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Abstract: Many extensions of Petri nets have been proposed to model the behaviors and time relations 
of embedded system, yet these models are all based on some assumptions about the behaviors of 
embedded systems. Especially they all do not have the actual ability to model interrupt mechanism of 
embedded system. A new net which is called Extended High Level Timed Petri Nets (EHLTPN) is 
introduced in this study. It shows how to extend High Level Petri Nets (HLPN) with time, actions and 
interrupt mechanism. Interruptible subnets corresponding to different interruptible resources are 
introduced to model the behaviors and time relations of distributed embedded real-time systems. Each 
interruptible subnet realizes interrupt mechanism by an Interrupt Switch Transition and a set of 
Resuming Transitions. We give an informal description of this new model and show how this model be 
formally defined. A transform rule presented shows that each subnet corresponding to an interruptible 
resource in EHLTPN can be transformed into a behaviorally equivalent subnet of HLTPNAT with 
priority. This model makes it possible to create the compact and comprehensive models for distributed 
embedded real-time systems. 
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INTRODUCTION 

 
 With the development of electrical technology, 
embedded system has been widely used in many 
domains. Their applications range from simple 
domestic devices, such as washing machines, central 
heating systems and electronic gatekeepers, to highly 
critical system, such as flight control, air traffic control, 
robot control and aero spacecraft etc. There many of 
them are real-time distributed embedded systems which 
are related to the health or safety of human life and 
property. So the safety of such system must be 
considered. 
 Time is an important factor which affects the safety 
of real-time distributed embedded systems. In real-time 
systems, correctness depends not only on the result 
produced by computations, but also on the time at 
which results are produced. The system may enter an 
incorrect state if the right result is produced too early or 
too late with respect to certain time bounds[1]. In such 
case, however, time issues become essential. In the 
process of designing a real-time embedded system, 
programmers have to deal with the relating time 
constrains with the requirement of the system. 
Especially in distributed real-time embedded systems 
time relations become more complex than normal 
embedded system. If the system can’t satisfy these time 
constrains the safety of these systems will be seriously 

affected.  
 During the last 20 years, many formal and informal 
methods have been used for specification, analysis, 
verification and program testing. Formal methods 
include standardized specification languages such as the 
languages ESTELLE[2], LOTOS[3] and SDL[4] and also 
other widely used specification method, for example, 
finite automata, Petri net[5] and temporal logics and 
algebras of processes[6]. They all have the ability to 
describe time constrains of object system, but most of 
them focus on the analysis of system specification, 
many aspects of embedded systems have been omitted, 
such as interrupt, DMA, operating system. So these 
methods can’t be used to give an actual result of the 
correctness of system’s time relations.  
 Except Petri net, most of these methods only 
support static time analysis and can’t be used to reflect 
the active property of embedded system. Especially in 
distributed real-time embedded system, many 
processors exchange message currently and the 
different parts of such system continuously react to the 
outside environment. These behaviors of such system 
are active. So Petri net is one of the best methods used 
to model and analyze distributed real-time embedded 
system.  
 Since Carl Adam Petri introduced Petri net in 1962, 
in order to model different properties of different 
system, many extensions have been added. Such as, by 
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assigning firing times to the transitions of Petri net time 
was firstly introduced by Ramchandani in Timed Petri 
net[7]; In Merlin’s time Petri net, an interval is annotated 
with each transition and transitions only can fire 
between corresponding intervals after the enable instant 
of such transition[8]. Time Petri net have more power 
than timed Petri net. High-Level timed Petri nets 
(HLTPN) are well described by Ghezzi[9]. HLTPN has 
the similar time representing mechanism as time Petri 
net, but in HLTPN, each place can have more than one 
data types and transitions are annotated with an action 
inscription to describe the actions of corresponding 
transition.  
 At first, Petri net was mainly used to model 
concurrent system, but now with the development of 
embedded system, Petri net are more and more used to 
model embedded system. Some extensions have been 
introduced, such as Dual Transition Petri Net 
(DTPN)[10,11]. DTPN captures both control and data 
flow structure from a behavioral description of an 
embedded system. It is used to represent the 
specification of embedded system.  
 Some efforts also have been done to model the 
behaviors of embedded operating system and interrupt 
system. Miguel Felder extends real-time structured 
analysis to specification of the detailed design of 
embedded real-time system and combines the proposed 
notation with Petri nets. In this model, he gives a subnet 
to model the schedule mechanism of embedded 
operating system[12]. Giacomo Bucci introduced 
Preemptive Time Petri Nets by extending Time Petri 
Nets with an additional mechanism of resource 
assignment which makes the progress of timed 
transitions be dependent on the availability of a set of 
preemptable resources[13,14]. This mechanism 
corresponds to the preemptable schedule mechanism of 
most embedded system. Zuberek[15] in Modified 
M-Timed Petri nets firstly introduces interrupt arcs 
which can easily be represented with inhibitor arcs[16]. 
In Modified M-Timed Petri nets, a firing of a transition 
may be interrupted if the set of this transition’s 
interrupting places are nonempty. If during a firing 
period of such transition t, all t’s interrupting places 
contain at least one token, the firing of t ceases and the 
tokens removed from t’s input places at the beginning 
of firing, are “return” to their original places. Janusz 
Borkowski gives a descriptive method to model 
interrupt with Region-based Petri nets (RPN) [17]. As an 
extension to Color Petri Nets, RPN is proposed to 
model actions affecting a set of places while the exact 
marking is neither known nor important.     
 All of those Petri net extensions mentioned above 
don’t have the ability to model embedded system 
accurately. Especially they have many difficulties to 
model the accurate time relations of embedded software. 
In these extensions, they have all kinds of assumptions 

about the behaviors of embedded system, such as the 
events, priority, execute sequence and so on. These 
assumptions ordinarily just suit to one aspects of 
embedded software, they lose generality and just adapt 
to special situation.  
 Interrupt system is an important part of embedded 
systems. Different from normal system, embedded 
systems often have many interrupt sources and 
interrupts occur continually. Interrupts greatly disturb 
the program executing sequence and delay the program 
executing time. So the influence of interrupts must be 
considered in the development of embedded system. 
Particularly remarkable is that the schedule mechanisms 
of most embedded operating systems are based on 
interrupt mechanism. Embedded operating systems 
reschedule tasks each time when they exit from 
interrupt procedure so that embedded operating system 
can schedule tasks preemptively. Based on interrupt 
mechanism we can model schedule mechanism easily 
and directly and needn’t relay on those assumptions 
about embedded system. Hence, Petri nets can perfectly 
model preemptive schedule of tasks as long as it can 
model interrupt. 
 Distributed real-time embedded systems are 
complex real-time systems. Such system normally is 
composed of many embedded processors and run 
different embedded software. These processors 
exchange data each other and communicate with 
outside environment concurrently through all kinds of 
interfaces. So the time relations of such system are 
more complex than single processor embedded system. 
Until now there hasn’t a model that can descript the 
active time relations of such system perfectly. 
 In this study, we introduce an extension of 
HLPN[18], called Extended High-Level Timed Petri Net, 
which allows the representation of the time relations 
and resource management of complex distributed 
real-time embedded system in a simple and direct way. 
This model extends HLPN by adding time, actions and 
interruptible subnets. Each interruptible subnet 
corresponds to an interruptible resource and includes an 
Interrupt Switch Transition and a set of Resuming 
Transitions. These two special type transitions are used 
to model the behaviors of each interruptible subnet 
when interrupts occur. Formal and informal definitions 
of EHLTPN are all presented. A rule for transforming 
an interruptible subnet into HLTPNAT with priority is 
also presented. At last, give a small example of 
EHLTPN. 
 
