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Abstract: This study describes a framework for design and development of intelligent simulation 
environment. The intelligent simulation environment prescribes an integrated rule-based approach to 
simulate and optimize a manufacturing system. An intelligent simulation model is a computer program 
capable of improving its performance by referring to production constraints, system's limitations and 
desired targets. It is a goal oriented, flexible and integrated approach and produces the optimum 
solution by referring to an integrated database. The properties and modules of the prescribed intelligent 
simulation environment are: 1) parametric modeling, 2) flexibility module, 3) integrated modeling, 4) 
rule-based module, 5) integrated database and 6) learning module. The design phase of the intelligent 
simulation environment is discussed for a large multi product assembly shop and a heavy continuous 
rolling mill system. 
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INTRODUCTION 

 
 Computer simulations are exquisite tools for 
modeling and analyzing the true performance of the 
evolving production systems. An intelligent computer 
simulation environment would allow the designers of 
manufacturing systems to predict and provide the means 
to control the relevant disturbances to an acceptable 
degree of completeness. It would automatically enable 
us to foresee the behavior of such systems in normal 
and increased production situations[1-3]. Furthermore, It 
should intelligently guide us to a smoother and more 
efficient performance for production systems. 
 Khoshnevis, Lucker and Adelsberger and 
Shannon[4-7] discuss the importance of intelligent 
simulation modeling. Rao et al. and Oren and Zeigler to 
overcome the inflexible and limited issues of traditional 
simulation techniques[8-10] propose intelligent 
knowledge-based modeling. An intelligent simulation 
environment is a large knowledge integration system, 
which consist of several symbolic reasoning systems 
(LISP, PROLOG, etc.) and numerical simulation 
software. In fact, these studies suggest a framework for 
integration of numerical simulation, expert system and 
artificial intelligence techniques.  
 An integrated computer simulation environment for 
optimization of production systems is proposed by 
Batocchio and Franco[11]. The prescribed environment 
is built by referring to the concepts of Theory of 
Constraints. Khoshnevis and Parisay[12] propose an 
intelligent simulation environment based on the idea of 
machine learning and improvement mechanism. They 
describe the potential of learning in simulation as means 
for extracting rules to be used in expert systems. 
Prakash and Shannon[13,14] propose a goal-oriented 

simulation environment for optimization of 
manufacturing systems. In a goal-oriented environment, 
once the system is described and the goals specified, the 
simulation system drives itself to goal achievement.   
 Several studies show the applications of intelligent 
simulation in the area of production systems. These 
studies discuss the intelligent simulation environment of 
various control strategies. An integrated knowledge-
based model is developed for complex man-machine 
systems by Azadeh[15]. Intelligent simulation 
environments are also proposed for flexible 
manufacturing systems, information systems, process 
plants, just-in-time and aerospace manufacturing 
systems[16-23].  
 In this study, an intelligent modeling environment 
is a flexible, integrated, and knowledge-based 
framework capable of learning and correcting itself. It is 
goal oriented and searches for the best solutions by 
referring to desired target. The importance of an 
intelligent approach is more evident by noting the 
properties and requirements of the factory of the future. 
The challenge is to develop the technology required to 
achieve a new generation of manufacturing systems. 
They are not only flexible and computer integrated, but 
are capable of adapting themselves to necessary 
changes[24,25]. Furthermore, the next production frontier 
is operating factories as learning laboratories[26,27]. An 
intelligent Simulation environment could aid us 
overcome the evolving requirements of the factory of 
the future. 
 It is therefore the objective of this study to describe 
an intelligent knowledge-base simulation environment 
for optimization of the performance of manufacturing 
systems. An intelligent simulation environment is 
proposed by integration of: 1) an integrated data base 
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and modeling, 2) rule-based (goal-oriented) behavior 
and 3) parametric and flexible structures discussed in 
this study. The prescribed framework is discussed for a 
large multi product assembly shop and a heavy 
continuous rolling mill. Furthermore, only the 
development process of the intelligent simulation 
environment and its design elements are described for 
the two systems and complete modeling process is left 
for a future extended study. Therefore, the traditional 
simulation models are developed for the above systems 
and only the process of translating the traditional 
models into the prescribed intelligent simulation 
approach of this study is explained.  
 
