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Abstract: Rijndael-The AES[1-3] is 128-bit block cipher based on an elegant algebraic structure over F2
8. 

This cipher employs a simple approach to its substitution, permutation (SP) operations. We take a close 
look at its internals; the byte substitution transformation function is the only non-linear function in 
Rijndael - The AES. This transformation comprises of two steps operating on each byte. Here we are 
trying to remodel this to one step operation using indicator vector matrix representation. This 
representation is further extended to mathematically represent one complete encryption or decryption 
round of Rijndael the using indicator vector matrix representation that can be explored for better crypto-
analysis[4,5] of the cipher. 
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INTRODUCTION 

 
 Rijndael Algorithm[1-3] was designed by two 
Belgian cryptographers: Vincent Rijmen and John 
Daemen, as one of the candidates for the Advanced 
Encryption Standard (AES) selection. The AES 
committee was formulated by the U.S. Government 
under the umbrella of National Institute of Standards 
and Technology (NIST) to find another cryptographic 
algorithm in order to replace the existing 64-bit block 
cipher of 1977 - the Data Encryption Standards (DES) 
to protect sensitive digital information over the next 
few decades.  
 After a stringent qualifying process of three rounds 
involving the whole world’s cryptographic 
community[6], Rijndael algorithm was proposed by the 
AES committee as Advanced Encryption Standard – 
The AES on Nov. 26, 2001. Later on May 26, 2002 
NIST endorsed it as Federal Information Processing 
Standard namely FIPS-197 replacing DES (FIPS-46). 
 Rijndael possesses an elegant algebraic structure 
over F2

8[7-10]. It supports a variable block size and 
variable key size of 128, 160, 192, 224 or 256 bits each. 
But for the AES, its block size is fixed to 128-bits and 
keeping the variable key size of 128, 192 and 256 bits. 
It has 10, 12 or 14 iterations of round transformations 
depending on the key size of 128, 192 or 256 bits 
respectively in conjunction with an initial round of key 
addition. Each (except the last) round transformation 
function is composed of the four sub transformation 
functions: Byte Substitution or bs, Row Shift or rs, Mix 
Column or mc and Add Round Key or ak. The last 
round transformation does not include the mc function. 
  

In this study we present an analysis of the block cipher 
Rijndael while concentrating on its 128-bit version. 
This cipher employs a simple approach to its 
substitution, permutation (SP) operations. We take a 
close look at its internals, recast some of these and 
present the cipher in a manner amenable for better 
analysis. 
 
Notations: We fix the block size and key size to 128 
bit. We consider the 10 round version. We use the 
following notations. 
Let for all round index i 0, ,10= ⋅⋅ ⋅  and byte index 

15,,0 ⋅⋅⋅=j  : 

iX : jj th text byte of i-th round (in particular, 0Xj  is the 

initial input plain text byte and is fixed 
11X : jj

th cipher text byte. 

iK : jj th expanded key byte of i-th round (in particular 0Kj  

is the user defined key : 0K : k , k , k , ,k0 1 2 15j ⋅ ⋅ ⋅  

 W[i] = i-th key word of 32 bits. 
kn: nth key byte, { }175,,2,1,0 �=n  
Nk =  (key size)/32 = 128/32 = 4. 
Nb =  (block size)/32 = 128/32 = 4. 
Nr =  No. of cipher rounds = 10. 
 
 We use the standard convention of representing 
elements of  F2

8  as polynomials of degree 7, over F2. 
We also adopt the standard practice of treating the 
elements of  F2

8 as integers in the range 0, … ,255. 
Thus for example, F 82

α ∈  with 7 6 2 1x x x x 1α = + + + +  

would be referred as 199α = , without ambiguity. 
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 We define three functions namely Rotbyte(.), Rc(.), 
Rcon(.) & Iv[.] an indicator vector: 
 
i. Rotbyte(.) rotates the bytes of key within the word, 
when word oriented structure is considered for key 
expansion mechanism. If k ,k ,k ,k0 1 2 3  are four bytes of 
i-th  key-word   W[i]   arranged   in   big  endian format,  

[ ]( ) [ ]Rotbyte W k , k ,k , k W k , k , k , k0 1 2 3 1 2 3 0=   

  The byte substitution transformation of Rijndael 
uses an S-box, generated over F2

