
Journal of Computer Science 2 (4): 318-321, 2006
ISSN 1549-3636
© 2005 Science Publications

Corresponding Author: Jia-Dong Ren, College of Information Science and Engineering, Yanshan University,
Qinhuangdao 066004, China

318

A New Incremental Updating Algorithm for Mining Sequential Patterns

Jia-Dong Ren and Xiao-Lei Zhou

College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China

Abstract: This study discusses how to maintain discovered sequential patterns when some information
is deleted from a sequence database. A new algorithm, called MA_D (Maintenance Algorithm when
Deleting some information), is presented in order to deal with the maintenance of sequential patterns
mining resulted from the updating of database and the algorithm makes full use of the information
obtained from previous mining results to cut down the cost of finding new sequential patterns in an
updated database. Our experimental analysis shows that the new algorithm is more efficient.

Key words: Data mining, sequential pattern, incremental updating, maintenance

INTRODUCTION

 Data mining is to extract previously unknown and
potentially useful information or knowledge from
database. Sequential pattern mining, which discovers
frequent patterns in a sequence database, is an
important issue among the various data mining
problems. Sequential pattern was first introduced by
Agrawal and Srikant[1] and since its introduction, there
have been many researches on efficient mining
techniques and algorithms, extensions of sequential
pattern mining method and its applications.
 In general, sequential pattern mining algorithms
can be sorted into two classes:
1. Apriori-based[2] candidate generation and test
philosophy, with GSP[3] (Generalized Sequential Pattern
mining algorithm) and SPADE[4] as its representative.
GSP firstly discovers frequent 1-sequences and then
generates candidate (k+1)-sequences from the sets of
frequent k-sequences. With SPADE algorithm, all the
frequent sequences and their negative borders build up
a sequence lattice. When the incremental data arrive,
the incremental parts are scanned and the sequence
lattice is updated and then we can determine that which
parts in the original database should be scanned
according to the sequence lattice and incremental data.
Here, GSP algorithm adopts horizontal format to mine
sequential patterns, while SPADE algorithm adopts
vertical format. Subsequently, some scholars presented
FAST[5] algorithm for incremental updating of
sequential patterns mining. The algorithm can be used
to solve the incremental updating problem when the
minimum support threshold changes and the sequence
database remains invariable.
2. Projection-based pattern growth method, with
Freespan[6] and Prefixspan[7] algorithms as its
representative. The two algorithms apply a
divide-and-conquer strategy to generate many smaller

projected databases of the original database and then
the frequent sequences are mined in each projected
databases by exploring local frequent patterns.
 The existing algorithms discuss the problems that
how to mine sequential patterns quickly and how to
maintain the discovered sequential patterns. So far, the
research on incremental updating of sequential pattern
mining has been focusing on two aspects: on the one
hand, when new transactions and new data-sequences
are appended to the original database, how to deal with
the incremental updating of sequential pattern mining;
on the other hand, when the minimum support threshold
changes and the original database doesn’t change, how
to deal with the maintenance problem of sequential
pattern mining. But in the fields of Electronic
Commerce and Web usage mining, we often delete
some information from sequence database, in order to
save storage space or because some information is not
interesting any longer or has become invalid. The
incremental updating of sequential pattern mining in
this circumstance has been paid little attention in
previous studies.
 In this study, we investigate the issue and develop a
new algorithm, called MA_D, to deal with the problem
that when some information is deleted from a sequence
database, how to maintain the discovered sequential
patterns. Our algorithm utilizes the information
obtained from prior mining processes and stores the sets
of discovered frequent sequence in the original database
for further mining. Meanwhile, it adopts a new method
to generate the sets of candidate sequence, which cuts
down the size of candidate sets in some extent.

Problem definition: Let I={i1, i2 , …, in} be a set of all
items. An itemset is a non-empty set of items. A
sequence is an ordered list of itemsets. A sequence is
denoted by<s1,s 2,…,sl>, where sj is an itemset, i.e.,

