
Journal of Computer Science 2 (4): 333-336, 2006
ISSN 1549-3636
© 2005 Science Publications

Corresponding Author: Fadila Atil, LRI Laboratory, University of Badji Mokhtar, BP 12, Annaba, Ageria
Tel: +213 71 15 90 06 Fax : +213 38 51 56 22

333

Software Process Modeling Using Role and Coordination

1Atil Fadila, 2Ghoul Said and 1Bounour Nora

1LRI Laboratory, University of Badji Mokhtar, BP 12, Annaba, Algeria
2Institute of Computer Science, University of Philadelphia, Jordan

Abstract: The term software process joins all activities that have to be achieved in order to develop
software. It has been shown that modeling such processes is difficult and expensive task. It's confirmed
by diversity of software processes modeling approaches which are however, not satisfactory. This
study deals with an area of growing importance and presents a role- and coordination- based approach
to specify and model methodological aspects of this processes, by formally defining the policy that
lead the process, such as rules which determine activities and their organization and the component
mechanisms, such as tools that realize activities and operate on objects according to policy. The
purpose of role modeling is to achieve separation of concerns, allowing the designer to consider
different aspects, or the same aspect at different levels of detail. The originality of our approach is to
consider a process as a coordination of a set of sub-processes. This have include profits; among which,
the modular distribution of methodologies upon implicated sub-processes, the construction and the
realization of component methodologies and the association of version of behaviors to the same
process.

Key words: Activity, methodology and role modeling

INTRODUCTION

 As part of software engineering, a large community
defines a software process as a partially ordered set of
activities accomplished during development or
evolution of software[1]. This definition implies that
each set of software life cycle activities (and not
necessarily every activities) forms a software process.
For against, number of researchers defines a software
process as the total set of software engineering
activities. This definition is a particular case of the first
because it is interested with a particular software
process (covering all the set of life cycle activities).
 Modeling, evaluation, improvement, formalizing
description and progress of a software process have
made the object of several research projects. Problem of
this domain is that it calls at many technologies
(knowledge representation, data bases, artificial
intelligence, simulation…) and methodologies
(sequential, cascade, expert system, prototyping…) of
which the majority has not reach the stage of maturity
and stability. This makes the software production a
process with difficult approach to understand and with
concepts difficult to unify. It also confirms the diversity
of processes modeling approaches which are however
not satisfactory[1-3].
 In this study, we propose modeling software
processes by a simple and natural way, using object
approach. The problem that we have confronted is due
to the fact that this approach doesn’t allow the
modeling of all dynamics and constant change of

reality. To solve this problem, we attempt to use the
role and coordination concepts to express how the
object changes and to allow the definition of one or
more methodologies controlling the behavior of the
software process.
 This approach presents many conceptual
advantages with regard to actual works in the domain.
In fact, a software process is regarded as a set of sub-
processes, which cooperates for realizing the same
objective. This vision is natural and present
contribution concerning construction and reuse of
software process’s methodologies. In this approach, it's
even possible to associate versions of roles to the same
process.

The software process: The term software process
joins all activities that have to be achieved in order to
develop software. The methods for implementation of
activities depend on the type and content of
development projects and technology used. For the
same type of projects, the same sequence of activities
and the same methods for their implementations are
used[4].
 We can also define the software process as a
sequence of operations required for building up various
information objects (specifications, prototype
documentation, test cases, code…) that compose a
software product[5]. The software process can be split
into sub-processes, but it is often very hard to find a
good decomposition and to describe the complex way

J. Computer Sci., 2 (4):333-336, 2006

 334

in which they must communicate. Processes are
dynamic, hard to comprehend and to reason about.

Software process model: A process model is the
formal expression of a part of the process, with the goal
to understand, communicate, improve, support or
automate the process[6]. Process technology supports a
process in order to consistently reach the goal within
predefined time, budget and quality constraints.
 A software process model (SPM) is a descriptive
representation of the software process structure, used as
a reasoning support, allowing its understanding and its
progress[1].
 Analysis of any process get appear two levels:
structural level which represent objects on which
process's activities perform and methodological level
describing the policies which lead the process and its
component methods.