Informal definition of EHLTPN: Traditional Petri Net 
has many difficulties in modeling interrupt. First of all, 
interrupts occur irregularly, they perhaps happen at any 
point allowing the occurrence of interrupt. So we can’t 
know the exact point where interrupt occurs. All of the 
points that have the possibility to be interrupted should 
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be considered. Secondly, if model all the points where 
interrupts perhaps happen, the number of place will be 
enormous. It’s hard to manage this model. Thirdly, the 
analysis of such model is very difficult.  
 An example of interrupt model of HLPN with time 
and priority is shown in Fig. 1. In Petri net with priority, 
each transition is annotated with a natural number, 
called priority level. If more than two transitions are 
enabled at the same time, only those annotated with 
highest priority level are allowed to fire. The firing time 
of transitions is denoted by notation “d” and “d” is 
annotated with each transition. This figure describes an 
interrupt model of a program section in which interrupts 
perhaps happen at place Point(i) and Point(i+1). Except 
transition Point(i)SwProcA, Point(i)SwProcB, 
Point(i+1)SwProcA and Point(i+1)SwProcB, all the 
transitions in this model have priority level 1 while the 
former four transitions have higher priority level 2. The 
left part of this figure models a program section. Each 
transition in this section represents one time execution 
of code and at the moment when these transitions fires, 
the processes of firing can’t be interrupted. This means 
that interrupt only can occur where the program section 
run to a place otherwise the interrupt will not occur.  
 Place INTNo represents the source of interrupts. If 
there is a token in it, shows that an interrupt request has 
been pended. Place INTTable keeps a list to save the 
interrupt procedure entrance of each interrupt number. 
Place INTProcA and INTProcB represent the beginning 
of two interrupt procedures. Transition 
Point(i)SwProcA, Point(i)SwProcB, 
Point(i+1)SwProcA and Point(i+1)SwProcB represent 
the behaviors when interrupts occur at Point(i) or 
Point(i+1). Transition ProcAIRETPoint(i), 
ProcAIRETPoint(i+1), ProcBIRETPoint(i) and 
ProcBIRETPoint(i+1) represent the operations when 
interrupt procedure ends. Place Point(i)RevA, 
Point(i)RevB, Point(i+1)RevA and Point(i+1)RevB are 
used to keep the status of Point(i) and Point(i+1) 
corresponding to different interrupt procedures when 
interrupt occurs and used to restore the status of Point(i) 
or Point(i+1) when interrupt procedure ends. 
 Suppose at a moment, interrupt 1 comes, thus a 
token emerges in place INTNo and its value is 1. At the 
same time, program section 1 run to place Point(i), so 
transition t(i+1) and transition Point(i)SwProcA are 
enabled at the same time. However, transition 
Point(i)SwProcA has the higher priority level than 
transition t(i+1), so it fires and prevents the firing of 
transition t(i+1). Transition Point(i)SwProcA from 
place INTTable gets the interrupt procedure entrance of 
interrupt number 1, place INTProcA. Then executes 
Procedure A and keep the status of place Point(i) in 
place Point(i)RevA. When this procedure ends, 
transition ProcAIRETPoint(i) restore the status of 
point(i). The process of interrupt finished. 

 From Fig. 1 we can see that the numbers of places 
and transitions are directly proportional to the number 
of interruptible points in the model. An embedded 
software model perhaps exists millions of such points. 
Fortunately we needn’t know the exact point where an 
interrupt occurs. Knowing that the interrupt occurs in 
which program section is enough.  
 In this study, EHLTPN extended from HLPN is 
introduced. In EHLTPN, places represent the different 
states of system; tokens in place represent the resources 
of system; transitions represent the operations that 
operate on input tokens. Each token can save arbitrary 
complex data types of data, normally represented by a 
tuple, hence one token can represent many kinds of 
resource at the same time. In EHLTPN, a time function 
is annotated with each transition indicating how long 
the input tokens are kept in this transition after the 
transition fires. An action inscription which models the 
behavior of each transition is annotated with each 
transition. 
 In architecture, EHLTPN contains a finite number 
of interruptible subnets. Each interruptible subnet 
corresponds to an interruptible resource. This resource 
takes part in all the operations of this subnet and it is 
the unique interruptible resource in this interruptible 
subnet. At certain condition it can interrupt current 
operation and then goes to run another series of 
operations and when these operations end, it resumes 
the status of the operation interrupted just now and 
continues to finish this operation just like it hasn’t been 
interrupted. Such procedure is called interrupt 
procedure. 
 Interruptible resource has two forms in each subnet. 
One form is a token whose data type is a tuple with two 
elements and the content of its first element is a sign 
which is used to represents the existence of interruptible 
resource in this subnet. Places of such data type are 
called interruptible places. Another form is a firing 
transition. Because interruptible resource takes part in 
all the operations of this subnet and it is the unique 
interruptible resource in this subnet, each transition in 
this subnet has one and only one interruptible place 
belong to its preset and the cardinality of the multiset 
annotated with the arc from this interruptible place to 
the transition is one. Similarly, for each transitions in 
this subnet, has one and only one interruptible place 
belong to its postset and the cardinality of the multiset 
annotated with the arc from this transition to the 
interruptible place is one too. Hence when a transition 
fires, it moves a token with interruptible resource from 
an interruptible place belongs to its preset. When the 
transition stops firing, it also moves a token with 
interruptible resource to an interruptible place belongs 
to its postset.  
 An active node is a node which has the 
interruptible resource in an interruptible subnet. It may 
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be a place or a transition. An interruptible place that has 
a token is an active node. A firing transition also is an 
active node. All the active nodes except uninterruptible 
transitions are interruptible. Since the interruptible 
resource in a subnet is unique, at any time, in each 
subnet, exists one and only active node. Thus when an 
interrupt occurs, we can get the active node which is 
interrupted directly. The status of this active node at the 
moment when it is interrupted is called a breakpoint. 
 Each interruptible subnet has two special type 
transitions, called Interrupt Switch Transition and 
Resuming Transition. Interrupt Switch Transition 
represents the operations when interrupt occurs and 
Resuming Transition represents the operations when the 
interrupt procedure ends. Each interruptible subnet has 
only one Interrupt Switch Transition but may have a 
group of Resuming Transitions. Thus each interruptible 
subnet only can responses to one interrupt request a 
time but may have many interrupt procedures 
concurrently. 
 At the moment when Interrupt Switch Transition 
fires, it saves the breakpoint of the interrupted active 
node to a special variable bp associated with it and the 
data type of this variable is “BreakPoint”. Interrupt 
Switch Transition interrupts the operations of current 
active node at the same time. If this breakpoint is a 
place, then the token in it is removed; if the breakpoint 
is a transition, set the remaining firing time of this 
transition 0 and the status of this transition recovers to 
be “normal” just like it has not fired. At the moment 
when Interrupt Switch Transition stops firing, it 
resumes the breakpoint which is produced by the 
function B annotated with it. When Resuming 
Transition stops firing, it does the same operation as 
Interrupt Switch Transition does. The breakpoint may 
be a place or a transition. If it is a place, then move the 
token keeping in the breakpoint to it. If it is a transition 
then resume its status kept in the breakpoint. This status 
includes the remaining firing time of this transition, the 
values binding to the variables annotated with its input 
arcs and tokens which are moved in as it fired. But 
these tokens in most cases have no use for the firing of 
this transition, so in the latter of this study we don’t 
keep the values of these tokens.  
 When we use EHLTPN model distributed real-time 
embedded system, each subnet corresponds to the 
software running on an embedded processor. The 
processor is the interruptible resource and takes part in 
all the operations of all the transitions. Interrupt Switch 
Transition corresponds to operations when the 
processor responds to the interrupt requests from 
outside and Resuming Transition corresponds to the 
machine instruction IRET.  
 Figure 2 is an interrupt model represented by 
EHLTPN corresponding Fig. 1. In this model, the arcs 

drawing by dash style are not the true arcs of this model. 
Here, they are used to represent how the interruptible 
resource is moved when interrupt occurs. 
 