Integrated simulation modeling: Integrated modeling 
environment is an essential aspect of intelligent 
simulation and is composed of two features: 1) 
integrated database and 2) integrated modeling. The 
former requires integrated rather than stationary 
approach of modeling. Furthermore, all system 
requirements, limitations, constraints, inputs, 
interrelationships (with other systems) and feedback are 
taken into account and modeled. Integrated database is 
complementary to integrated modeling and is concerned 
with comprehensive and robust data collection analysis 
in the system being studied. Moreover, it should be 
capable of revealing system status based on 
maintenance and operation activities. Data analysis is an 
important aspect of a simulation study. There are three 
types of input data available: 1) The data related to 
general engineering knowledge of design and 
manufacturing of the operations and processes, 2) the 
data from experiences of the specific system being 
studied and 3) the data collected from a comprehensive 
time study. These three types of data may be used to 
assess the hardware failure rates, expected operation 
times, inspection and maintenance data, etc. The 
objective of data collection and analysis of an 
intelligent simulation project must be to integrate these 
three types of information to get to the best solutions. 
An integrated database is a key element in developing 
an intelligent knowledge-based simulation environment.  
 The components' failures and operation and service 
times of complex production systems may not be easily 
predicted due to their stochastic and ambiguous nature. 
There are two major problems: first, the engineers 
prefer to deal with absolutes than probabilities and 
second, they do not collect enough data to make 
statistical estimates of important parameters such as 
process times, failure times, etc. Therefore, the data 
analysis techniques show biased results that may or may 
not foresee the true nature of such systems. This means 
the simulation results may not reflect the actual 
performance of the system being studied.  
 Therefore, there is a need to understand the 
stochastic nature of such systems and collect necessary 
and sufficient data to assess their non-transient point 
estimates. The necessary and sufficient data means 

collecting enough data and assessing steady state of 
point estimates. Also, proper statistical techniques such 
as Goodness for Fit techniques must be used[28]. 
Therefore, an integrated database in context of an 
intelligent simulation environment must address the 
above issues. It must contain robust and meaningful sets 
of data according to the laws of probability and 
statistics. It acts as a knowledge base for the simulation 
environment. Simulation environment retrieves data 
from integrated database and vice versa. The integrated 
database must be designed such that any information 
regarding the system status could be retrieved from it. 
 
Intelligent simulation: It must be noted that each 
system is atypical and the problem solving approach of 
each system must be based on Systems Uniqueness 
Philosophy. This means each intelligent simulation 
model is unique and requires an approach that dwells on 
its own contextual requirements. There is a need to 
adopt a more holistic approach to simulation of 
manufacturing systems. Moreover, the whole picture 
must be considered and the trap of dealing with 
specialties with which we feel comfortable must be 
avoided. As mentioned, an intelligent simulation 
environment requires integrated rather than stationary 
approach of modeling. Consequently, hidden points and 
bottlenecks are reduced.  
 Once the objective of the study is specified, the 
system under study needs to be described. Conceptual 
models are used to address the states, conditions and 
operations of the system being studied. Also, system’s 
tolerances, capacity requirements and its interactions 
with other systems must be modeled. An intelligent 
simulation model is a set of versatile, flexible and 
parametric computer programs (Fig. 1). It is composed 
of an integrated database that by learning process (rule-
based module) leads to the best answer or a set of 
optimum solutions. The rule-based module guides the 
model toward optimum solutions. The flexibility 
module defines system's tolerances, capacity 
requirements and limitations. The intelligent simulation 
environment of this study is composed of the following 
features: 
 It has a flexible structure such that various 
alternatives and strategies could be retrieved from it. It 
is composed of parametric rather than numeric 
simulation programs.  
 It is a goal-oriented simulation model. It searches 
for the best solution or a set of optimum answers by 
referring to actual system's limitations and production 
constraints. It retrieves data from the integrated 
database to find the best solution. Also, it inputs the 
new information to the database for future use. The 
goal-oriented approach is modeled in a rule-based 
fashion. 
 An intelligent simulation model is composed of a 
learning module. It learns from its previous experiences 
and creates new rules. The new rules are applied to 
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solve new problem or find better solutions. This process 
is repeated until a best answer is reported. Furthermore, 
if the new rule or strategy is matched with system's 
expectations (objectives), it is then chosen as the best 
answer. The new strategies are stored in the integrated 
database for the future use.  
 It is an integrated rather than an isolated approach 
of simulation modeling. It contains the most important 
interrelationships, properties and functions of the 
system being studied. This feature involves globally 
rather than stationary (local) methods of synthesis. This 
is quite important in locating hidden points and 
deficiencies that may exist in production systems. It 
considers all endogenous and exogenous factors that 
affect the system under study. 
 
