∈ . Here the coefficients denote

elements of F 82
. It is known that the coefficients of m(z) are

so chosen that the result β(z).m(z)is invertible modulo (z4 + 1)
although this polynomial is reducible over F2.
 For example, a column of mc, [a0, a1, a2, a3]

T is
considered as:

() []3 2
3 2 1 0 82

z a z a z a z a F zβ = + + + ∈

Then,

() () () ()
()
()
()
() ()

()

6 5m z z 03 a z 03 a 01 a z3 2 3
403 a 01 a 01 a z1 3 2

303 a 02 a 01 a 01 a z0 3 2 1
201 a 02 a 01 a z0 2 1

001 a 02 a z 02 a z0 1 0
4mod z 1

⋅β = ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅

� �+� �
� �

() ()

a02 03 01 01 0
a01 02 03 01 1m z . z
a01 01 02 03 2
a03 01 01 02 3

� �� �
� �� �
� �� �β =
� �� �
� �� �
� �	
 	

 The inverse of Mix column transformation is similar to
the forward operation with the only difference that the inverse
of the fixed polynomial i.e. [m(z)]-1 is used and it is given by

() 1 3 2 1m z 11z 13z 09z 14
− = + + +� �	

Hence,

() ()

a14 11 13 09 0
a09 14 11 131 1m z . z
a13 09 14 11 2
a11 13 09 14 3

� �� �
� �� �− � �� �β =� �	
 � �� �
� �� �
� �	
 	

Add Round Key: ak: In this function, the round key is added
to the current byte as bit-wise exclusive OR. The XOR
operation is the inverse of itself.

Modified Rijndael’s key expansion mechanism: The Key
expansion mechanism for 128-bit key size, in Rijndael is
defined in the following manner.
 The expanded key of ()()N N 1 44b r∗ + = words is
derived from the 4 words of the user defined key. The first Nk
(= 4) words, W[0], … , W[3] of the expanded key are filled
with the user defined original cipher key bits. The subsequent
key words for all Nk ≤≤≤≤ i < (Nb * (Nr + 1)) i.e. 4 ≤ i < 44
alternatively i = {4, …, 43} are given by:

 []

[] []()()
() ()

[] []
()

W i N Rotbyte bs W i 1k

Rcon i / N i 0 Nk kW i
W i N W i 1k

i 0 N k

 � − ⊕ −
	�

� ⊕ ∀ = ��
= �
� − ⊕ −� 	

�
∀ ≠ ��
�

We have modified the key expansion algorithm in the
following manner: As the functions bs(.) and Rcon(.)
transformations inherently operate on individual bytes of
every input word, thus, a modified byte oriented version for
key expansion algorithm can be derived. Therefore, for the
present study with key size and block size of 128 bits and 10
cipher rounds, a total of 176 [= 4* (Nb * (Nr + 1))] bytes from
the 16 bytes (=128 bits) of the user defined key kn with n =
{0,…,15} are to be expanded.

 First 4*Nk (=16) bytes, defined as 0K : k , k , k , , k0 1 2 15j ⋅ ⋅ ⋅

of the expanded key are filled with the original 128 user
defined key bits stored in big endian format. For subsequent
rounds, the expanded key bytes at n = {16, …, 175} are given
by the following relations:
i. when n = 0 (mod 4* Nk), the four consecutive key bytes at n
to n+3 locations are obtained through:

() ()
() ()

() ()

() ()

k k b s k R c n / 1 6n n 1 6 n 3
k k b s kn 1 n 2n 1 1 6

k k b s kn 2 n 1n 2 1 6

k k b s kn 3 n 4n 3 1 6

= ⊕ ⊕− −
= ⊕+ −+ −
= ⊕+ −+ −
= ⊕+ −+ −

ii. The subsequent expanded key bytes for a particular round
i.e. from (n+4)th byte to (n+15)th byte of kn, are obtained
through: k k kn n 16 n 4= ⊕− −
 Alternatively, these expanded key bytes can be obtained
in the form of round keys Ki

j through the following relations
with the original key bytes filled at i =0 & j = 0, …, 15 in K0

j.
For 0≤ i <10

() ()

()
()
()

() ()

()
()
()