J. Computer Sci., 2 (4): 318-321, 2005

 319

sj ⊆ I for 1�j�l. sj is also called an element of the
sequence and denoted as (x1x2…xm), where xk∈I for
1�k�m. The number of instances of items in a sequence
is called the length of the sequence. A sequence with
length l is called a l-sequence. A sequence a
=<a1,a2,…,an>is called a subsequence of
b=<b1,b2,…,bm> and b a super sequence of a, denoted
as a ⊆ b, if there exist integers 1�j1 j2 … jn�m
such that a1 ⊆ bj1 , a2 ⊆ bj2 , … , an ⊆ bjn.
 A sequence database D is a set of tuples sid, s ,
where sid is a sequence-id and s is a sequence. A tuple

sid, s is said to contain a sequence a, if a is a
subsequence of s, i.e., a ⊆ s. The number of tuples in a
sequence database D containing sequence a is called the
support of a, denoted as sup(a).
 Given a sequence database D and some user
specified minimum support min_sup, a sequence a is a
sequential pattern in D if sup(a)� min_sup. The
sequential pattern mining problem is to find the
complete set of sequential pattern with respect to D and
min_sup.
 When some information is deleted from an original
sequence database, some formerly discovered
sequential patterns may become invalid and some new
frequent patterns may appear in the resulting updated
database. The incremental updating of sequential
pattern mining is to discover all the frequent sequences
in the updated database with respect to the same
minimum support threshold. When the database is
updated, the incremental updating method must utilize
previously discovered information to avoid re-mining
the whole updated database from scratch. The objective
of maintaining and updating sequential patterns is to
respond to each mining quickly when some information
is deleted from a sequence database and to minimize
the overall runtime for the whole process accordingly.

The MA_D algorithm: Let DB be an original sequence
database, dd be the database consisting of deleted
information (dd ⊂ DB), DB-dd be the updated sequence
database, s be the user specified minimum support
threshold, D be the size of DB, d be the number of
deleted data-sequences in DB, �kLk be the sets of
frequent k-sequence in DB, �kFk be the sets of frequent
k-sequence in DB-dd, C1 be the sets of candidate
1-sequence in DB.

An overview: When some information is deleted from
an original database, the incremental updating problem
of sequential pattern mining can be considered into the
following two cases:
* Only some transactions (but not data-sequences)

are deleted from the sequence database, the
minimum support count remains constant.

 Because some transactions are deleted, the support

count of some sequences that contain these deleted
items may diminish and not satisfy the minimum
support count. They might become infrequent
sequences. In this case, we can deal with it easily by
deleting the infrequent sequences from the old set of
sequential patterns. The method can be described as
follows: Scanning the updated database DB-dd only
once, we can obtain the support count of the sequences
in �kLk. And then, infrequent sequences are filtered out
from �kLk and the frequent ones remain. In this case, it
is obvious that we can obtain the set of new sequential
patterns without any mining operations.
* When some transactions and data-sequences are

deleted from the original database, the size of the
database will become small, which results in
smaller minimum support threshold (The minimum
support count will be s*(D-d)). Besides some
formerly frequent sequences have become
infrequent ones, new frequent sequences may
appear.

 For the case that the formerly frequent sequences
become infrequent ones in DB-dd, we first scan the
updated database DB-dd once and obtain the new
support count of the originally old frequent sequences
in �kLk. After that, the sequences that don’t satisfy the
new support count s*(D-d) will be filtered from �kLk
and the frequent sequences still will be preserved. This
case is the same as above mentioned.
 It is a vital issue that how to discover all the new
frequent sequences in DB-dd. Here, in order to solve
the problem, we take GSP (Generalized Sequential
Pattern) algorithm for example to analyze the general
method used for finding frequent sequences. GSP
algorithm is in general seen as a breadth-first traversal
algorithm, it discovers all the frequent sequences by
making multiple passes over the database. At the 1st
pass, GSP algorithm discovers all the frequent
1-sequences; at the kth pass, it generates the set of
potentially frequent k-sequences (Ck) from the set of
frequent (k-1)-sequences (usually called candidates)
and then scans the database to compute the support of
each candidate sequence and discover the frequent
k-sequences. The process iterates until no more new
frequent sequences are generated.
 Based on the above discussion, we shall conclude
that three kinds of k-sequences appear at the kth pass:
∗ Set of frequent k-sequences (Lk) obtained from

prior mining process;
∗ α Candidate sequences obtained from candidate

k-sequences above mentioned (Ck) minus Lk, i.e.,
Ck -Lk;

∗ β Candidate sequences obtained from all the
k-sequences minus Lk and Ck -Lk;

 To the three kinds of k-sequences above mentioned,
we discuss the generation of new frequent sequences,
respectively.

