
Journal of Computer Science 2 (2): 127-143, 2006
ISSN 1549-3636
© 2006 Science Publications

Corresponding Author: Cheng Guangming, # 318 School of Computer Science and Technology, Harbin
Institute of Technology, Harbin, People’s Republic of China 150001, Tel:
086-0451-86413213, Fax: 086-0451-86412241

127

The Definition of Extended High-level Timed Petri Nets

Cheng Guangming, Liao Minghong and Wu Xianghu

School of Computer Science and Technology, Harbin Institute of Technology Harbin
People’s Republic of China 150001

Abstract: Many extensions of Petri nets have been proposed to model the behaviors and time relations
of embedded system, yet these models are all based on some assumptions about the behaviors of
embedded systems. Especially they all do not have the actual ability to model interrupt mechanism of
embedded system. A new net which is called Extended High Level Timed Petri Nets (EHLTPN) is
introduced in this study. It shows how to extend High Level Petri Nets (HLPN) with time, actions and
interrupt mechanism. Interruptible subnets corresponding to different interruptible resources are
introduced to model the behaviors and time relations of distributed embedded real-time systems. Each
interruptible subnet realizes interrupt mechanism by an Interrupt Switch Transition and a set of
Resuming Transitions. We give an informal description of this new model and show how this model be
formally defined. A transform rule presented shows that each subnet corresponding to an interruptible
resource in EHLTPN can be transformed into a behaviorally equivalent subnet of HLTPNAT with
priority. This model makes it possible to create the compact and comprehensive models for distributed
embedded real-time systems.

Key words: EHLTPN, Petri nets, interrupt, real-time, distributed, embedded system

INTRODUCTION

 With the development of electrical technology,
embedded system has been widely used in many
domains. Their applications range from simple
domestic devices, such as washing machines, central
heating systems and electronic gatekeepers, to highly
critical system, such as flight control, air traffic control,
robot control and aero spacecraft etc. There many of
them are real-time distributed embedded systems which
are related to the health or safety of human life and
property. So the safety of such system must be
considered.
 Time is an important factor which affects the safety
of real-time distributed embedded systems. In real-time
systems, correctness depends not only on the result
produced by computations, but also on the time at
which results are produced. The system may enter an
incorrect state if the right result is produced too early or
too late with respect to certain time bounds[1]. In such
case, however, time issues become essential. In the
process of designing a real-time embedded system,
programmers have to deal with the relating time
constrains with the requirement of the system.
Especially in distributed real-time embedded systems
time relations become more complex than normal
embedded system. If the system can’t satisfy these time
constrains the safety of these systems will be seriously

affected.
 During the last 20 years, many formal and informal
methods have been used for specification, analysis,
verification and program testing. Formal methods
include standardized specification languages such as the
languages ESTELLE[2], LOTOS[3] and SDL[4] and also
other widely used specification method, for example,
finite automata, Petri net[5] and temporal logics and
algebras of processes[6]. They all have the ability to
describe time constrains of object system, but most of
them focus on the analysis of system specification,
many aspects of embedded systems have been omitted,
such as interrupt, DMA, operating system. So these
methods can’t be used to give an actual result of the
correctness of system’s time relations.
 Except Petri net, most of these methods only
support static time analysis and can’t be used to reflect
the active property of embedded system. Especially in
distributed real-time embedded system, many
processors exchange message currently and the
different parts of such system continuously react to the
outside environment. These behaviors of such system
are active. So Petri net is one of the best methods used
to model and analyze distributed real-time embedded
system.
 Since Carl Adam Petri introduced Petri net in 1962,
in order to model different properties of different
system, many extensions have been added. Such as, by