Formal definition of EHLTPN 
The definition of EHLTPN: At first, we recall the 
definition of HLPN. All the notations without clear 
definition here refer to[18]. 
 
Definition 3.1: HLPN is a structure HLPN=(NG, S, C, 
AN, M0) where  
(i). NG=(P, T, F) is called net graph with  
 * P a finite set of nodes, called Places. 

ID:P�N, is a function marking P, N=(1,2,…) 
is the set of natural number. Using p1, p2, …, 
pn represents the elements of P and n is the 
cardinality of set P; 

 
Fig. 1: An interrupt model represented by HLPN with 

time, actions and priority 
 

 
Fig. 2: An interrupt model represented by EHLTPN 

corresponding to Fig. 1 
 
 * T a finite set of nodes, called Transitions, 

which disjoint from P, P ∩ T= ∅ ; ID:T�N 
is a function marking T. Using t1, …, tm 
represents the elements of T, m is the 
cardinality of set T;  
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 * F ⊆ (P× T) ∪ (T× P) a set of arcs, known as 
the flow relation;  

(ii). �=(R, �, V) is a Natural-Boolean signature with 
variable. It has a corresponding �-Algebra, H=(RH, 
�H). Where, 

 * R is a set of sorts; 
 * � is a set of operators together with their 

arity in R which specifies the names of the 
domain and co-domain of each of operators; 

 * V is a set of sorted variables; 
(iii). C:P�RH is a function which types places;  

(iv). AN=(A, TC) is a pair of net annotations; 

 * A:F�BTERM(�∪ V) such that for C(P)=Hr 

and for all (p,t), (t�,p) ∈ F, A(p,t), 

A(t�p)∈BTERM(�∪ V)r. A is a function that 

annotates arcs with a multiset of terms of the 

same sort as the carrier associated with arc’s 

place; 

 * TC:T�TERM(� ∪ V)Bool is a function that 

annotates transitions with Boolean 

expressions; 

(v). M0:P�
p P

Cµ
∈
� (p) such that ∀ p∈P, M0(p)∈µC(p) 

is the initial marking function which associates a 

multiset of tokens of correct type with each place. 

 
 Then we give the definition of HLPN with time 
and actions.  
 
Definition 3.2: High-level Petri Nets with actions and 

time, HLPNAT, is a structure, HLPNAT=(NG, S, C, AN, 

AC, D, M0
*), where 

(i). HLPN=(NG, S, C, AN, M0); 

(ii). 0: ( )
R

D T TERM V ≥→ Ω ∪ , D is a function that 

annotates transitions with a rational number 

representing the initial remaining firing time of 

transitions. It is initiated at the moment when the 

transition begins to fire. For convenience’s sake, 

use set D={d1, …, dm} to represent the initial 

remaining firing times corresponding to T={t1, …, 

tm} respectively. R�0 is the set of nonnegative 

rational numbers; 
(iii). AC:T�BTERM(� ∪ V), AC is a function that 

annotates transitions with a multiset of terms. AC(t) 
represents the actions of transition t; 

(iv).  M0
*=(M0, r0), is a pair, represents the status of net 

at time 0 (we assume that each net start at time 0). 

Where, 

 * M0:P�
p P

Cµ
∈
� (p), is the initial marking 

function which associates a multiset of 

tokens with each place at time 0; 

 * r0:T�0, is a function representing the 

remaining firing time of each transition. The 

remaining firing times of all the transitions 

evaluate to 0 at time 0. 

 

 The set of interruptible places in a interruptible 

subnet 
jCN NC∈ is denoted by 

jICP . The set of active 

places which have a token in subnet 
jCN is denoted by 

jRunCP . The capacities of each place belonging to 
jICP is 

1, because in 
jCN only exists one interruptible resource 

Cj. TRun is the set of transitions which are firing at 

current time, TRun={t�t ∈ T ∧ rcurrent(t)>0}. If t ∈ TRun 

calls transition t being “running” status. 
jRunCT is the set 

of transitions which are firing in subnet 
jCN , 

jRunCT ={t�t ∈
jCT ∧ rcurrent(t)>0}. The set of active 

nodes in 
jCN is denoted by

jRunCN , 
jRunCN =

jRunCT  

∪
jRunCP . Later, in Theorem 3.1 gives that at any time 

∀
jCN ∈NC, �

jRunCN �=1. So at any time when an 

interrupt occurs, variable bp may have a unique value. 
 In EHLTPN a special data type “BreakPoint” is 
introduced. BreakPoint is used to save the status of the 
breakpoint where interrupt occurs. Breakpoint may be a 
place or a transition. If the breakpoint is a place, the 
type of this breakpoint, the ID of this place and the 
tokens in this place are kept. If it is a transition, the type 
of this breakpoint, the ID of this transition, the left 
firing time of this transition and the values of variables 
annotated with the input arcs of this transition are kept. 
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Because only variables which have bound values can 
take part in the calculation of actions and the terms 
annotated with output arcs, thus keep the values of 
every variables is enough. 
 In order to give a clear definition of the semantic of 
EHLTPN, here give some definitions of notations about 
data type BreakPoint. Variables of BreakPoint data type 
usually are denoted by bp or bp1, bp2, bp3, …. Because 
of the complexity of BreakPoint data type, it can’t be 
described by normal data type. In order to get and set 
the values of a BreakPoint data type, following methods 
are provided: 
* bp.type() returns the type of breakpoint bp. If 

returns t, represents bp is a breakpoint of transition 
type. Otherwise it will return p to represent it is a 
place type; 

* bp.settype(p or t) sets the type of bp; 
* bp,ID()returns the node ID of breakpoint bp. For 

example, if the bp is a breakpoint of transition t9, 
then bp.ID()=9; 

* bp.setID(N), sets the node ID of breakpoint bp; 
* bp.token(), if bp.type()=p, returns the multiset of 

place pbp.ID(), M(pbp.ID()); otherwise returns ∅ ; 
* bp.settoken(M(p)), saves the multiset of place; 
* bp.rt(),if bp.type()=t, returns the remaining firing 

time of transition tbp.ID(); 
* bp.setrt(r(t)), sets the remaining firing time of 

transition t; 
* bp.f(var), is a function constructed by bp.Conf(var1, 

var2, …, varn, val1, val2, …, valn), it will return the 
value of variable var; 

* bp.Conf(var1, var2, …, varn, val1, val2, …, valn), 

according the input parameter constructs a function 

f to save the value of each variables. ∀ varm∈  

(var1, var2, …, varn), 1�m�n, bp.f(varm)=valm. 

