
Journal of Computer Science 2 (4): 322-325, 2006
ISSN 1549-3636
© 2005 Science Publications

Corresponding Author: Bounour Nora, Laboratory of Computer Science (LRI), Department of Computer Science, University
Badji Mokhtar, B.P. 12 Annaba (23000), Algeria, Fax: (213) 38 87 24 36.

322

A Comparative Classification of Aspect Mining Approaches

1Bounour Nora, 2Ghoul Said and 3Atil Fadila

1,3Laboratory of computer science (LRI), Department of computer science, University Badji Mokhtar
B.P. 12 Annaba (23000), Algeria

2Institute of computer science, University of Philadelphia, Jordan

Abstract: In object oriented paradigm, the implementation of a concern is typically scattered over
many locations and tangled with the implementation of other concerns, resulting in a system that is
hard to explore and understand. Identifying such code automatically greatly improves both the
maintainability and the evolveability of the application. Aspect mining aims to identify crosscutting
concerns in existing systems, thereby improving the system’s comprehensibility and enabling migration
of existing (object-oriented) programs to aspect-oriented ones. Aspect are mined either by use of static
information or dynamic information of the code. The purpose of this article is to present a survey of the
current techniques of aspect mining. We seek to understand both the strengths and limitations of this
new area.

Key words: Aspect oriented programming, aspect mining, crosscutting concern, program analysis,

reverse engineering.

INTRODUCTION

 The tyranny of the dominant decomposition[1]
states that no matter how well a system is decomposed
into modular units like functions and classes, some
functionality will always cut across that modularity.
This kind of functionalities are called crosscutting
concerns because they involve more than one
decomposition unit. Examples of crosscutting concerns
are persistence, synchronization, exception handling,
error management and logging. Crosscutting concerns
are a relevant source of problems to program
comprehension and software maintenance. In fact, it is
very difficult to evolve a crosscutting concern, because
its code is affected by scattering. Each modification of
crosscutting concern requires the localization of all the
code portions pertaining to it. Generally, crosscutting
concerns code is mixed and confused with the rest of
the code in each unit. This problem is known as
tangling. Figure 1 illustrates a crosscutting concern
tangled in a class. This code mixes business logic with
logging.

import java.lang.reflect.*;
public class ShoppingCart { private List items = new Vector();
public void addItem(Item item) {
System.out.println("Log:"+this.getClass().getName());
items.add(item);
}public void removeItem(Item item) {
System.out.println("Log:"+this.getClass().getName());
items.remove(item);
}public void empty() {
System.out.println("Log:"+this.getClass().getName());
items.clear();
}}
Fig. 1: Logging concern tangled in the shoppingcart class

 Code scattering and code tangling are problems
that affect applications in a systematic way. The
identification of scattered and tangled code that
implements concerns is known as aspect mining.
Aspect mining is defined as a specialized reverse
engineering process[2], which aim at investigate legacy
systems (source code) in order to discover which parts
of the system can be a crosscutting concern. This
knowledge can be used for several goals, including
refactoring the system into an aspect-oriented one[3]. In
Aspect Oriented Programming (AOP), crosscutting
concerns are captured via special classes called
aspects[4]. Aspects are defined by aspect declarations[5],
which may include pointcut declarations, advice
declarations, as well as other declarations such as
method declarations that are permitted in class
declarations. We illustrate in Figure 2 the logging
aspect extracted from the code of shoppingcart class.

public aspect LoggingAspect {
pointcut loggedMethods(ShoppingCart
shoppingcart):this(shoppingcart)
&& (execution(void ShoppingCart.*(..)));
before(ShoppingCart shoppingcart): loggedMethods(shoppingcart) {
System.out.println("Log:"+
 shoppingcart.getClass().getName());
}}
Fig. 2: Logging aspect

Types of crosscutting concerns

Table1: Concern symptoms
Type Symptoms Homogenous Heterogeneous
Scattering X X
Code duplication X

J. Computer Sci., 2 (4): 322-325, 2006

 323

 We can distinguish between two types of
crosscutting concerns[6]. Homogeneous concerns
implement the same behavior repeatedly at different
locations in a system (table1), whereas heterogeneous
concerns implement different behavior, related to the
same functionality, at such locations.
 Techniques used for aspect mining vary mainly in
the kind of concern’s symptoms they explore and in the
kind of analysis they perform on a legacy system[7]. We
distinguish approaches which use the code duplication
as the principal symptom of the existence of an aspect;
and others which use the scattering.