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
Fig. 1: Design elements of the intelligent simulation 

environment 
 
First prototype: To show how an intelligent 
environment could be designed and developed, a large 
manufacturer of electricmotors was considered. The 
system being studied is composed of three units: 1) coil 
operation shop, 2) core insulation shop and 3) final 
assembly shop. The semi-finished products from coil 
operation and core insulation shops are required to go 
under special treatments and are therefore sent to other 
shops outside the system and are finally routed back to 
core insulation and final assembly shops, respectively 
(Fig. 2). There are 21 manual, semi-manual and fully 
automated workstations. The target was defined as to 
determine the strategies required meeting the increased 
demand by 30 percent. Historical data, general 

engineering knowledge, specifications, layouts were 
collected systematically. In addition, an identification 
form was developed for each workstation. It contains 
valuable information such as process times, buffer size, 
number of operators and machines. It also reveals 
machine speed rates and description of operations of a 
workstation. Performance measures were defined as 
daily production rates in each the three shops. 
 Process times were collected by a time study 
methodology and analyzed through a series of robust 
statistical techniques. Other information such as 
machine's speed rates, buffer sizes, etc. were provided 
by historical data and general engineering knowledge of 
supervisors. Due to stochastic nature of the processes, 
the distribution functions of several activities were 
evaluated. Goodness of Fit techniques was applied to 
evaluate the best distribution functions for all activities 
and processes of the assembly shop. An integrated 
database was designed to contain all of the above 
information.  
 The conventional simulation model was developed 
by AWESIM simulation language[29,30]. It contains 
detailed information about the processes and operations 
of the assembly shop. To translate the traditional 
simulation model into the prescribed approach, the 
interacting systems namely: Insulating Varnish and 
Machine shops should be modeled into the simulation 
environment. To create a flexible and parametric 
environment, a series of Visual SLAM variables and 
network functions must be modeled into the simulation 
program. Furthermore, all variables and constants must 
be changed to global variables and mathematical 
expressions and constraints should model system’s 
limitations such as production capacity, machine 
tolerances, etc. The simulation must be capable of 
generating various alternatives (by changing resources 
and tolerances) until the optimum solution is reported. 
The database should be capable of interacting with the 
simulation environment through a series of READ and 
WRITE statements. By designing a sequence of rule-
based conditions, the model searches for the optimum 
solution in relation to the defined objective. The learned 
strategies are stored in the integrated database for the 
future use and comparative analysis. This process is 
repeated until the strategies required to increase the 
throughput by 30 percent are reported. The simulation 
model must be verified and validated prior to translation 
into intelligent environment. Therefore, it was verified 
and validated against the actual assembly shop. Daily 
production rate was chosen as the validation parameter. 
The assembly shop was simulated for one working day 
and repeated 100 times. The outputs of 100 simulation 
runs were compared with the production rates of 100 
working days and hence the null hypothesis Ho: µ1 = µ2 
was  tested   at   α = 0.05. The results are shown in 
Table 1. Also, from the independent t-test, we conclude 
that the average production rates for assembly shop and 
simulation are equal (at α = 0.05). 
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Fig. 2: A general overview of the assembly shop 
 