 
Definition 3.3: Extended high-level Timed Petri Nets is 

a tuple EHLTPN=(HLPNAT, PC, NC), where 

(i). HLPNAT is a high-level Petri nets with actions and 

time, HLPNAT =(NG, S, C, AN, AC, D, M0
*); 

(ii). PC={C1, C2, …. Ck}, K>0, k ∈ N, is a set of 

interruptible resources; 

(iii).
1 2

{ , , }
kC C CNC N N N= � , C1, C2, Ck∈PC, is the set 

of interruptible subnets of EHLTPN and 

∀
jCN ∈NC, 1�j�k, 

jCN =(
jCP ,

jCT ,
jCC ,

jCB ,
jSCt , 

jRCT ,
jCbp ) is a structure, where  

 * 
jCP is the set of places in 

jCN , 
jCP ⊆ P, 

jCP =
jICP ∪

jNICP
jICP ∩

jNICP = ∅ ; 
jICP  

is the set of interruptible places in 
jICP ; 

jNICP  is the set of uninterruptible places in 

jCP ; 

 * 
jCT is the set of transitions in

jCN . 
jCT ⊆ T 

and 
jCT =

jICT ∪
jNICT ,

jICT ∩
jNICT = ∅ , 

∀
iCN ,

jCN ∈ NC,
iCN ∩

jCN = ∅ ; 
jICT is 

the set of interruptible transitions in 
jCT ; 

jNICT is the set of uninterruptible transitions 

in 
jCT ; 

 * :
j j jC IC HCC P R→ , is a function which types 

places in 
jICP . 

jHCR ={
jrCH |r ∈ R}

jrCH ={(Cj, r)� r∈Hr};  

∀ p∈
jCP ,  C(p)=

( )

( )
j

j j

NIC

C IC

C p p P

C p p P

∈��
� ∈��

  

 * 
jCB :{

jSCt } ∪
jRCT �TERM(�∪ V)BreakPoint is 

a function annotated
jSCt and elements in 

jRCT . This function gives the breakpoints of 

resuming after the firing of these transitions; 

 * 
jSCt is Interrupt Switch Transition, 

jSCt ∈
jNICT ; 
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 * 
jRCT is the set of Resuming Transitions, 

jRCT ⊂
jNICT ;  

 * 
jCbp  is a variable, 

jCbp ∈V. At the moment 

jSCt fires, 
jCbp is binding to the value of the 

breakpoint of current active node which is 

interrupted. This variable only can be used in 

the actions annotated with 
jSCt , and the 

terms annotated with the output arcs of 
jSCt . 

 
Definition 3.4: The definition of initial marking, M0

*, 

of EHLTPN is the same as HLPNAT, however because 

in each subnet only exist one interruptible resource, it 

must satisfy following property: 

∀
jCN ∈NC, 0 ( ) 1

IC j
p P

M p
∀ ∈

=� . 

Definition 3.5: The marking, *
timeM , of EHLTPN is 

defined in the same way as the initial marking 

representing the status of net at time time. *
timeM  

=(Mtime, rtime), where 

(i). Mtime:P� ( ), , ( ) ( );time
p P

µC p p P M p C pµ
∈

∀ ∈ ∈�  

(ii). rtime:T�R�0, rtime is a function representing the 

remaining firing time of each transition.  

 
 If transition Runt T∉ , ( ) 0timer t = , otherwise 

( ) 0timer t ≠ and the value of it will decrease 

automatically as the time passing. The remaining firing 

time of all the breakpoints of type “t” keep no change 

until they are resumed and being an active node again. 

When the remaining firing time of transition 

t decreases to 0, this transition stops firing and 

produces output tokens and become an inactive node. 

 In EHLTPN the definition of preset and postset is 

the same as other kind of Petri Nets. That is, 

∀ x∈P ∪ T, 

    x• ={y�(y∈P ∪ T) ∧ ((y,x)∈F)}, 

and 

 x• ={y�(y∈P ∪ T) ∧ ((x,y)∈F)}, 
Call x• and x• the preset and postset separately.  
 
Behavior of EHLTPN 
Definition 3.6: Enabling rule: a transition 
ti∈T ∧ ti∉TRun is enabled in Marking, *

timeM , at time 
time, for a particular assignment to its variables, 	time, 
known as a mode of ti, iff following properties are 
satisfied: 
(i). it T∈ , ( ( ))bool iassign TC t true= , p P∀ ∈  , 

( , ) ( )
time i timeVal p t M pα ≤ , where for  

( , ) ( ) ( )u v P T T P∈ × ×� , 

*  ( , )u v F∈ , , ( , )u v A u v= , 

*  ( , )u v F∉ , ,u v = Φ and ( )
time

Valα φΦ = , the 

empty multiset; 

(ii). 
jCN NC∀ ∈ , ( ({ } ))

j j ji C i SC RCt T t t T∈ ∧ ∉ ∪ , 

satisfy (i) and (( ) | ( , ) |
j timeIC i ip p P t Val p tα

•∃ ∈ ∩ ∧  

 

1) | | 1
jIC iP t•= ∧ ∩ = ; 

 

(iii).  
jCN NC∀ ∈ , 

ji SCt t= , 
j jSC Ct T∈ , satisfy (i)  and  

( ( | ( ) | 1) ( ))
j j jIC time RunC NICp p P M p t t T t T∃ ∈ ∧ = ∨ ∃ ∈ ∧ ∉

'(( ' ) | ( ', ) | 1);
j j time jIC SC SCp p P t Val p tα

•∧¬∃ ∈ ∩ ∧ ≥  

(iv).  
jCN NC∀ ∈ , 

ji RCt T∈ , satisfy (ii).  

 

 To give the abstract definition about time, here a 

well-defined semantics is given: 

t+ and t-, are two special time relative to time t , 

' '( ) ( )t t t t t t+ +> ∧ ¬∃ < <  and ' '( ) (t t t t t− −< ∧ ¬∃ < <  

)t . 
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Definition 3.7: Priority rule: In each subnet 

jCN NC∀ ∈ , when 
jSCt and other transitions 

jCt T∈ are 

enabled at the same time, 
jSCt has the priority of firing. 

 Following definition 3.6, transition
jSCt and other 

transitions t∈
jCT  are able to be enabled at the same 

time. But in each interruptible subnet ∀
jCN ∈ NC 

only exists one interruptible resource, if t∈
jCT fires, it 

would prevent the firing of 
jSCt . Because the function 

of transition 
jSCt is to interrupt the current running 

procedure of this subnet, so 
jSCt should fire firstly. 

Hence 
jSCt must have higher priority of firing than any 

other transitions in 
jCT . 