() ()

i 1 i iK K bs K Rc i 10 0 13

i 1 i iK K bs K1 1 14

i 1 i iK K bs K2 2 15

i 1 i iK K bs K3 3 12

i 1 i i iK K K bs K Rc i 14 4 0 13

i 1 i i iK K K bs K5 5 1 14

i 1 i i iK K K bs K6 6 2 15

i 1 i i iK K K bs K7 7 3 12

i 1 i i i iK K K K bs K Rc i 18 8 4 0 13

i 1 i iK K K59 9

+ = ⊕ ⊕ +

+ = ⊕

+ = ⊕

+ = ⊕

+ = ⊕ ⊕ ⊕ +

+ = ⊕ ⊕

+ = ⊕ ⊕

+ = ⊕ ⊕

+ = ⊕ ⊕ ⊕ ⊕ +

+ = ⊕ ⊕ ()
()
()

() ()

()
()
()

i iK bs K1 14

i 1 i i i iK K K K bs K10 10 6 2 15

i 1 i i i iK K K K bs K711 11 3 12

i 1 i i i i iK K K K K bs K Rc i 112 12 8 4 0 13

i 1 i i i i iK K K K K bs K513 13 9 1 14

i 1 i i i i iK K K K K bs K14 14 10 6 2 15

i 1 i i i i iK K K K K bs K715 15 11 3 12

⊕

+ = ⊕ ⊕ ⊕

+ = ⊕ ⊕ ⊕

+ = ⊕ ⊕ ⊕ ⊕ ⊕ +

+ = ⊕ ⊕ ⊕ ⊕

+ = ⊕ ⊕ ⊕ ⊕

+ = ⊕ ⊕ ⊕ ⊕

 Till now we have discussed briefly the internals of
Rijndael algorithm. Now we are going to present the
modified form of the bs followed with indicator vector
matrix representation of one complete round involving

J. Computer Sci., 2 (1): 48-52, 2006

 51

all the four transformation functions namely: bs, rs mc
and ak in the subsequent sections.

Modified byte substitution bs transformation: The bs
transformation, as stated in previous section comprises of two
steps – first step is to calculate multiplicative inverse of the
desired byte followed by the second step of an affine
transformation. Let b b , b , b , b , b , b , b , bi 0 1 2 3 4 5 6 7 represents
the bits of a byte as a vector in big endian format. In matrix
form, the affine transformation component of the S-box can
be expressed as:

'b0
b1 0 0 0 1 1 1 1' 0b1
b1 1 0 0 0 1 1 1 1'b2 b1 1 1 0 0 0 1 1 2

'b b1 1 1 1 0 0 0 13 3
' 1 1 1 1 1 0 0 0 b4b4

0 1 1 1 1 1 0 0 b5'b5 0 0 1 1 1 1 1 0 b6
'b 0 0 0 1 1 1 1 1 b6 78 8 8 1
'b7 8 1

� �
� �

� �� �� �
� �� �� �
� �� �� �
� �� �� �
� �� �� �
� �� �� � = � �� �� �
� �� �� �
� �� �� �
� �� �� �
� �� �� �
� �� �� � 	
 	
× ×� �

� �	
 ×

1
1
0
0
0
1
1
0 8 1

� �
� �
� �
� �
� �
� �⊕ � �
� �
� �
� �
� �
� �	
 ×

The above matrix can be compactly represented as:

'B A B AF= ⋅ ⊕ (1)

Where, ()4 3 2 1A x x x x 1≡ + + + + over F2
8

and ()6 5AF x x x 1≡ + + + over F2
8

 The matrix representation of byte B can further be
represented as product of two matrices: FF[8 x 256] and
Iv[256 x 1]. Each row of FF matrix represents the
multiplicative inverse in bit vector form of the corresponding
individual byte. Iv matrix, as described earlier, gives the
indicator vector representation of the byte under
consideration. Hence, the equation (1) transforms to:

'B A FF Iv AF= ⋅ ⋅ ⊕ (2)
 The inverse byte substitution transformation can
similarly be represented as:

' 1 1B A FF Iv AF− −= ⋅ ⋅ ⊕ (3)

Where, ()1 6 3A x x x− ≡ + + over F2
8

and ()1 2AF x 1− ≡ + over F2
8

 Here, we partially linearized the bs transformation.
In the next section we extend this formulation idea of Iv
to recast the Rijndael round functions to represent
mathematically as a simple Iv matrix relation.

Recasting of Rijndael internals

i 1 i 1X , , X0 15
− − →�

 Round Functions
(bs, rs, mc & ak)

i iX , , X0 15→ �

i 1 i 1K , , K0 15
− −
�

Fig. 1: Pictorial representation of an i-th round
transformation function

 The Fig. 1 gives the pictorial representation of an
i-th round transformation function. We recast the cipher
round with an abuse of notation in the following
manner:
Let , j 1, 2,3jµ = are the “operators” such that:

()()
()() ()()

() ()() ()()

bs a x ,1

2 x bs a x mod g x ,2

3 x 1 bs a x mod g x ,3

µ = µ =

µ = ⋅µ = ⋅

µ = ⋅µ = + ⋅

 These jµ `s correspond to the mc transformation of

the bs transformed byte and their position in the matrix
R corresponds to the rs transformation on the byte X.