8 with 

( ) ( )( )x 1 03base 16+ ≡  as primitive element and 

( ) ( )8 4 3g x x x x x 1= + + + +  as the defining irreducible 

polynomial along with an affine transformation 

of ( ) ( )6 5x x x 1 63base16+ + + ≡ . Thus, bs, using S-box, 

transforms the individual byte a(x) to bs(a(x)). 
Mathematically: 

( )( ) ( )
( )( ) ( )
6 5bs a x x x x 1

4 3 2 8c x x x x x 1 mod x 1

= + + +

� �+ + + + + +� �
� �

 

where  ( ) ( ) ( )( )
1

c x a x mod g x
−

=  

Similarly 
[ ]( )

( ) ( ) ( ) ( )
b s W k , k , k , k0 1 2 3

W b s k , b s k , b s k , b s k0 1 2 3� �= 	 


 

and  
[ ]( )( )

( ) ( ) ( ) ( )
R o tb yte b s W k , k , k , k0 1 2 3

W b s k , b s k , b s k , b s k1 2 3 0� �= 	 


    

 
ii. Rc(a(x)) is another round dependent byte oriented 
constant function defined over F2

8. POW(a(x)) contains 
powers of a(x) in the field. Then 

( )( ) ( )( ) ( )( )R c a x PO W a x m od g x=  

In particular, for ( ) { }a x 1, 2, ,10∈ �  

( )( ) { }Rc a x 1, 2, 4,8,16,32, 64,128, 27,54=  
 
iii. Rcon(a(x)) is a round dependent word oriented 
function such that ( )( ) ( )( )( )Rcon a x Rc a x ,0,0,0 .=  Here the 

commas define separation of each byte arranged in big 
endian format. 
 
iv. Indicator vector representing a byte, say 

( ) 4 3a x x x 1 25,= + + ≡  is a 256x1 matrix with 1 only at 
25th position and zeros elsewhere, i.e. the vector 
representing a(x) has 1 at the place corresponding to the 
numerical value of the byte and zero at all other 
positions in the matrix 0 to 255. Hence it will be of the 
form: 
 
Iv[a(x)] : [0 0 0 0 0 … 0  1 0 0 … 0]T  
   ↑0                    ↑25        ↑255 
 

Brief description of Rijndael internals: Rijndael has 
an elegant algebraic structure over F2

8. The input plain 
text or the output cipher text of block size of 128-bits is 
viewed as a 4x4 matrix of 16 bytes arranged in a 
column major format. Rijndael consists of an initial 
round of key addition (ak) followed by 10 iterations of 
round transformations for the key size of 128-bits. Each 
(except the last) round transformation function is 
composed of the four sub transformation functions: 
Byte Substitution or bs, Row Shift or rs, Mix Column 
or mc and Add Round Key or ak. The last round 
transformation does not include the mc function. 
 
Byte substitution transformation: bs: This is the only 
non-linear transformation in the entire Rijndael 
structure. It operates independently on each byte using 
a substitution table (S-box). The S-box, which is 
invertible in nature, is composed of two 
transformations: 
1. Taking multiplicative inverse of the desired byte in 

the finite field GF(28) with ( ) ( )x 1 03base16+ ≡  as 

primitive element and ( ) ( )8 4 3 1g x x x x x 1= + + + +  as 

the defining irreducible polynomial. The element 

1600base  is mapped to itself. 

2. Applying an affine transformation of 

( )6 5 1x x x 1+ + +  equivalently 63 base16 . 

 
 Thus, the byte substitution operation transforms a 
byte a(x) to bs(a(x)) as per the following relation. Let 
1. ( ) ( ) ( )( )1c x a x m o d g x−=  

2.  ( )( ) ( )
( )( ) ( )( )1mod1

1
81234

56

+++++
++++=

xxxxxxc

xxxxabs  

 
 The inverse S-box is constructed by taking an 
inverse affine transform followed by a multiplicative 
inverse in the finite field F 82

. 