SPM = ({Methodologies: Policies, Mechanisms},
 {Structures})

Role definition: The role is a popular and powerful OO
modeling concept. It is adopted as a means of
associating human and other resources with tasks and
processes.
 It can be defined as an individual, group,
Department, ad hoc team or system which has
responsibility for some contribution to a process. This
contribution is carried out through a set of partially
ordered activities that share a common set of
resource[7].
 Examples of roles are Control System Design
Engineer, Safety Assessment Engineer, Chief Designer,
etc.
 The mission of role modeling is to reduce
complexity when doing "large-scale" design; i.e.
complexity due to the size of the design task. This is
done by supporting separation of concerns and reusable
design[8].

Limitations of object oriented approach: The object
oriented modeling present many advantages;
nevertheless, many deficiencies could be taken up[9]. To
model a software process according to the object
approach, the principle is based one’s argument on
invocation of methods by sending messages to objects
of a class hierarchy. The series of these methods must
allow the correct and not ambiguous resolution of the
given problem[3,10]. Such series of methods qualified
with sensible and explicit, define a coordination of
these methods[10,11].
 If in object oriented programming languages, the
semantic analysis allows verification of method
invocation’s validity by an object, nothing allows the
verification of methods coordination’s validity of the
same object or of different objects. Nothing allows then
to consider an object as a process and consequently, to

verify its correct exploitation (according to this
process). This is due to the total absence of an explicit
formulation of coordination in actual object oriented
formalism, which is a serious handicap for software
processes modeling. We attempt to remedy to that by
the integration of methodologies in the definition of
objects. We note that actually there are needs in this
way as part of formal specifications.

Coordination paradigm: We use a coordination model
permitting expression of software processes
methodologies. We consider a software process as a set
of agents that cooperate for realizing the same
objective. This approach is based on the set of the
following concepts[1-3,12]:

Process: is a collection of interrelated steps/activities,
leading to common objective and all of the elements
necessary for their execution. Software process,
consequently, includes activities for the development of
software.

Activity: corresponds to a simple or compound action,
which is executed by a human being or a machine.

Dependency: defines a relation between two or some
activities. We say that an activity A1 depend on the
activity A2 if the working of A1 require this of A2.
Some dependencies come under intrinsic semantic of
activities. They exist independently of any context
(global objective to reach). For example, any
"Consumer" activity depends on a "Producer" activity:
It must ever check that the "Producer" activity is
accomplished before its results are required by
"Consumer" activity. Some other dependencies between
activities come under a global objective to reach. These
dependencies must be dynamically introduced (or
separated) to satisfy this goal. A same objective can be
reach with different manners, according to the
applicable methodology. The set of dependencies
between activities is open, in view of the infinity of
contexts were they evolve and the changeable goals to
reach. In our study, we are interested with two types of
dependencies, namely, functional dependencies and
organizational dependencies.

Functional dependencies: regroup all data flux and
control flux dependencies, well known in procedural
languages. They must be verified every time and are
explicitly defined by the relation Function that has a
changeable semantic.
 The Function dependency expresses that a set of
target activities TA depends on an optional set of initial
activities IA under the optional constraint Ctr. When all
activities of IA are executed, activities of TA could be
executed under the constraint Ctr.
 Formally, this dependency is defined with: ″ [IA]
[Ctr] → TA ″, were Ctr is defined with <condition;

J. Computer Sci., 2 (4):333-336, 2006

 335

 R1 R2

Fig. 1: Two roles R1 and R2 of P

value; sense>. The Condition attribute defines
conditions that must be satisfying in order that
dependency being valid. Value attribute defines the
data flux required by this dependency. Finally, Sense
attribute defines the semantic of dependency, which can
be repetition (∗), implication (∧), exclusion (¬),
equivalence (∼), instantiation (∋), etc.