 
Definition 3.8: Transition rule:  

(i). At time time, if transition ti∈T is enabled in mode 

	time, for marking *
timeM , ti may occurs in mode 

	time, at this moment, the value of di is evaluated: 

0 ( ( ))i iR
d assign D t≥=  

 At the beginning of firing, a tuple of tokens 

which enable ti is moved from it
•  to ti, the 

marking of the net is transformed to a new marking 

*
time

M + at time time+, denoted by 

* *[ ,time i time time
M t Mα +� , according to the following 

rule:   
For p P∀ ∈ , 

 ( ) ( ) ( , )
timetime itime

M p M p Val p tα+ = − −  

  
(( { }) )

( , )
time

time it Ts t p

Val p tα
•∈ − ∩

� , and 

 ( ) ( )i i itime
r t d time time d+

+= − − ≈  

 { | ( ) 0 ( ) 0}time time time
Ts t t T r t r t+= ∈ ∧ = ∧ >  is 

the set of transitions in T which start firing at time 

time. { | ( ) 0 ( ) 0}time time time
Te t t T r t r t−= ∈ ∧ = ∧ > is 

the set of transitions which stop firing at time time. 

 These inputted tokens are kept in transition ti 

for time di, until the remaining firing time of 

transition ti decreases to 0. Then calculates the 

terms in actions which annotated with transition ti 

and produces output tokens according to the 

inscriptions annotated with its output arcs, the 

marking of the net is transformed to a new marking 

*
itime dM + denoted by * *[ ,

itime i time time dM t Mα +� , 

according to the following rule: 
For p P∀ ∈ , 

 
( )

( ) ( ) ( , )
i timei

time d itime d
M p M p Val t pα−+ +

= +   

    
( )(( { }) )

( , )
timek

ik time di

k
t Te t p

Val t pα
•

+∈ − ∩
+ �  and  

 ( ) ( ) 0
itime d ir t+ = ,  

 where, 
ktimeα  is the model which enable 

transition kt at time ktime and kt occurs in this 

model.   

(ii). At time time , 
jCN NC∀ ∈ , (

ji C it T t∈ ∧ ∉  

({ } ))
j jSC RCt T∪ , if transition 

ji NICt T∈ is enabled in 

mode timeα , for marking *
timeM , then it may occurs 

in mode timeα according rule (i) and following 

property should be satisfied: 

( ( ) | ( , ) | 1) | | 1
j time jIC i i IC ip p P t Val t p P tα

• •∃ ∈ ∩ ∧ = ∧ ∩ =
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; If transition 
ji ICt T∈ is enabled in mode timeα , 

for marking *
timeM , then at time time , it  may 

occurs in mode timeα according rule (i). Suppose 

the remaining firing time of transition it decrease 

to 0 at time 'time . Then calculates the terms in 

actions which annotated with transition ti and 

produces output tokens according to the 

inscriptions annotated with its output arcs, the 

marking of the net is transformed to a new marking 

*
'timeM denoted by * *

'[ ,time i time timeM t Mα � , according 

to the following rule: 
For p P∀ ∈  

 ' ( ')
( ) ( ) ( , )

timetime itime
M p M p Val t pα−= +   

    
'(( { }) )

( , )
timek

itimek

k
t Te t p

Val t pα
•∈ − ∩

+ �  and  

 ( ') ( ) 0time ir t = ,  

   Because transition it may be interrupted and 

be resumed in the procedure of firing , so 
' itime time d≥ + . Following property also should 

be satisfied:  

( ( ) | ( , ) | 1) | | 1
j time jIC i i IC ip p P t Val t p P tα

• •∃ ∈ ∩ ∧ = ∧ ∩ =

; 

(iii). At time time ,
jCN NC∀ ∈ , 

ji SCt t= , if transition 

jSCt ∈
jCT is enabled, for marking M*

time, 
jSCt may 

occurs in mode timeα  according rule (i) and does 

following operations: 

 a). At time time+ , evaluates 
jCbp  the value of 

breakpoint to keep the status of breakpoint;  
  If breakpoint is mP , then,  

  . ( )
jCbp settype p ; . ( )

jCbp setID m ; 

  . ( ( ))
jC time mbp settoken M p ; 

   If breakpoint is mt , then 

  . ( )
jCbp settype t ; . ( )

jCbp setID m ; 

 . ( ( ))
jC time mbp setrt r t ; . (

jC 1 2bp Conf var ,var , ,�

1 2, ( ), ( ), , ( ))
m m mn time time time nvar var var varα α α� , 

{ } ( ( , ))
m

1 2 n m
p t

var ,var , ,var Var A p t
•∈

=� � ; 

  ( )Var terms  is the set of variables in terms . 

mtimeα is the mode which enable transition 

mt . 

 b). At time time+ , interrupts the operations of 

current active node. If current active node is 

mp , then moves all the tokens in mp , 

( )mtime
M p+ = Φ ; If current active node is mt , 

then ( ) 0mtime
r t+ = , recovering its status to 

“normal” status just like it has not fired. 

 c). At time 
jSCtime d+ , resumes the breakpoint 

( )
j jC SCBp t .  

  If ( ). ()
j jC SCBp t type p=  then 

( ) ( ). ()( )
SC C SCj j j

time d BP t IDM p+ =

( ). ()( )
( ) ( ). ()

C SC j jj jSC j
BP t ID C SCtime d

M p Bp t token−+
+

; 

  If ( ). ()
j jC SCBp t type t=  then 

  ( ) ( ). ()( ) ( ). ()
SC C SC j jj j j

time d Bp t ID C SCr t Bp t rt+ =  and, 

  
( ). ()

( ). ()( ( , ))
C SCj j

C jBp t IDSC j

Bp t ID
p t

var Var A p t
•∈

∀ ∈ � , 

   ( ). ( )
j jC SCvar Bp t f var= . 

(iv). At time time ,
jCN NC∀ ∈ , if 

ji RCt T∈ is enabled 

in mode timeα , for marking *
timeM , it  may occurs 
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in mode timeα , according rule (i) and at time 

itime d+  resumes breakpoint ( )
jC iBp t : 

 If ( ). ()
jC iBp t type p= then  

 ( ) ( ). () ( ). ()( )
( ) ( )

i C i C ij ji
time d Bp t ID Bp t IDtime d

M P M P−+ +
= +  

       ( ). ()
jC iBp t token ; 

 If ( ). ()
jC iBp t type t= then 

  ( ) ( ). ()( ) ( ). ()
i C i jj

time d Bp t ID C ir t Bp t rt+ =  and 

 
( ). ()

( ). ()( ( , ))
C ij

iBp t IDC j

Bp t ID
p t

var Var A p t
•∈

∀ ∈ �

 ( ). ( )
jc ivar Bp t f var= . 

 

Theorem 3.1:
jCN NC∀ ∈ , at any time, | | 1

jRunCN = . 

Proof: The proof is by induction on time. For the 

inductive step, we need to consider two cases. 

Case 1: At time 0, by definition 3.4 
jCt T∀ ∈ , 

0 ( ) 0r t =  and 0, | ( ) | 1
j

IC j

C
p P

N NC M p
∀ ∈

∀ ∈ =� . So all 

the transitions are inactive and there is only one 

place
jICp P∈  which has a token with interruptible 

resource. Since 
jRunCT = ∅ , | | 1

jRunCP = therefore, 

| | 1
jRunCN =  obviously holds. 