409640963

1

1

2

2

3

1

1

1

2

3

1

1

1

2

3

1

1

2

3

3

1

1

2

2

3

1

1

1

2

3

1

1

2

3

1

1

1

2

3

3

1

1

2

2

3

1

1

2

3

1

1

1

2

3

1

1

1

2

3

3

1

1

2

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

×
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

	

�

=

µ
µ
µ
µ

µ
µ
µ
µ

µ
µ
µ
µ

µ
µ
µ
µ

µ
µ
µ
µ

µ
µ
µ
µ

µ
µ
µ
µ

µ
µ
µ
µ

µ
µ
µ
µ

µ
µ
µ
µ

µ
µ
µ
µ

µ
µ
µ
µ

µ
µ
µ
µ

µ
µ
µ
µ

µ
µ
µ
µ

µ
µ
µ
µ

R

 R represented above seems to be a 16x16 matrix
but actually is 4096 x 4096 with each of jµ as

256x256 matrix and each ‘0’ also represents a null
matrix of size 256x256. Further, each row of jµ is an

indicator vector representation of corresponding byte of
mc operated S-box.
 Thus, one round of Rijndael can completely be
characterized as:

i i 1 i 1X R X K− −= ⋅ ⊕ (4)

where
Ti i iX X , ,X0 15

� �=
� �	

� : vector of 16 indicator vectors

form 4096 x 1
Ti 1 i 1 i 1X X , , X0 15

− − −� �=
� �	

� : vector of 16 indicator vectors

form 4096 x 1
Ti 1 i 1 i 1K K , , K0 15

− − −� �=
� �	

� : vector of 16 indicator vectors

form 4096 x 1
The output iX does not result in an indicator vector.

J. Computer Sci., 2 (1): 48-52, 2006

 52

CONCLUSION

 The algorithm proposed in this paper can be
successfully used to remodel the two-step byte
substitution transformation to one step. Further, it is
possible to represent one complete round of Rijndael
using indicator vector matrix representation. The output
vector Xi, so obtained deviates from the indicator vector
representation. Finding a way of conversion of this byte
vector Xi so obtained, to an indicator vector form is still
an open problem.

REFERENCES

1. Daemen, J. and V. Rijmen. The block cipher

Rijndael. Available from NIST's AES homepage,
(http://www.nist.gov/aes)

2. Daemen, J. and V. Rijmen, 1998. AES proposal:
Rijndael. In AES Round 1 Technical Evaluation,
NIST. (http://www.esat.kuleuven.ac.be/\~rijmen/rijndael/,
http://www.nist.gov/aes)

3. Daemen, J. and V. Rijmen. The Design of Rijndael.
AES-Advanced Encryption Standard. Springer-
Verlag Berlin, Heidelberg, New York.

4. Courtois, N.T. and J. Pieprzyk, 2002. Cryptanalysis
of Block Ciphers with Overdefined Systems of
Equations. Asiacrypt 2002, LNCS 2501,Springer-
Verlag, pp: 267-287. (http://eprint.iacr.org/2002/044/)

5. Ferguson, N., J. Kelsey, B. Schneier, M. Stay, D.
Wagner and D.Whiting, 2001. Improved
Cryptanalysis of Rijndael. Fast Software
Encryption 2000, LNCS 1978, B. Schneier, Ed.,
Springer-Verlag, pp: 213-231.

6. Gladman, B., 1999. Implementation experience
with the AES candidate algorithms. Proc. 2nd AES
Candidate Conf., March 22-23, 1999, Rome, pp:
7-14.
(http://fp.gladman.plus.com/cryptography_technology/rijndael)

7. Ferguson, N., R. Schroeppel and D. Whiting, 2001.
A simple algebraic representation of Rijndael.
Selected Areas in Cryptography, SAC 2001, LNCS
2259, Springer-Verlag, pp: 103-111.

8. Lidl, R., H. Niederreiter, 1988. Introduction to
Finite Fields and their Applications. Cambridge
University Press.

9. McEliece, R.J.,1987. Finite Fields for Computer
Scientists and Engineers. Kluwer Academic
Publishers.

10. Menezes, A.J., P.C. van Oorschot and S.A.
Vanstone, 1996. Handbook of Applied
Cryptography. CRC Press.