Organizational dependencies: allow an organization
of activities during time (with Synchronous and
Alternation dependencies) as well as their hierarchical
organization (with Aggregation dependency). We note
that organizational dependencies allow the modeling of
behaviors of software processes.

Synchronous: This dependency allows ordering
activities in time. It’s expressed with: Syn a1, a2, ..., an
Endsyn. Activities none implicated in a Syn
dependency may be executed in any order.

Alternation: It’s a dependency, which allows
establishing a nil order between a set of activities.
These activities are then alternated and could constitute
a varying activity. By nil order, we imply that only one
of concerned activities can be executed. This activity
will be determined dynamically according to explicit or
deduced contextual knowledge. It’s defined with: Alt
a1, a2, ..., an Endalt. Only one activity ai (i=1,n) must
be executed and all the others will be ignored.

Aggregation: It allows constructing a complex activity
with hierarchical composition (designed by an
identifier) of different agent’s activities. If the
composition is designed with an identifier, this last will
indicate the resulting activity. Such dependency will be
expressed with: ″ {IA1,IA2,...,IAn} <∅;∅;U> → TA ″,
were TA is the identifier of the resulting activity. None
designed composition don't construct a complex
activity.

Role modeling: The concept of role is intuitive and
important to achieve a simple and natural modeling of
process activities and to aid comprehension. It gives
restricted, possibly complementary perspectives on a
complex process and allow dynamic of such
perspectives. A process has several roles that have been
chosen in order to accomplish the objective of the
modeling. The roles may change and they may exist
simultaneously.
 We consider real word concepts to consist of
several mutually cooperating and interacting entities,

not stand-alone entities existing independently of other
entities in the same domain of interest. The design
approach presented here is related to the ideas of
considering objects as “playing” different roles in
different contexts[8,12,13].
 In a software process, sub-processes cooperate with
each other to accomplish a global goal. So, they are
related to each other in different way: Serving, using
and communicating with each other. From the way in
which they treat one another, processes have different
perspectives of each other. These perspectives define
the role that a process may play towards another. A role
is formed as a set of behaviors of the process. Different
roles exist for different purpose and the roles played by
a process may change over time.
 In our approach, process’s activities can exist in
many versions and can be organized during time in
many different manners. Each acceptable organization
of activities defines process behavior (a methodology of
its working). In this way, behavior presents the
associated process as a states machine[9]. The process’s
behavior according to a determined objective defines its
role and the role is then a sensible series of activities.
 In order to illustrate the use of this concept for
modeling software processes, we present an example of
a software process P. Behaviors present in P are defined
by the set of activities {A1, A2, A3, A4}. We can
assign to this process two distinct roles R1 and R2,
schematically defined by the Fig. 1, allowing going
back or no to A2 step from A3 step.

Process modeling: In our approach, a software process
can be simple or complex, i.e., compound of a set of
sub-processes which cooperate in order to achieve the
same objective. The modeling of such process is
essentially based on the definition of the set of
composing sub-processes, of dependencies between its
activities and of roles that it offers (Fig. 2).

Process <Process Name>;
Interface <Interface description: Identification of roles>
Sub-Processes <Definition of the set of composing sub-processes>
Functional Dependencies
 <Definition of functional dependencies>
Organizational Dependencies
 <Definition of the set of roles>
End <Process Name>

Fig. 2: Definition of a formal process.

 A formal Process define a generic software process
model, offering some alternatives, from which, we can
generate specifics software processes (Real processes).

A1 A1 A1 A1 A1 A1 A1 A1

J. Computer Sci., 2 (4):333-336, 2006

 336

The generation is done according to an appropriate
behavior and allows then the solving of a particular
problem.
 Owing to such model, we can define a formal
process that can be independent of any problem (Fig. 3)
and from which, we can generate a real process as an
instance that can take part in development of specific
software processes.