Approaches based on code duplication: This class of
approaches attempt at finding duplicated code. They are
based on a static analysis of the code to mine.

Aspect mining using clone detection techniques:
Finding crosscutting concerns require specialized types
of clone detection.

Token-based clone detection: They apply lexical
analysis (tokenization) to the source code and
subsequently uses tokens as a basis for clone detection.
Lexical analysis is usually initiated by the user
specifying a seed of information (either a regular
expression or a string). Lexical search simply searches
for duplicates of the seed.
 The first lexical tool developed is Aspect
Browser[8]. It is a programming environment that
provides text-based mining. A developer specifies a
regular expression that describes the code belonging to
the aspect of interest and a color. The programming
environment then identifies the code conforming to the
regular expression and highlights it using the associated
color in the source code editor. The Aspect Mining
Tool[9] is an extension of the Aspect Browser that
introduces a combination of text-based and type-based
mining. Type-based mining considers the usage of
types within an application to identify crosscutting
code. The tool allows user defined queries based on
type usage and regular expressions, displaying
matching lines in specific colors. If a line matches more
than one criterion, it will be separated into two or more
differently colored parts.
 The Prism tool[10] in its turn extends the Aspect
Mining Tool and additionally provides a type ranking.
The type ranking feature is based on the assumption
that types that are used widely in the application are a
good sign of crosscutting code. Therefore, the tool
ranks the types in the system according to their use.
The main downfall of lexical searches is that requires
the user to have an in-depth understanding of the base
code because:
∗ Τhey are dependent on the coding practices of the

programmer, such as variable or method naming
conventions, which are hard to guarantee,
especially in a legacy system.

∗ Τhe user must input a seed. The formulation of a
seed that will return meaningful results on a lexical
search is a non-trivial task

Other clone detection approaches: These approaches
do not require some form of input (a seed) by the
developer. They are able to identify aspects without
human intervention.
 Shepherd use a PDG clone detection
technique[11].This approach uses program dependence
graph (PDG) which contain information of semantical
nature, such as control and data flow of the program.
 Bruntink suggest an hybrid technique, which
combine AST based clone detection with clone
detection tool based on tokenized representations of
source code[12]. This technique uses parsers to obtain a
syntactical representation of the source code, typically
an abstract syntax tree (AST). The clone detection
algorithm then search for similar sub trees in this AST.
For further amelioration, Bruntink propose metrics-
based clone detection approach[13].
Although, these approaches suffer from some
limitation:

* Only homogenous concerns can be identified.
* The identification analysis can miss desirable

aspects.
* The filtering of potential candidate’s aspect is not

fully automatic. Only simple aspects can be
identified automatically.

Aspect Mining using formal concept Analysis:
Formal concept analysis (FCA) is used to identify
meaningful groupings of elements that have common
properties. The FCA algorithm takes as input a relation,
or Boolean table, T between a set of elements and a set
of properties of those elements. The FCA algorithm
determines maximal groups of elements and properties,
called concepts, such that:

* Each element of the group shares the properties,
* Every property of the group holds for all of its

elements,
* No other element outside the group has those same

properties,
* No other property outside the group holds for all

elements in the group.

 All concepts are ordered into a concept lattice. The
lattice’s bottom concept contains those elements that
have all properties. Similarly, the top concept contains
those properties that hold for all elements. The concept
lattice can be represented by a graph, in which nodes
are the concepts and edges represent the sub-concept
relations.
 When applying FCA for mining source code, first
the elements and properties to compute the concept
lattice must be chosen.

J. Computer Sci., 2 (4): 322-325, 2006

 324

 Tonella and Ceccato[14] apply formal concept
analysis to execution trace. The approach used an
instrumented version of the system to execute a number
of use cases. The output of this execution is a number
of execution traces. These traces are then analysed
using FCA algorithm. The use cases are the objects of
the FCA algorithm, while the methods which get
invoked during the execution of a use case are the
attributes. The resulting concepts are candidates aspect,
if the following two constraints hold:

* The attributes of the concept belong to more than

one class.
* Different methods from a same class are contained

by more than a use case.