J. Computer Sci., 2 (4): 318-321, 2005

 320

 With the minimum support count, i.e., s*(D-d), we
scan the updated database DB-dd once and obtain the
new support count of the sequences in Lk. And then, the
infrequent sequences in Lk will be filtered out. That is to
say, no new frequent sequences are generated from Lk;
∗ α Naturally, Ck -Lk should be scanned, compared

and filtered as candidate sequences;
∗ β Because of new minimum support count

(s*(D-d)), the formerly old candidate
(k-1)-sequences may become frequent ones, which
will result in new candidate k-sequences
generation;

 When some information is deleted from a sequence
database, the incremental updating problem of
sequential pattern mining lies in how to obtain new
candidate sequences from the set of sequences in the
third case above mentioned.

The generation of new candidate sequences: In order
to find new frequent sequences, we must find the set of
candidate sequences containing these new frequent
sequences. This study adopts a new candidate sets
generation method depicted as follows.
 First, scanning the updated sequence database
DB-dd once, we can count the support of the new
candidate 1-sequences, denoted by NC1, which are not
contained in L1. Obviously, the new set of candidate
1-sequences can be written as NC1=C1-L1, thus the new
frequent 1-sequences, denoted by NL1, is
NL1={x|x�NC1^x.sup�s* D-d }. The new frequent
1-sequences NL1 and the originally old frequent
1-sequences L1 make up all the frequent 1-sequences,
denoted by F1, in DB-dd, i.e., F1 NL1�L1, obviously,
NL1�L1 ∅ .
 Let us now consider the problem how to seek for
the set of frequent k-sequences Fk when k�2. In order to
improve the efficiency of incremental mining, we
should try to reduce the number of the candidate
sequences. Take k=2 for example, because of F1

NL1�L1 and NL1�L1 ∅ , according to a basic
Apriori[2] property: “Any subsequences of a frequent
sequence must be frequent sequences.”, the new
candidate 2-sequences NC2 are generated by the
sequences in NL1 or generated by a sequence from NL1
and a sequence from L1(This part of NC2 can be labeled
as NCk

2). Another part of NC2 can be denoted by C2

L2(labeled as NCk
1). It is obvious that the two part of

NC2 (NCk
1 and NC k

2) is mutually exclusive. Scanning
the updated database DB dd once for counting the
support of the sequences in NC2 and then choosing the
frequent sequences, we can obtain the new frequent
2-sequences,denoted by NL2. The updated sequential
patterns F2 NL2�L2. When k�3, we execute above
operations iteratively, until Fk-1 ∅ .
 The incremental updating algorithm of sequential
pattern mining (MA_D algorithm). Based on above

discussion, we shall now depict the MA_D algorithm as
follows:

Algorithm MA_D
Input: DB the original database, �kLk the set of
frequent k-sequences in DB, s the minimum support
threshold, D the size of DB, dd the deleted database and
d the number of deleted data-sequences, C1 the set of all
the 1-sequences in DB.

Output: The set �k Fk of all frequent sequences in
DB-dd.

Method
Step 1: Scanning the updated sequence database DB-dd
only once, we can count the new support of the
sequences in �kLk. And then, infrequent sequences are
filtered out from �kLk and the frequent ones remain.

Step 2: Scanning the updated sequence database once
again, we can find new frequent 1-sequences NL1, thus
new frequent 1-sequences and formerly old frequent
1-sequences form all the frequent 1-sequences, i.e., F1

NL1�L1.

Step 3: Seeking for new frequent k-sequences NLk
when k�2. NLk and formerly old frequent k-sequences
Lk form all the frequent k-sequences in DB-dd, i.e., Fk

NLk�Lk. This step iterates until no more new frequent
sequences generate.
 Our algorithm makes full use of the information
obtained from prior mining processes. In the entire
mining process, we only need to scan the updated
sequence database k passes (Here, k means that the
length of the longest sequence pattern in NLk). We
adopt a new candidate generation method to decrease
the size of candidate sequences and improve the
efficiency of sequential pattern mining.

RESULTS
 The two algorithms are implemented in Java
language and tested on a Pentium IV-2.4G
Windows-XP system with 512MB of main memory and
JBuilder 8.0 as the Java execution environment. To
make the time measurements more reliable, no other
application is running on the machine while the
experiments are running. The datasets are maintained in
main memory during the algorithms processing,
avoiding hard disk accesses. During the execution
processes, the datasets are stored and operated in a data
structure, called Vector, in Java language. And each
element in the Vector data structure is a data-sequence
in the synthetic dataset.
 The dataset for our experiments is generated using
the standard synthetic data set generator from IBM
Almaden[8]. The data set generator has been used in
most studies on sequential pattern mining and it