Table 1: The throughput results for simulation and actual system 
   No. of observations Average production Standard deviation Confidence limits 
Assembly  100 days  50.97  42.87  [42.86, 59.37] 
Simulation  100 days  46.25  40.36  [38.33, 54.16] 
 
Note that the equality of variances of Ho: σ1

2 = σ2 
2 by 

F-test was tested prior to the t-test. Furthermore, the 
null hypothesis was accepted at α = 0.05.  
 Table 2 shows the classification of various 
alternatives in unit three of the assembly shop. The 
number in the boxes below workstation number 
indicates the number of additional operators to a 
particular workstation. For example, if one operator is 
added to workstation number eleven, 17.4 percent 
increase in production throughput would be expected. 
The alternatives shown in Table 2 are chosen from a set 
of more than 25 scenarios. In conventional simulation 
approach, each scenario is separately designed, 
modeled, run and evaluated by the user. This approach 
is a very time-consuming effort and may lead to human 
errors. In addition, due to complexity of manufacturing 
systems, a near optimum solution may be introduced. 
However, by utilization of the intelligent simulation 
framework (discussed in this study) the user directly 
obtains the best solution (alternative number 4) without 
confusion in a shorter time. Furthermore, system 
limitation is defined as allowance of addition of up to 
two operators to workstations number 11, 12, 13 and 
14. Alternative number 4 may be achieved through a 
series of learned rules and strategies and flexible and 
integrated structures of the simulation model of the 
system being studied. Moreover, the intelligent 
simulation model considers system’s limitation and by a 
rule-base learning mechanism locates the optimum 
rather than near optimum solution. The reader should 
note that the percent improvement in throughput 
remains almost the same after one operator is added to 
workstations number 11, 12 and 13. However in 
conventional simulation approach alternative number 5 
or 6 may be selected if further analysis is not 
performed. It means alternatives with the same outcome 
but higher costs are proposed.  

Table 2: Selected alternatives based on conventional simulation 
results 

Alternative  Storkstation Number Percent improvement  
Number 11 12 13 15 throughput 
1  - - - - 0.0 
2  1 - - - 17.04 
3  1 1 - - 19.6 
4  1 1 1 - 35.2 
5  1 1 1 1 37.5 
6  1 1 1 2 37.1 
7  1 1 2 1 36.2 
8  1 2 1 1 35.6 
9  2 1 1 1 36.9 

 
Second prototype: The system being studied is a 
continuous rolling mill line of a large-scale steelmaking 
factory. Although the workshop is capable of producing 
various types of profiles, but the major products are 
profiles 14 and 16. Furthermore, the input of this 
workshop is steel-bars and the output products are 
different types of profiles. The steel-bars are transferred 
from the casting workshop to the storage facility in the 
Rolling mill workshop. Then, they are charged to a 
furnace with the production rate of 200 tons per hour. 
There is a 400-tons cutter after the furnace station. The 
cutter is used to divide a bar into smaller parts, when 
the production line is being tested. After the cutter, 
there are rough mills that are used to shape bars. There 
are 9 rough mills and each of them is made from two 
rolls. The mills number 1,3,5,7 and 9 are positioned 
horizontally, and the dies number 2, 4, 6 and 8 can be 
positioned vertically or horizontally according to the 
type of profile. The shape of a heated steel-bar is 
changed, when it passes through these mills. After 
rough mills, there is a 130-tons cutter. In a normal 
condition it cuts off the head of the bar and in an 
emergency situation, it divides the bar into the small 
parts. There are 7 final mills in the next station. Passing 
through this station, steel-bars take their final shape.  
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Fig. 3: Overview of the heavy rolling mill system 
 
Table 3: Two-sample analysis results of the rolling mill and simulation  
 Number of observation Average throughput rates (tons) Standard deviation 95% Confidence interval 
Rolling Mill  11 4348.00 278.17 4,158.28, 4,537.72 
Simulation 12 4346.67 211.25 4,210.80, 4,482.54 