 Although, Tourwé et al.[15,16] assume that
interesting concerns in the source code are reflected by
the use of naming conventions in the classes and
methods in the system. So, they apply FCA by using the
classes and methods in the code as objects. Substring
generated from the program entities are used as
attributes. The resulting concepts consist out of
maximal group of program entities which share a
maximal number of substring.
 When computing the lattice, lots of concepts are
produced, many of which are irrelevant or redundant.
Therefore, the discovered concepts must be filtered and
classified. The most difficult task is that of deciding
manually whether a concept identifies a valid aspect.

Approaches based on scattering
Fan-in analysis: Fan-in analysis mined source code to
find symptoms of code scattering. In this case, concerns
present themselves as a number of distributed calls to a
method implementing a crosscutting functionality. So,
the amount of calls (fan-in) is a good measure for the
importance and scattering of the discovered concern.
Typical examples of concerns include logging, tracing,
pre- and post-condition checks and exception handling.
The fan-in analysis consists of three steps[17]:
a. Automatic computation of the fan-in metric for all

methods in the investigated system.
b. Filtering of the results from the previous step by
* Eliminating all methods with fan-in values below a

chosen threshold (in the experiment, we used a
threshold of 10);

* Eliminating the accessor methods (methods whose
signature matches a get*/set* pattern and whose
implementation only returns or sets a reference);

* Eliminating utility methods, like toString() and
collection manipulation methods, from the
remaining subset.

 Manuel analysis of the methods in the resulting,
filtered set.

Analysis of recurring patterns of execution traces:
This approach is based on dynamic analyzes of the code
source to identify aspects[18]. To this extent, program
traces are generated automatically. Then, the traces are
analyzed in search of recurring execution patterns. The
idea is to detect particular patterns occurring in the
trace, such as a call to a particular method a that is
always followed by a call to a method b, or a call to a
particular method c that always occurs inside a call to a
method d. Such patterns could point to
before/after/around advice of aspects.

Exploratory techniques: Exploratory tools allow a
programmer to navigate more intelligently around code.
FEAT[19] and JQuery[20] are developed for aspect
exploration. Both those tools incorporate semantic
information (control flow) to navigate in the source
code. They focus on providing intelligent exploratory
capabilities, with the user controlling much of the
function, in order to discover aspects.
 This approach puts a heavy burden on the user. It
suffers from the following drawbacks:
User must have a considerable amount of knowledge
about the overall structure and function of the program
being analyzed.
 Require a lot of time to identify an aspect due to
the required interaction with the user.

CONCLUSION

 In this study, we have presented an overview of
aspect mining techniques. As a basis of classifying
aspect mining techniques, we have used the concern’s
symptom. Approaches are based on scattering or on
code duplication. To discover crosscutting concerns
implemented by code duplication a number of tools was
developed, which are mainly based on static analysis
(Table 2). Some tools require some form of input (seed
of information) by the user[8-10]. More advanced tools,
which are able to identify aspects without human
intervention, are based on clone detection
techniques[12,11,21]. Other tools, use formal concept
analysis[14-16]. Scattering was a symptom used by other
approaches, such as for localizing the recurrent pattern
scattered in the code[18,22]. Also, to calculate a set of
candidate crosscutting concerns characterized by
distributed calls[17].
 Aspect mining tools remain limited, because the
step of filtering the set of candidates aspects is usually
manual. Hybrid approach would be considered to
optimize the set of candidate aspect. Full automation of
aspect mining process remains a lofty goal.

J. Computer Sci., 2 (4): 322-325, 2006

 325

Table 2: Aspect mining tools
 Code duplication based on Approaches
Tool Analysis type Aspect mining result
Aspect browser[8] AMT[9] Prism[10] Lexical Lexical+Type Lexical+Type Highlighted code
Ophir[11] PDG-clone detection List of candidate aspects Manually inspected
Delfstof[16] FCA-analysis List of candidate aspects Exploratory inspected
Dynamo[14] FCA analysis of execution traces List of candidate aspects Manually inspected
Scattering based approaches
Tool Analysis type Aspect mining result
Dynamit[18] Dynamic analysis of execution traces List of candidate aspects
Exploratory approaches
Tool Analysis type Aspect mining result
Jquery[19] Feat[20] Sextant[13] Semantic analysis Intelligent Exploration

REFERENCES

1. Peri, T., H. Ossher, W. Harrison and Jr. S.M.

Sutton, 1999. N degrees of separation: Multi-
dimensional separation of concerns. In Proc. 21st
Intl. Conf. Software Engg., IEEE Computer Society
Press, pp: 107-119.