J. Computer Sci., 2 (2): 127-144, 2006

 128

assigning firing times to the transitions of Petri net time
was firstly introduced by Ramchandani in Timed Petri
net[7]; In Merlin’s time Petri net, an interval is annotated
with each transition and transitions only can fire
between corresponding intervals after the enable instant
of such transition[8]. Time Petri net have more power
than timed Petri net. High-Level timed Petri nets
(HLTPN) are well described by Ghezzi[9]. HLTPN has
the similar time representing mechanism as time Petri
net, but in HLTPN, each place can have more than one
data types and transitions are annotated with an action
inscription to describe the actions of corresponding
transition.
 At first, Petri net was mainly used to model
concurrent system, but now with the development of
embedded system, Petri net are more and more used to
model embedded system. Some extensions have been
introduced, such as Dual Transition Petri Net
(DTPN)[10,11]. DTPN captures both control and data
flow structure from a behavioral description of an
embedded system. It is used to represent the
specification of embedded system.
 Some efforts also have been done to model the
behaviors of embedded operating system and interrupt
system. Miguel Felder extends real-time structured
analysis to specification of the detailed design of
embedded real-time system and combines the proposed
notation with Petri nets. In this model, he gives a subnet
to model the schedule mechanism of embedded
operating system[12]. Giacomo Bucci introduced
Preemptive Time Petri Nets by extending Time Petri
Nets with an additional mechanism of resource
assignment which makes the progress of timed
transitions be dependent on the availability of a set of
preemptable resources[13,14]. This mechanism
corresponds to the preemptable schedule mechanism of
most embedded system. Zuberek[15] in Modified
M-Timed Petri nets firstly introduces interrupt arcs
which can easily be represented with inhibitor arcs[16].
In Modified M-Timed Petri nets, a firing of a transition
may be interrupted if the set of this transition’s
interrupting places are nonempty. If during a firing
period of such transition t, all t’s interrupting places
contain at least one token, the firing of t ceases and the
tokens removed from t’s input places at the beginning
of firing, are “return” to their original places. Janusz
Borkowski gives a descriptive method to model
interrupt with Region-based Petri nets (RPN) [17]. As an
extension to Color Petri Nets, RPN is proposed to
model actions affecting a set of places while the exact
marking is neither known nor important.
 All of those Petri net extensions mentioned above
don’t have the ability to model embedded system
accurately. Especially they have many difficulties to
model the accurate time relations of embedded software.
In these extensions, they have all kinds of assumptions

about the behaviors of embedded system, such as the
events, priority, execute sequence and so on. These
assumptions ordinarily just suit to one aspects of
embedded software, they lose generality and just adapt
to special situation.
 Interrupt system is an important part of embedded
systems. Different from normal system, embedded
systems often have many interrupt sources and
interrupts occur continually. Interrupts greatly disturb
the program executing sequence and delay the program
executing time. So the influence of interrupts must be
considered in the development of embedded system.
Particularly remarkable is that the schedule mechanisms
of most embedded operating systems are based on
interrupt mechanism. Embedded operating systems
reschedule tasks each time when they exit from
interrupt procedure so that embedded operating system
can schedule tasks preemptively. Based on interrupt
mechanism we can model schedule mechanism easily
and directly and needn’t relay on those assumptions
about embedded system. Hence, Petri nets can perfectly
model preemptive schedule of tasks as long as it can
model interrupt.
 Distributed real-time embedded systems are
complex real-time systems. Such system normally is
composed of many embedded processors and run
different embedded software. These processors
exchange data each other and communicate with
outside environment concurrently through all kinds of
interfaces. So the time relations of such system are
more complex than single processor embedded system.
Until now there hasn’t a model that can descript the
active time relations of such system perfectly.
 In this study, we introduce an extension of
HLPN[18], called Extended High-Level Timed Petri Net,
which allows the representation of the time relations
and resource management of complex distributed
real-time embedded system in a simple and direct way.
This model extends HLPN by adding time, actions and
interruptible subnets. Each interruptible subnet
corresponds to an interruptible resource and includes an
Interrupt Switch Transition and a set of Resuming
Transitions. These two special type transitions are used
to model the behaviors of each interruptible subnet
when interrupts occur. Formal and informal definitions
of EHLTPN are all presented. A rule for transforming
an interruptible subnet into HLTPNAT with priority is
also presented. At last, give a small example of
EHLTPN.