1. ( ) ( )
( )( )( ) ( )( )1mod

1
836

2

+++
++=

xxxxxabs

xxc  

 2. ( ) ( ) ( )( )1a x c x mod g x−=  

 
Row shift transformation: rs: The 16 input bytes are 
arranged in a column major format of a 4x4 matrix. To 
achieve the desired confusion, a linear transformation rs 
is applied. Here, the bytes in each row of the matrix are 
given a cyclic left shift. For i = 1, 2, 3, 4 the bytes in the 
i-th row are circularly left shifted by (i-1) bytes. 
 The inverse of a row shift transformation is 
obtained by cyclically shifting the bytes in the reverse 
direction i.e. circularly right shifting 0, 1, 2, and 3 bytes 
in the first, second, third and fourth row of the 4x4 
input matrix, respectively. 
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Mix column: mc: The linear transformation mix column 
provides the diffusion by mixing the bits of each column. The 
function β(z), given below, operates on the input column by 
treating it as a degree three polynomial in  [ ]F z82

. This 

polynomial is multiplied by a rotated version of a standard 
polynomial ( ) [ ]m z F z82

∈  given by 

( ) 3 2 1m z 03z 01z 01z 02= + + +� �	 
  and reduced modulo the 

polynomial ( ) [ ]4z 1 F z82
+ ∈ . Here the coefficients denote 

elements of F 82
. It is known that the coefficients of m(z) are 

so chosen that the result β(z).m(z)is invertible modulo (z4 + 1) 
although this polynomial is reducible over F2. 
 For example, a column of mc, [a0, a1, a2, a3]

T is 
considered as: 

( ) [ ]3 2
3 2 1 0 82

z a z a z a z a F zβ = + + + ∈  

Then,  

( ) ( ) ( ) ( )
( )
( )
( )
( ) ( )

( )

6 5m z z 03 a z 03 a 01 a z3 2 3
403 a 01 a 01 a z1 3 2

303 a 02 a 01 a 01 a z0 3 2 1
201 a 02 a 01 a z0 2 1

001 a 02 a z 02 a z0 1 0
4mod z 1

⋅β = ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅

+ ⋅ + ⋅ + ⋅

� �+� �
� �

 

( ) ( )

a02 03 01 01 0
a01 02 03 01 1m z . z
a01 01 02 03 2
a03 01 01 02 3

� �� �
� �� �
� �� �β =
� �� �
� �� �
� �	 
 	 


 

 The inverse of Mix column transformation is similar to 
the forward operation with the only difference that the inverse 
of the fixed polynomial i.e. [m(z)]-1 is used and it is given by    

( ) 1 3 2 1m z 11z 13z 09z 14
− = + + +� �	 
  

Hence, 

( ) ( )

a14 11 13 09 0
a09 14 11 131 1m z . z
a13 09 14 11 2
a11 13 09 14 3

� �� �
� �� �− � �� �β =� �	 
 � �� �
� �� �
� �	 
 	 


 

 
Add Round Key: ak: In this function, the round key is added 
to the current byte as bit-wise exclusive OR. The XOR 
operation is the inverse of itself. 
 
Modified Rijndael’s key expansion mechanism: The Key 
expansion mechanism for 128-bit key size, in Rijndael is 
defined in the following manner. 
 The expanded key of ( )( )N N 1 44b r∗ + =  words is 
derived from the 4 words of the user defined key. The first Nk 
(= 4) words, W[0], … , W[3] of the expanded key are filled 
with the user defined original cipher key bits. The subsequent 
key words for all Nk ≤≤≤≤ i < (Nb * (Nr + 1)) i.e. 4 ≤ i < 44 
alternatively i = {4, …, 43} are given by: 

 [ ]

[ ] [ ]( )( )
( ) ( )

[ ] [ ]
( )

W i N Rotbyte bs W i 1k

Rcon i / N i 0 Nk kW i
W i N W i 1k

i 0 N k

 � − ⊕ −
	�

� ⊕ ∀ = �� 
= �
� − ⊕ −� 	

�
∀ ≠ �� 
�

 

We have modified the key expansion algorithm in the 
following manner: As the functions bs(.) and Rcon(.) 
transformations inherently operate on individual bytes of 
every input word, thus, a modified byte oriented version for 
key expansion algorithm can be derived. Therefore, for the 
present study with key size and block size of 128 bits and 10 
cipher rounds, a total of 176 [= 4* (Nb * (Nr + 1))] bytes from 
the 16 bytes    (=128 bits) of the user defined key kn with n = 
{0,…,15} are to be expanded. 