Case 2: At time 0time > , if 
jCt T∀ ∈ , none of these 

transitions fire, 0timeM M= , from case 1, | | 1
jRunCN =  

is immediate. By Definition 3.6, at any time, 
jCt T∀ ∈  

except 
jSCt exist and only exist one 

jICp P t•∈ ∩  and 

| ( , ) | 1
time

Val p tα = , thus when t  fires, it will move a 

token with interruptible resource from p . Because at 

time 0 | | 1
jRunCP = , hence only one transition can fire, 

thus at this moment | | 1
jRunCT = . At the moment, 

time 'time , transition t stops firing, according 

Definition 3.8, exist and only exist one place 

jICp P t•∈ ∩  and 
'

| ( , ) | 1
time

Val t pα = . So when 

transition t  stops firing, it will produce only one 

token with interruptible resource and moves this token 

to a place 
jICp P t•∈ ∩ . At this moment at most one 

transition 
jCt T∈ will be enabled just like at time 0. 

jSCt and 
jRCt T∈ are two special type transitions in 

jCT . 

When 
jSCt fires, it breaks up the options of current 

active node and lets himself to be an active node so the 

firing of 
jSCt doesn’t change number of active nodes. At 

the moment 
jSCt or 

jRCt T∈ stops firing, they may 

recover the breakpoint ( )
j jc SCBp t  or ( )

jcBp t . The 

breakpoint becomes an active node again. So the 

number of active nodes doesn’t change. Therefore case 

2 is immediate. 

 

 
Definition 3.9: A finite occurrence sequence is a 

sequence of markings and modes: 

1 1 2 2 1

* * * *
1, 2, ,[ [ [

n n ntime time time time time n time timeM t M t M t Mα α α
+

� � ��  

Such that n N∈  and 
1

* *
,[

i i itime i time timeM t Mα
+

�  for all 

{1,2,3, , }i n∈ � , 
1

*
timeM  is the start Marking, 

1

*
ntimeM

+
is 

the end marking and n is the length. 

 
Property analysis 
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Fig. 3: An example of transform rule step 1 

 

 Here, we will define an equivalent relation between 
interruptible subnet of EHLTPN and ATHLPN with 

priority. Each interruptible subnet of EHLTPN 

jCN NC∀ ∈ , ,( , , , , , )
j j j j j j j jC C C C C SC RC CN P T C B t T bp=  

can be transformed into a behaviorally equivalent 

subnet of HLPNAT with priority, denoted by 

*
0( , , , , , , , )riATH L PN = NG S C AN AC D P M , where 

( , , )NG = P T F , ( , )AN = A TC , :ri N→P T  is a 

function, annotated each transition with a natural 

number representing the priority level of each transition. 

Of two natural numbers, the bigger one has higher 

priority level.  

The transform rule includes following steps: 
Step 1: Construct ATH L PN  and instead of 

ji ICt T∀ ∈  with a subnet which is composed of a serials 

of places and transitions.  

(i). All the places of 
jCP belong to P and the types of 

these place keep no change. Thus p∀ ∈ P iff 

jCp P∃ ∈ and , ( ) ( ) iff ,  
j jC ICp p C p p P∀ ∈ = ∈P C  

( ) ( ) iff  
jNICp C p p P= ∈C ;  

(ii). All the transitions which belong to
jNICT belong 

to T and the input arcs, output arcs of these 
transitions also belong to ATH L PN . The guards, 

the actions and the initial remaining firing times 

annotated with these transitions and the annotations 

annotated with their input arcs and output arcs keep 

no change. Hence t∀ ∈ T  iff 
jNICt T∃ ∈ . For 

t∀ ∈ T , following properties should be 

satisfied: p t•∀ ∈ , ( , )p t ∈ F iff ( , )p t F∃ ∈ , and 

for p t•∀ ∈ , ( , ) ( , )p t A p t=A ; p t•∀ ∈ , ( , )t p ∈ F iff

 ( , )t p F∃ ∈ , and for p t•∀ ∈ , ( , ) ( , )t p A t p=A ; 

( ) ( )t AC t=AC ; ( ) ( )t D t=D  and ( ) ( )t TC t=TC ; 

(iii). Transition it , 
ji ICt T∈ , are replaced by a serials of 

transitions and places, denoted by 

1 1 2 2 ( 1), , , , , ,i i i i i n int p t p p t−� , n N∈ and 

1 2, , ,i i int t t ∈� T , 1 2 ( 1), , ,i i i np p p − ∈� P . They are 

connected by arcs in sequence. These arcs are all 
belong to F , so that, imt∀ , 1 1m n≤ ≤ − , 

| | 1im im imt p p• •∈ ∧ = , ( 1) | | 1i m im imt p p• •
+ ∈ ∧ = . The 

initial remaining firing times corresponding to 

1 2, , ,i i int t t�  are denoted by 1 2, , ,i i ind d d�  and 

they satisfy following equation 

1 2i i in id d d d+ + + =� . The number of n  lies on 

the time precise of this net. Assume the number of 
n  is big enough, so that, for d∀ , 0 id d< < , 

exists a place mp  and 1 2i i imd d d d+ + + =� , 

1 m n≤ < .  
(iv). Reconnect all the input arcs of it  to 1it and the 

annotations annotated with these arcs keep no 

change. That is for ip t•∀ ∈ , 1( , )ip t ∈F iff 

 ( , )ip t F∃ ∈ and for ip t•∀ ∈ , 1( , ) ( , )i ip t A p t=A , 
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hence 1i it t• •= . 

(v). Reconnect int  with all the output arcs of it  and 

the annotations annotated with these arcs keep no 

change. That is, for ip t•∀ ∈ , ( , )int p ∈F  iff 

( , )it p F∃ ∈  and for ip t•∀ ∈ , ( , ) ( , )in it p A t p=A , 

hence, i int t• •= . 

(vi). Assume { } ( ( , ))
i

1 2 m i
p t

var ,var , ,var Var A p t
•∈

=� �  

is the set of variables annotated with input arcs of 

it . Then assign the multiset of terms annotated 

with arcs, for ( , )ik ikt p∀ , 1 1k n≤ ≤ − , 

( , ) ( , ( ))ik ik j 1 2 mt p C var ,var , ,var=A � . For 

( 1)( , )ik i kp t +∀ , 1 1k n≤ ≤ − , ( 1)( , )ik i kp t + =A  

( , ( ))j 1 2 mC var ,var , ,var� . 

(vii).Type the new added places. 1 2 ( 1){ , , , }im i i i np p p p −∀ ∈ � , 

( )
i jim r Cp H=C , 1 2{( , ( , , , )) |

i jr C j mH C val val val= �

21 2, ,
1var varval H val H∈ ∈ � , }

mm varval H∈ , 
mvarH is 

the type of variable mvar . 

(viii).Assign actions, 1 2 ( 1){ , , , }im i i i nt t t t −∀ ∈ � , 

( )imt = ΦAC  and ( ) ( )in it AC t=AC ; 

(ix). Assign guards, 2 3{ , , , }im i i int t t t∀ ∈ � , 

( )imt true=TC  and 1( ) ( )i it TC t=TC ; 

(x). For all 
jICt T∈  except it  do the same operations 

as (iii), (iv), (v), (vi), (vii), (viii) and (ix). 

Step 2: Transform 
jSCt . 

(i). BP  is the set of all interruptible places after the 

implementation of step 1. 
jICBP P= ∪  all the 

new added places in step 1 

{ | ( ) , }
jrCp p H r R= = ∈C , is the set of 

interruptible places in ATH L PN . 