2. Neil, L. and A, Rashid, 2002. Mining aspects.
Workshop on early aspects: Aspect-oriented
requirements engineering and Architecture Design.
Enschede, The Netherlands.

3. Arie, v.D., M. Marin and L. Moonen, 2003. Aspect
mining and refactoring. In First Intl. Workshop on
REFactoring: Achievements, Challenges, Effects
(REFACE).

4. Kiczales, G., 1997. Aspect-oriented programming.
Proc. European Conf. on object-oriented
Programming (ECOOP), Finland. Springer-Verlag
LNCS 1241.

5. The AspectJ Team, 2001. The Aspect
Programming Guide.

6. Tzilla, E., M. Aksit, G. Kiczales, K. Lieberherr and
H. Ossher, 2001. Discussing Aspects of AOP.
Communications of the ACM, 44: 33-38.

7. Bounour, N. and S. Ghoul, 2005. A survey of
aspect mining techniques. Congrès International en
informatique appliquée-CIIA05- BBA Algérie, pp:
241-246.

8. William, G.G., Y. Kato and J.J. Yuan, 1999.
Aspect browser: Tool support for Managing
Dispersed Aspects. Technical Report CS99-0640,
Department of computer Science and Engineering,
University of California, San Diego.

9. Jan, H. and G. Kiczales, 2001. Overcoming the
prevalent decomposition in legacy code. In Proc.
ICSE Workshop on Advanced Separation of
Concerns, Toronto, Canada.

10. Zhang, C. and H.-A. Jacobsen, 2003. A Prism for
Research in Software Modularization through
Aspect Mining. Technical report, Middleware
Systems Research Group, University of Toronto.

11. David, S., E. Gibson and L. Pollock, 2004.
Automated mining of desirable aspects. Technical
Report 4, Department of Computer and Information
Sciences, University of Delaware, Newark, DE
19716.

12. Magiel, B., A.v. Deursen, R.v. Engelen and T.
Tourw´e, 2004. An evaluation of clone detection
techniques for identifying crosscutting concerns. In
Proc. Intl. Conf. Software Maintenance (ICSM).
IEEE Computer Society.

13. Michael, E., M. Haupt, M. Mezini, T. Schafer, S.
Djukanovic and M. Vekic, 2005. Graph-based
software navigation with SEXTANT. Submitted for
publication.

14. Paolo, T. and M. Ceccato, 2004. Aspect mining
through the formal concept analysis of execution
traces. In Proceedings of the 11th Working
Conference on Reverse Engineering, IEEE
Computer Society, pp: 112-121.

15. Tom, T. and K. Mens, 2004. Mining aspectual
views using formal concept analysis. In 4th IEEE
Intl. Workshop on Source Code Analysis and
Manipulation, pp: 97-106.

16. Mens, K. and T. Tourwé, 2005. Delving source-
code with formal concept analysis. Elsevier J.
Computer Languages, Systems & Structures. To be
published.

17. Marius, M., A.v. Deursen and L. Moonen, 2004.
Identifying aspects using fan-in analysis. In Proc.
11th Working Conf. Reverse Engineering, IEEE
Computer Society.

18. Silvia, B. and J. Krinke, 2003. Aspect mining using
dynamic analysis. In GI-Software technik-Trends,
Mitteilungen der Gesellschaft f¨ur Informatik. Bad
Honnef, Germany, 23: 21-22.

19. Robillard, M.P. and G.C. Murphy, 2002. Concern
graphs: Finding and describing concerns using
structural program dependencies. In ICSE.

20. De Volder, K., 2002. The jquery tool: A generic
query-based code browser for eclipse. Presentation
at Eclipse. BoF at OOPSLA 2002.

21. Bruntink, M., 2004. Aspect mining using clone
class metrics. In 1st Workshop on Aspect Reverse
Engineering.

22. Jens, K. and S. Breu, 2004. Control-flow-graph-
based aspect mining. In Workshop on Aspect
Reverse Engineering.