Process P;
 Interface R1, R2;
 Sub-Processes
 …

 Functional Dependencies
 …
 Organizational Dependencies
 R1 = ...; // Description of the first role
 R2 = ...; // Description of the second role
End P

Fig. 3: Specification of the formal process P

 For example, we can generate from this formal
process P two software processes, P1 and P2
respectively according to the roles R1 and R2.
 Therefore, according to need, we can define or
modify different methodologies (behaviors). The
instance's methodology, generated from a process,
imposes to this last a controlled behavior that can be
automated. This vision offers a considerable benefit for
software processes modeling.
 We note that benefit of our approach is in the
construction of methodologies of software processes
that is done with a modular manner by reusing
composing process's methodologies.

Comparison with IA approach: In the IA approach,
the rule concerns an activity and its interface with
others, which make the dependencies between activities
implicit and informal. Against, in our approach, a rule
of dependency relates two sets of activities according to
a coordination constraint, that make the methodology
more explicit, more formal and especially well
structured (set, behavior, agent). This approach has the
possibility of formal verification of methodologies and
reasoning which it’s the support.
 In the IA approach, the inference’s motor
constructs the different possible alternatives when with
the model proposed, the alternatives to consider may be
imposed by an explicit selection mechanism
(description of behavior). In this context, IA approach
is purely analogue to an inference’s motor with fixed
strategy, when in our approach; it can correspond to a
motor with a programmable strategy.

CONCLUSION

 In this study, we have presented a modeling
approach of software processes based on integration of
object oriented paradigm, role and coordination. The
notion of coordination has allowed expressing the

methodological aspect, by formally defining the policy
that lead it (rules determining the activities and their
organization,) and composing mechanisms (tools
realizing activities and operating according to this
policy). The purpose of role modeling is to achieve
separation of concerns, allowing the designer to
consider different aspects, or the same aspect at
different levels of detail. A perspective that a process
may play towards another defines a role. It is formed as
a set of behaviors of the process. Different roles exist
for different purpose and the roles played by a process
may change over time. We have proved that the
construction of complex methodologies can be done
with modular manner by reusing the composing
methodologies.

REFERENCES

1. Ghoul, S., 1995. Methodological and structural

aspects in software processes models”, PhD
dissertation, University of Annaba.

2. Atil, F., S. Ghoul, D. Meslati and N. Bounour,
2004. Modeling Software process using roles. 17th
Intl. Conf. on Software & Systems Engineering and
their Applications (ICSSEA) Paris.

3. Atil, F. et al., 2005. Role based software process
modeling. ISPS’2005, 7th Intl. Symp. on
Programming and Systems, Algiers.

4. Horvat, R.V. et al., 2000. SoPCoM-Model for
Evaluation of the Software Processes Complexity.
EuroSPI 2000, Copenhagen, Denmark, November.

5. Rueher, M. and C. Michel 1990. Using objects
evolution for software processes representation.
Proc. of 22nd Annual Hawaii Intl. Conf. on
System. Sciences, vol. 11.

6. Estublier, J., 2005. Software are Processes Too.
Software Process Workshop (SPW), Bejing.

7. Murdoch, J. and J.A. McDermid, 2000. Modelling
Engineering Design Processes with Role Activity
Diagrams. Society for Design and Process Science.

8. Andersen, E.P. and T. Reenskaug, 1992. System
design by composing structures of interacting
Objects. In Ole Lehrmann Madsen editor, Proc. of
the 6th European Conference on Object-Oriented
Programming.

9. McGregor, J.D. and D.M. Dyer1993. Inheritance
and state machines. ACM/SIGSOFT, pp: 61- 69.

10. Blondo, L., 1998. Designing and programming
with personality. Master's Thesis. University of
Northeastern.

11. Malone, T.W. and K Rowston, 1994. The
interdisciplinary study of coordination. ACM
Computer Surveys, 26: 87-120.

12. Atil, F. and S. Ghoul, 1998. Object based software
process modeling. 1st UK Colloquium on object
Technology & System Re-engineering (COTSR),
Demontfort University, Leicester.

13. Meslati, D. and S. Ghoul, 1997. Semantic
classification: A genetic approach to classification
in object-oriented models. J. Object-Oriented
Programming, January.