(ii). 1 { | { ( ( ))}, }
j j jC SC SCBp bp bp Val B tα α= ∈ ∈� , is a 

finite set of all the possible resuming breakpoints 

of 
jSCt  in subnet

jCN , where 
jSC� is the set of all 

the modes which possibly enable 
jSCt  when 

jSCt  

fires. Suppose the cardinality of 1Bp  is 

| 1 | , 1R RBp n n= ≥ . 

(iii). Transform all the breakpoints in 1Bp  to *1Bp , a 

finite set of all the possible resuming breakpoints 

of 
jSCt in ATH L PN . All the breakpoints’ type in 

ATH L PN are p . At first add all the breakpoints of 

type p  in 1Bp  to *1Bp directly. Then transform 

all the breakpoints of type t  to type p  and add 

them to *1Bp . If 1 . ()bp Bp bp type p∈ ∧ = , then 

*1bp Bp∈ . If 1 . ()bp Bp bp type t∈ ∧ = , then find a 

place . ()bp ID mp  added in step1, 1 1m n≤ ≤ −  in 

the serial . ()1 . ()2 . ()( 1), , ,bp ID bp ID bp ID np p p −� , so that 

. () . ()( 1) . () . ()bp ID m bp ID m bp ID nd d d bp rt++ + + =� . Then 

transforms bp to bp* , bp*∈  Bp1*. Assign the value 

of *bp , *. ( . () )bp setID bp ID m , *. ( )bp settype p . 

Let 
. ()

. (){ } ( ( , ))
bp ID

1 2 n bp ID
p t

var ,var , ,var Var A p t
•∈

=� �  

is the set of variables annotated with the input arcs 

of . ()bp IDt then *
1. (( , ( . ( ),jbp settoken C bp f var  

2. ( ), , . ( ))))nbp f var bp f var� . Obviously, | 1 |Bp =  

*| 1 | RBp n= . The elements of *1Bp are denoted by 
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*
1 21 { , , , }

RnBp bp bp bp= � . 

(iv). If place ip BP∈  and *1kbp Bp∈ then add a new 

transition ikt to T and connect it with all the input 

places and output places as 
jSCt , terms annotated 

with these arcs keep no change, the actions, the 
guard and the initial remaining firing time of ikt  is 

same as that of 
jSCt . Hence ikt ∈ T , 

jik SCd d= ; 

for , ( , ) , iff ( , )
SC SCj j

ikp t p t p t F•∀ ∈ ∈ ∃ ∈F , for 

, ( , ) ( , )
SC SCj j

ikp t p t A p t•∀ ∈ =A ; for 
jSCp t•∀ ∈  

( , ) , iff ( , )
jik SCt p t p F∈ ∃ ∈F , for 

jSCp t•∀ ∈  

( , ) ( , )
jik SCt p A t p=A ; ( ) ( )

jik SCt AC t=AC , 

( ) ( )
jik SCt TC t=TC . Add a new arc ( , )i ikp t ∈ F  

and ( , )i ikp t tokens=A . Declare variable 
jCbp of 

BreakPoint type and variable token  of  ( )
jC iC p  

type in the declarations of this net (just need 

declare one time of the same data type) and then 
add follow terms to the actions of ikt , 

. ( )
jCbp setID i , . ( )

jCbp settype p , 

. ( )
jCbp settoken token . Then assign the guard of 

ikt , ( ) ( ( ). () . ())
j jik C SC kt B t ID bp ID= == ∧TC

( )
jSCTC t ; Add a new arc . ()( , )

kik bp IDt p ∈ F  and 

. ()( , ) ( ). ()
k j jik bp ID C SCt p B t token=A . 

(v). For all *1bp Bp∈ except kbp  do the same 

operations as (iv). 
(vi). For all p BP∈  except ip do the same operations 

as (iv) and (v); 

(vii). Del 
jSCt  and all of its input arcs and output arcs. 

Step 3: Transform 
jRCT . 

(i). If ip BP∈ , 
jRk RCt T∈ then add a new transition 

ikt to T and connect it with all the input places and 

output places of Rkt , terms annotated with these 

arcs keep no change and the initial remaining firing 
time is same as that of Rkt . Hence, ikt ∈ T , 

ik Rkd d= ; for Rkp t•∀ ∈ , ( , )ikp t ∈ F  iff, 

( , )Rkp t F∃ ∈ , for Rkp t•∀ ∈ , ( , ) ( , )ik Rkp t A p t=A ; 

for Rkp t•∀ ∈  ( , )ikt p ∈ F  iff ( , )Rkt p F∃ ∈ ,  for 

Rkp t•∀ ∈ , ( , ) ( , )ik Rkt p A t p=A . The actions of ikt  

is same as that of Rkt , ( ) ( )ik Rkt AC t=AC . Then 

assign the guard of ikt , ( ) ( ( ). ()
jik C Rkt B t ID=TC  

) ( )Rki TC t== ∧ ;  Add a new arc ( , )ik it p ∈ F  

and ( , ) ( ). ()
jik i C Rkt p B t token=A . 

(ii). For all p BP∈ except ip  do the same 

operations as (i); 

(viii). For all 
jR RCt T∈ except Rkt  do the same 

operations as (i) and (ii). 

(ix).  Del 
jR RCt T∀ ∈  and all of their input arcs and 

output arcs. 

Step 4: Set priority. 

(i). All the transitions added in step 2 and step 3 have 

priority level 2. 

(ii). All the other transitions have priority level 1 lower 

than level 2. 

 Figure 3-5 are three examples corresponding to 

transforming rule step 1, step 2 and step 3 separately. 

They are all composed of two subgraph (a) and (b).  

They are all transformed from subgraph (a) to subgraph 
(b). In Fig. 3, transition it  in subgraph (a) is 
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transformed to a sequence of places and transitions, 

1 1 2 2 ( 1)i i i i i n int p t p p t−� . In Fig. 4, transition t31 and t32 

are added in subgraph (b) to model the behaviors of tSC1 

in subgraph (a) and they connect breakpoint bp1 and 

bp2 separately. In Fig. 5, transition t31, t32, t41 and t42 

are added in subgraph (b) to model the behaviors of 
transition 11, 2 RCtR tR T∈  in subgraph (a). 

 The set of all markings and modes of 
jCN  is 

denoted by M and Y . The set of all markings and 
modes of ATH L PN  is denoted by M  and Y . We 

use |M P to denote the restriction of M to the subset 

of places specified by P . We use V  to represent the 

set of variables which are added in the procedure of 

transform according the transform rule. Use a\ V to 

denote the restriction of mode a where the subset of 

variables specified by V is discarded. All concepts 

written with ImprintMT Shadow font refer to 

ATH L PN , while those written with normal font refer 

to
jCN if doesn’t declare specially. 

 In order to model the behaviors of subnet 
jCN  

∈NC more practically, we divide each marking of 
jCN  

to two parts. One part is the marking in which all the 

tokens are produced by the transitions in 
jCN ; Another 

part is the marking in which all the tokens are produced 

by the outside environment. They are denoted by jC
timeM  

and env
timeM  separately, thus jC env

time time timeM M M= + . 