J. Computer Sci., 2 (4): 318-321, 2005

 321

Fig. 1: Performance comparison on the updated dataset

Update_Dataset (MA_D and GSP)

generates datasets that imitate real-world transactions,
where customers tend to make a sequence of
transactions involving a set of items. Sequence and
transaction sizes are clustered around a mean and some
of them may have larger sizes. Note that a sequence
may have repeated transactions, but a transaction
cannot have repeated items. Each data-sequence in the
synthetic dataset is stored in the nested Vector data
structure. With this data structure, we can judge
whether a sequence is contained in a data-sequence and
then the support of the sequence is counted. Based on
the support of the sequence, we can further estimate
whether the sequence is frequent or not.
 In our synthetic dataset, the number of items is set
to 1, 000 and there are 10, 000 sequences in the dataset.
The average number of elements in a sequence is set to
8. The average number of items within elements is set
to 8. The average length of maximal patterns is set to 8
and maximal frequent transactions set to 8. These
values were chosen in order to follow closely the
parameters usually chosen in other studies. After some
transactions and sequences are randomly deleted from
the initial synthetic dataset, we can obtain the updated
dataset Update_Dataset.
 Firstly, we use GSP algorithm to mine sequential
patterns with different minimum support threshold on
the initial synthetic dataset. The mining results, i.e., all
the frequent k-sequences are initially saved in the
Vector data structure in the main memory and then
outputted to the hard disk memory in a random access
file format to be used for further incremental mining.
Then, incremental mining is performed over the
updated dataset. MA_D algorithm utilizes the results
obtained in the prior mining process to mine sequential
patterns over the updated dataset Update_Dataset with
corresponding minimum support threshold, whereas
GSP algorithm mines sequential patterns over
Update_Dataset from scratch.
 Figure 1 shows the experiment conducted on the
updated dataset Update_Dataset using different
minimum support thresholds. The label “MA_D”
corresponds to the MA_D algorithm while “GSP”
stands for GSP used for mining the updated dataset
from scratch.

 Figure 1 clearly indicates that the performance gap
between the two algorithms increases with decreasing
minimum support. We can observe that MA_D is faster
than running GSP from scratch. It can also be noticed
that GSP algorithm provides the worst performance
when the support is lower. The main reason is that
when the support threshold is lower, GSP must generate
numerous candidate sequence sets. The experimental
result shows that MA_D outperforms GSP in significant
magnitude.

CONCLUSION

 We discuss the incremental updating problem of
sequential pattern mining when some information is
deleted from a sequence database. A new algorithm,
called MA_D, is presented for the incremental updating
of sequential pattern mining. The algorithm makes full
use of the set of sequential patterns obtained from the
prior mining processes, improves the efficiency of
sequential pattern mining and cuts down the execution
time. The performed experiments show that MA_D
enhances GSP by several orders of magnitude for
incremental updating of sequential pattern mining.
 However, the multiple passes on the database could
be a problem in the MA_D algorithm. Further work may
include the problem that how to reduce the passes on
the database.

REFERENCES

1. Agrawal, R. and R. Srikant, 1995. Mining

sequential pattern. In: Proc. 11th Intl. Conf. Data
Engineering (ICDE’95), Taipei, Taiwan, pp: 3-14.

2. Agrawal, R., T. Imielinski and A. Swami, 1993.
Mining association rules between sets of items in
large databases. In: Proc. of the 1993 ACM SIGMOD
Conf., Washington DC, USA, pp: 207-216.

3. Srikant, R. and R. Agrawal, 1996. Mining
sequential pattern: generalizations and performance
improvements. In: Proc. of the 5th Intl. Conf. on
Extending Database Technology (EDBT’96),
Avignon, France, pp: 3-17.

4. Zaki, M.J., 2001. SPADE: An efficient algorithm
for mining frequent sequences. Machine Learning
J., 42: 31-60.

5. Weimin Ouyang and Qingsheng Cai, 1998. An
incremental updating techniques for discovering
generalized sequential patterns. J. Software, 9: 778-780.

6. Han, J., J. Pei and B. Mortazavi-Asl, 2000.
FreeSpan: Frequent pattern-projected sequential
pattern mining. In: Proc. of the 6th Intl. Conf. on
Knowledge Discovery and Data Mining
(KDD2000), Boston, USA, pp: 355-359.

7. Pei, J., J. Han and B. Mortazavi-Asl et al., 2001.
PrefixSpan: Mining sequential patterns efficiently
by prefix-projected pattern growth. In: Proc. of the
17th Intl. Conf. on Data Engineering, Heidelberg,
Germany, pp: 215-224.

8. http://www.almaden.ibm.com/software/quest/
Resources/datasets/ syndata.html# assocSynData