 
Table 4: The sensitivity of furnace’s capacity vs. daily production rate of the line 
Furnace’s capacity (tons/hour) 150 180 200 220 250 More than 250 
Monthly production rate (tons) 84,593.9 112,936.9 116,261.8 120,603.2 123,100.4 About 123,200.0 

 
 There is a 63-tons cutter in the next station that 
divides the bars into three parts. Then the bars are 
transferred to a cooling channel and the finishing 
station. There are two parallel machines in the finishing 
station to increase the line efficiency. Bars are 
transferred to a 630-tone cold cutter and are divided to 
12-meter parts. Then, they are moved to the inspection 
section. Afterwards, they are weighted, labeled and 
moved to the storage. The parts that pass the inspection 
are moved to the packing station composed of two 
parallel machines. The existence of two parallel 
finishing and packing machines has created two left and 
right lines from the beginning of the finishing station. 
Figure 3 shows the overview of the rolling mill system. 
 AWESIM Simulation language was used to build 
the traditional model. The target was defined as to 
optimize the line without any additional resources. The 
simulation model of the rolling mill workshop is very 
similar to a Just in Time (JIT) production model. If the 
rolling mill workshop is divided into storage, furnace, 
finishing, cutting and inspection departments, the 
operation of each part will depend on the last and the 
next parts. Therefore, the simulation model for this 
system is built according to the JIT logic of the actual 
system and considers the available capacity between 
stations instead of the economic batch. Two different 
criteria are chosen to examine the validation of the 
simulation model: 1) the throughput of the furnace, and 
2) the production rate of the Rolling mill line. The 
simulation was run for 5 days and repeated 12 times. 
Measured values were examined by the t-test for the 
two systems. The test has proved the statistical 

similarity between the model and the system 
throughputs. Furthermore, from the t-test it is concluded 
that the average production rates for the rolling mill and 
simulation systems are statistically equal (at α = 0.05). 
As an example, the comparison of the throughput of the 
furnace for the two systems is shown in Table 3. The 
equality of variance was tested prior to the t-test. 
 The simulation model was run for a period of six 
months. The conditions of workstations are monitored 
and since the furnace is the most important station in 
this workshop, its condition was analyzed in through 
various simulation runs. The results showed that the 
furnace cannot feed the line properly, and to reach a 
balanced production line the capacity of this station 
should be increased to an optimum level. Therefore, the 
bottleneck in the line is the furnace station. To handle 
this issue, we need to know which station would be the 
next bottleneck? Also, if the furnace problem were 
resolved, by how much the production rate would 
increase? Finally, what is the optimum capacity of the 
furnace? This is exactly how the rule base module 
works in an intelligent simulation environment. It would 
automatically generate the solutions to the above 
questions through a series of if > then mechanisms. 
 To find answers for the above questions, the 
conventional simulation model was ran several times 
and the results were analyzed. In the first attempt, the 
furnace capacity is supposed to be unlimited. In this 
case it was expected that the line would become fully 
utilized. But the simulation results showed 17.9 percent 
of idle time for the furnace and the production line. This 
idle time was caused by the failure of another station in  
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Table 5: The properties of the integrated simulation environment 

Property/Module Definition Example in Visual SLAM 

Parametric simulation Modeling of variable and constants in terms of global 
variables 

XX[1] 
ARRAY[1,4] 

Flexibility module 
Modeling of system and sub-system limitations in 
terms of mathematical expressions and constraints 

Daily production rate: LL[1]<= 100 
Machine speed rate: 4 <=LL[2] <=6 
Service time: RNORM(11, 2) 

Integrated modeling 
Modeling of all activities (operation, maintenance, 
inspection), interacting systems and exogenous 
factors 

In the examples shown in this study, operation, 
maintenance, inspection activities and 
interacting systems should be modeled 

Rule-based module Whether a sets of conditions is satisfied in terms of if 
> then 

ACTIVITY,1,0,LL[1]<=LL[4], A1 
ACTIVITY,2,0, , A2 

Integrated database 
A database containing information about service, 
arrival and machine rates, process times, buffer 
capacity, etc. Also, new learned data is stored here  