 First 4*Nk (=16) bytes, defined as 0K : k , k , k , , k0 1 2 15j ⋅ ⋅ ⋅  

of the expanded key are filled with the original 128 user 
defined key bits stored in big endian format. For subsequent 
rounds, the expanded key bytes at n = {16, …, 175} are given 
by the following relations: 
i. when n = 0 (mod 4* Nk), the four consecutive key bytes at n 
to n+3 locations are obtained through: 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

k k b s k R c n / 1 6n n 1 6 n 3
k k b s kn 1 n 2n 1 1 6

k k b s kn 2 n 1n 2 1 6

k k b s kn 3 n 4n 3 1 6

= ⊕ ⊕− −
= ⊕+ −+ −
= ⊕+ −+ −
= ⊕+ −+ −

 

ii. The subsequent expanded key bytes for a particular round 
i.e. from (n+4)th byte to (n+15)th byte of kn, are obtained 
through:  k k kn n 16 n 4= ⊕− −  
 Alternatively, these expanded key bytes can be obtained 
in the form of round keys Ki

j through the following relations 
with the original key bytes filled at i =0 & j = 0, …, 15 in K0

j. 
For 0≤ i <10  

( ) ( )

( )
( )
( )

( ) ( )

( )
( )
( )

( ) ( )

i 1 i iK K bs K Rc i 10 0 13

i 1 i iK K bs K1 1 14

i 1 i iK K bs K2 2 15

i 1 i iK K bs K3 3 12

i 1 i i iK K K bs K Rc i 14 4 0 13

i 1 i i iK K K bs K5 5 1 14

i 1 i i iK K K bs K6 6 2 15

i 1 i i iK K K bs K7 7 3 12

i 1 i i i iK K K K bs K Rc i 18 8 4 0 13

i 1 i iK K K59 9

+ = ⊕ ⊕ +

+ = ⊕

+ = ⊕

+ = ⊕

+ = ⊕ ⊕ ⊕ +

+ = ⊕ ⊕

+ = ⊕ ⊕

+ = ⊕ ⊕

+ = ⊕ ⊕ ⊕ ⊕ +

+ = ⊕ ⊕ ( )
( )
( )

( ) ( )

( )
( )
( )

i iK bs K1 14

i 1 i i i iK K K K bs K10 10 6 2 15

i 1 i i i iK K K K bs K711 11 3 12

i 1 i i i i iK K K K K bs K Rc i 112 12 8 4 0 13

i 1 i i i i iK K K K K bs K513 13 9 1 14

i 1 i i i i iK K K K K bs K14 14 10 6 2 15

i 1 i i i i iK K K K K bs K715 15 11 3 12

⊕

+ = ⊕ ⊕ ⊕

+ = ⊕ ⊕ ⊕

+ = ⊕ ⊕ ⊕ ⊕ ⊕ +

+ = ⊕ ⊕ ⊕ ⊕

+ = ⊕ ⊕ ⊕ ⊕

+ = ⊕ ⊕ ⊕ ⊕

 

 
 Till now we have discussed briefly the internals of 
Rijndael algorithm. Now we are going to present the 
modified form of the bs followed with indicator vector 
matrix representation of one complete round involving 
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all the four transformation functions namely: bs, rs mc 
and ak in the subsequent sections. 
 
Modified byte substitution bs transformation: The bs 
transformation, as stated in previous section comprises of two 
steps – first step is to calculate multiplicative inverse of the 
desired byte followed by the second step of an affine 
transformation. Let b b , b , b , b , b , b , b , bi 0 1 2 3 4 5 6 7  represents 
the bits of a byte as a vector in big endian format.  In matrix 
form, the affine transformation component of the S-box can 
be expressed as: 