 

Theorem 4.1:
jCN NC∀ ∈ , each subnet 

,( , , , , , )
j j j j j j j jC C C C C SC RC CN P T C B t T bp=  can be 

transformed into a behaviourally equivalent subnet of  

 

*
0( , , , , , , , )riATH L PN = NG S C AN AC D P M , where  

 

Fig. 4: An example of transform rule step 2 

 

 

Fig. 5: An example of transform rule step 3 

 
, ,NG = (P T F) , =( , , )AN A T C . Then we have the 

following properties: 

(i). 0, ,  ( | )
jtime time time time CM M M P M∀ ∈ ∃ ∈ = ∧M M M

0( | )
jCP= M , 0time ≥ . 

(ii). , ,time time time timeYα α∀ ∈ ∃ ∈ =a Y a \ V  

(iii)
1 2 1 1 1 2
, , , [ ,time time time time time timeM M M Y M t Mα α∀ ∈ ∀ ∈ �

1 1 1 1 1 1 1 1 21 2[ , [ ,time time time d time d time d dt t+ + + +⇔ � �M a M a M �

1 1 1 1 2
2 1 2 1
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n n

time d time d n time
d d d d
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�M a M
� �

, 1,  ,  n n N≥ ∈  
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1 1 2 2ntime d d d time+ + + + =�  

Proof 

(i). Given that
jCN and ATH L PN have the same 

environment, so that, at any time ( |env env
time timeM = M  

)
jCP , 0time ≥ . Following transform rule step 1, 

step 2, step 3 and step 4 we know that transform 

rule doesn’t change the initial marking of 
jCN  

and ,
jCp P p∀ ∈ ∈P , hence 0 0( | )

jCM P= M . To 

prove ,  ,  ( |time time time timeM M M∀ ∈ ∃ ∈ =M M M

)
jCP , for the inductive step, we need consider three 

cases: 

Case 1: In the finite occurrence sequence of 

jCN doesn’t exist 
jSCt or 

jR RCt T∈ . From 

transform rule step 1, we deduce that each 

transition 
jCt T∈  corresponding to a finite 

occurrence sequence of places and transitions of 

ATH L PN , so that timeM M∀ ∈ , 

, ( | )
jtime time time CM P∃ ∈ =M M M .  

Case 2: 
jSCt exists in the occurrence sequence of 

jCN . According transform rule step 2 and step 4, 

suppose 
jSCt corresponds to transition t  in 

ATH L PN . If 
jSCt  occurs at time time when exist 

a place | ( ) | 1
jIC timep P M p∈ ∧ = , transition t  is 

enabled at the same time as 
jSCt  and when it fires, 

it moves the same tokens from it’s preset. So they 

have the same marking at that time. If 
jSCt occurs 

when exist a transition 1 j jRunC NICt T t T∈ ∧ ∉ , 

jSCt will keep t1’s status in variable 
jCbp  and sets 

its remaining firing time to 0. In ATH L PN , 

transition 1t  is replaced by a sequence of 

transitions and places according transform rule step 

1. At the moment when 
jSCt  fires, exists a place in 

the sequence corresponding to the status of 
transition 1t  according transform rule step 2. 

When transition t  fires it moves the same tokens 

as 
jSCt  from its preset except the places which do 

not belong to
jCN . After 

jSCt fires, if the type of 

( )
j jc SCBp t is p, then t  and 

jSCt  would produce 

the same marking. Otherwise, in 
jCN a transition 

would be resumed to “running” status and in 

ATH L PN a token would be moved to a place and 

from this place exists a sequence of places and 

transitions. The sum of these transition’s initial 

firing time is same as the remaining firing time of 

the transition in 
jCN . They all have the same 

marking except the places that doesn’t belong 

to
jCN . The conclusion is obtained. 

Case 3: 
jR RCt T∃ ∈ exists in the occurrence 

sequence of 
jCN . The proof is same as latter part 

of case 2. 

(ii). This follows directly from transform rule step 

1,2,3. 

(iii).  This follows directly from part (i). 
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Fig. 6: An example of EHLTPN with two interrupt 

source 

Example: Now, a simple example of EHLTPN is given. 

Seeing Fig. 6, this model is composed of two parts, one 

part models the interrupt requests from outside 

environment; the other part is an interruptible subnet of 

this model corresponding to interruptible resource 

processor C1. Place p4, p5 and transition t3, t4, model 

the interrupt requests from outside environment and 
they don’t belong to 1CN .This part model has two 

interrupt sources, interrupt number 1 and interrupt 

number 2. They will be initialed at time 0 and will send 

interrupt requests at time 3 and time 11 to the subnet 

separately after the firing of transition t3 and t4. In the 

left is a model of a program section, it has resource C1 

in place p1 representing that it has the right to run at 

time 0. p8, t6, p9 and p10, t8, p11 model two interrupt 

procedures. Place p6 is used to pend interrupt requests; 

Place p7 keeps the data of interrupt table. Suppose bp1 

is a breakpoint at p8, bp2 is a breakpoint at p10. Place 

p12 maintains a FIFO list of breakpoints and at time 0 it 

is an empty list at time 0. Transition t5 is the Interrupt 
Switch Transition of 1CN . Transition t7 and t9 are two 

elements belong to 1RCT . The occurrence sequence of 

this model is: 

* * * * *
0 0 3 3 5 5 8 8 9 9

* * * * *
11 11 13 13 15 15 16 16 21

[ , 1 [ , 5 [ , 6 [ , 7 [ , 1

[ , 5 [ , 8 [ , 9 [ , 2

M t M t M t M t M t

M t M t M t M t M

α α α α α
α α α α

� � � � �

� � � �
 

 Interrupts occur at time 3 and time 11. First time 

the breakpoint is transition t1, second time the 

breakpoint is place p2. After transition t3 fires, a token 

with number 1 is moved to place p6 representing an 

interrupt request of number 1 is pending. Thus 

transition t5 is enabled and then transition t5 fires and 

interrupts the firing of transition t1 at time 3. According 

the tokens moved from p6 and p7 to t5, transition t5 

resumes the breakpoint of p8 and then runs the interrupt 

procedure p8, t6 and p9. At time 9, transition t7 

resumes the firing of t1. Transition t1 continues its 

firing and at time 11 moves a token to p2. At the same 

time, an interrupt request of number 2 arrives and then 

transition t5 fires. Program section is interrupted at 

place p2. After the firing of t5, p10 is resumed and then 

runs the interrupt procedure p10, t8, p11. At time 16, 

transition t9 resumes breakpoint p2. Then transition t2 

fires.  
 This model doesn’t describe the function of 
interrupt controller, so interrupt number 1 and interrupt 
number 2 haven’t priority level actually. 
 

CONCLUSION 
 
 This study gives the formal definition of EHLPN 
by introducing interruptible subnet, actions and time to 
HLPN. EHLTPN includes interruptible subnets 
corresponding to different interruptible resource. In 
each subnet, an Interrupt Switch Transition and a set of 
Resuming Transitions are used to model the interrupt 
mechanism of this subnet. An example and a transform 
rule are also given in this study. 
 This new model cuts down the complexity of 
interrupt model of Petri nets. According this net, we can 
know when and where an interrupt occur and judge the 
affections produced by this interrupt. Basing on this 
model, models of interrupt controller and embedded 
operating system can be constructed directly and easily. 
The exact behaviors of distributed real-time embedded 
systems can be modeled freely in spite of the 
assumptions in other Petri nets about schedule, priority, 
firing time and so on.  
 Due to the limited of pages, the model of interrupt 
controller and embedded operating system are not given 
in this study, they will be given in another study.  
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