A database designed in EXCEL to interact 
with the simulation through a series of WRITE 
and READ statements  

Learning module 
It is a process of learning and storing information in 
the integrated database by combination and 
utilization of the above properties and modules 

IF XX[4] = 150 THEN XX[5] = 84593.9 
IF XX[4] = 180 THEN XX[5] = 112936.9 
NNQ(I)<NNQ(J) THEN SELECT J  

 
the line. Another run showed that the packing station 
would be the next bottleneck, if the furnace capacity 
increases. It was also predicted that if the furnace 
capacity increases, the production rate of the line would 
increase by about 46 percent. 
 In order to determine the optimum capacity of the 
furnace, the simulation model was run with different 
capacities and the results were evaluated. This analysis 
showed that the increase in the furnace capacity up to 
250 tons per hour would have a positive effect on the 
production rate. But after 250 tons per hour, the 
production rate remains almost constant. Therefore, 
increasing the furnace capacity to more than 250 tons 
per hour does not have logical and economic 
justification. Table 4 illustrates the line’s production 
rate with different furnace capacities. In fact, with an 
ideal furnace (250 tons/hour), the monthly production 
rate increases to about 123,000 tons or 52 percent 
increase in the throughput of the shop would be 
observed. 
 The readers should note that the traditional 
simulation approach required several individual runs 
and analysis to assess the major bottleneck (furnace) in 
the line, some of which were reported in the last 
paragraph. This challenge was also repeated to obtain 
the results of Table 4, which is a very time consuming 
and complex process. However, the development and 
modeling of an intelligent simulation environment for 
the rolling mill would automatically generate the results 
of Table 4 by integration of the prescribed modules.  
 In order to integrate the model and increase it’s 
flexibility, it is made of 13 different networks, and each 
network represents an aspect of the production process. 
Maintenance networks should be designed to define the 
downtimes caused by failures and maintenance. The 
model is developed such that it could be integrated with 
other workshops of the factory. Therefore, the 
integrated modeling property of the prescribed 
environment is easily achieved for the line. All variable 
and constants related to operation, maintenance and 
inspection activities must be translated into AWESIM 
global variables (parametric module). 
 

A set of mathematical constraints and expressions need 
to be developed to express platform and furnace 
capacity and furnace speed tolerance to represent the 
flexibility modules. The integrated database would only 
act as knowledge base for the learned strategies. 
Furthermore, as new alternatives are chosen and tested 
and checked against each other by the intelligent model, 
the new values are stored in the database for the future 
use. For example, if the intelligent simulation (through 
various intelligent and automatic runs) identifies 
furnace as the major bottleneck, the learning module 
tries to improve its performance by changing its 
capacity. The new learned strategies are then stored in 
the database. This is achieved by trials and errors and 
by using READ and WRITE statements of Visual 
SLAM. 
 

CONCLUSION 
 
 This study presented a conceptual framework for 
development of intelligent simulation in manufacturing 
systems. The prescribed framework was modeled and 
discussed for two actual manufacturing systems. An 
intelligent simulation model must be flexible so that 
various alternatives and strategies could be retrieved 
from it. In addition, it must incorporate management 
and economics factors to drive to the best solutions[21]. 
 Several factors must be noted to accomplish an 
intelligent simulation model. First, to implement its 
findings, the operations, processes and activities of the 
system being studied must be studied. Second, a more 
holistic simulation approach to problems of production 
systems must be incorporated. The distinct feature of 
the prescribed approach is integration of flexible 
structure, rule-based module, integrated database and 
modeling and parametric simulation modeling (Table 
5). The advantage of this approach is as follows: 
 
* It searches for the best solution or a set of optimum 

answers by a rule-based mechanism. 
* An intelligent simulation model considers actual 

system's limitations and constraints. 
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* The system being studied could be simulated 
without much confusion in a shorter time.  

* The results of an intelligent simulation model are 
practical and may be implemented in the system 
being studied. 

* It is an integrated approach that considers all 
endogenous and exogenous factors affecting system 
being studied. 
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