'b0
b1 0 0 0 1 1 1 1' 0b1
b1 1 0 0 0 1 1 1 1'b2 b1 1 1 0 0 0 1 1 2

'b b1 1 1 1 0 0 0 13 3
' 1 1 1 1 1 0 0 0 b4b4

0 1 1 1 1 1 0 0 b5'b5 0 0 1 1 1 1 1 0 b6
'b 0 0 0 1 1 1 1 1 b6 78 8 8 1
'b7 8 1

� �
� �

� �� �� �
� �� �� �
� �� �� �
� �� �� �
� �� �� �
� �� �� � = � �� �� �
� �� �� �
� �� �� �
� �� �� �
� �� �� �
� �� �� � 	 
 	 
× ×� �

� �	 
 ×

1
1
0
0
0
1
1
0 8 1

� �
� �
� �
� �
� �
� �⊕ � �
� �
� �
� �
� �
� �	 
 ×

 

The above matrix can be compactly represented as:  
 

'B A B AF= ⋅ ⊕  (1) 

Where, ( )4 3 2 1A x x x x 1≡ + + + +  over F2
8 

and  ( )6 5AF x x x 1≡ + + +  over F2
8 

 The matrix representation of byte B can further be 
represented as product of two matrices: FF[8 x 256] and 
Iv[256 x 1]. Each row of FF matrix represents the 
multiplicative inverse in bit vector form of the corresponding 
individual byte. Iv matrix, as described earlier, gives the 
indicator vector representation of the byte under 
consideration. Hence, the equation (1) transforms to: 
 

'B A FF Iv AF= ⋅ ⋅ ⊕  (2) 
 The inverse byte substitution transformation can 
similarly be represented as: 
 

' 1 1B A FF Iv AF− −= ⋅ ⋅ ⊕  (3) 

Where, ( )1 6 3A x x x− ≡ + +  over F2
8 

and  ( )1 2AF x 1− ≡ +      over F2
8 

 Here, we partially linearized the bs transformation. 
In the next section we extend this formulation idea of Iv 
to recast the Rijndael round functions to represent 
mathematically as a simple Iv matrix relation. 
 
Recasting of Rijndael internals   

i 1 i 1X , , X0 15
− − →�

 Round Functions 
(bs, rs, mc & ak)                 

i iX , , X0 15→ �

 

 
i 1 i 1K , , K0 15
− −
�

 
 

Fig. 1: Pictorial representation of an i-th round 
transformation function 

 The Fig. 1 gives the pictorial representation of an  
i-th round transformation function. We recast the cipher 
round with an abuse of notation in the following 
manner: 
Let , j 1, 2,3jµ =  are the “operators” such that: 

( )( )
( )( ) ( )( )

( ) ( )( ) ( )( )

bs a x ,1

2 x bs a x mod g x ,2

3 x 1 bs a x mod g x ,3

µ = µ =

µ = ⋅µ = ⋅

µ = ⋅µ = + ⋅

  

 These jµ `s correspond to the mc transformation of 

the bs transformed byte and their position in the matrix 
R corresponds to the rs transformation on the byte X. 
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 R represented above seems to be a 16x16 matrix 
but actually is 4096 x 4096 with each of jµ  as 

256x256 matrix and each ‘0’ also represents a null 
matrix of size 256x256. Further, each row of jµ  is an 

indicator vector representation of corresponding byte of  
mc operated S-box.  
 Thus, one round of Rijndael can completely be 
characterized as: 
 

i i 1 i 1X R X K− −= ⋅ ⊕  (4) 

where 
Ti i iX X , ,X0 15

� �=
� �	 


� : vector of 16 indicator vectors 

form 4096 x 1 
Ti 1 i 1 i 1X X , , X0 15

− − −� �=
� �	 


� : vector of 16 indicator vectors 

form 4096 x 1  
Ti 1 i 1 i 1K K , , K0 15

− − −� �=
� �	 


� : vector of 16 indicator vectors 

form 4096 x 1 
The output iX  does not result in an indicator vector. 
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CONCLUSION 
 
 The algorithm proposed in this paper can be 
successfully used to remodel the two-step byte 
substitution transformation to one step. Further, it is 
possible to represent one complete round of Rijndael 
using indicator vector matrix representation. The output 
vector Xi, so obtained deviates from the indicator vector 
representation. Finding a way of conversion of this byte 
vector Xi so obtained, to an indicator vector form is still 
an open problem.  
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