Informal definition of EHLTPN: Traditional Petri Net
has many difficulties in modeling interrupt. First of all,
interrupts occur irregularly, they perhaps happen at any
point allowing the occurrence of interrupt. So we can’t
know the exact point where interrupt occurs. All of the
points that have the possibility to be interrupted should

J. Computer Sci., 2 (2): 127-144, 2006

 129

be considered. Secondly, if model all the points where
interrupts perhaps happen, the number of place will be
enormous. It’s hard to manage this model. Thirdly, the
analysis of such model is very difficult.
 An example of interrupt model of HLPN with time
and priority is shown in Fig. 1. In Petri net with priority,
each transition is annotated with a natural number,
called priority level. If more than two transitions are
enabled at the same time, only those annotated with
highest priority level are allowed to fire. The firing time
of transitions is denoted by notation “d” and “d” is
annotated with each transition. This figure describes an
interrupt model of a program section in which interrupts
perhaps happen at place Point(i) and Point(i+1). Except
transition Point(i)SwProcA, Point(i)SwProcB,
Point(i+1)SwProcA and Point(i+1)SwProcB, all the
transitions in this model have priority level 1 while the
former four transitions have higher priority level 2. The
left part of this figure models a program section. Each
transition in this section represents one time execution
of code and at the moment when these transitions fires,
the processes of firing can’t be interrupted. This means
that interrupt only can occur where the program section
run to a place otherwise the interrupt will not occur.
 Place INTNo represents the source of interrupts. If
there is a token in it, shows that an interrupt request has
been pended. Place INTTable keeps a list to save the
interrupt procedure entrance of each interrupt number.
Place INTProcA and INTProcB represent the beginning
of two interrupt procedures. Transition
Point(i)SwProcA, Point(i)SwProcB,
Point(i+1)SwProcA and Point(i+1)SwProcB represent
the behaviors when interrupts occur at Point(i) or
Point(i+1). Transition ProcAIRETPoint(i),
ProcAIRETPoint(i+1), ProcBIRETPoint(i) and
ProcBIRETPoint(i+1) represent the operations when
interrupt procedure ends. Place Point(i)RevA,
Point(i)RevB, Point(i+1)RevA and Point(i+1)RevB are
used to keep the status of Point(i) and Point(i+1)
corresponding to different interrupt procedures when
interrupt occurs and used to restore the status of Point(i)
or Point(i+1) when interrupt procedure ends.
 Suppose at a moment, interrupt 1 comes, thus a
token emerges in place INTNo and its value is 1. At the
same time, program section 1 run to place Point(i), so
transition t(i+1) and transition Point(i)SwProcA are
enabled at the same time. However, transition
Point(i)SwProcA has the higher priority level than
transition t(i+1), so it fires and prevents the firing of
transition t(i+1). Transition Point(i)SwProcA from
place INTTable gets the interrupt procedure entrance of
interrupt number 1, place INTProcA. Then executes
Procedure A and keep the status of place Point(i) in
place Point(i)RevA. When this procedure ends,
transition ProcAIRETPoint(i) restore the status of
point(i). The process of interrupt finished.

 From Fig. 1 we can see that the numbers of places
and transitions are directly proportional to the number
of interruptible points in the model. An embedded
software model perhaps exists millions of such points.
Fortunately we needn’t know the exact point where an
interrupt occurs. Knowing that the interrupt occurs in
which program section is enough.
 In this study, EHLTPN extended from HLPN is
introduced. In EHLTPN, places represent the different
states of system; tokens in place represent the resources
of system; transitions represent the operations that
operate on input tokens. Each token can save arbitrary
complex data types of data, normally represented by a
tuple, hence one token can represent many kinds of
resource at the same time. In EHLTPN, a time function
is annotated with each transition indicating how long
the input tokens are kept in this transition after the
transition fires. An action inscription which models the
behavior of each transition is annotated with each
transition.
 In architecture, EHLTPN contains a finite number
of interruptible subnets. Each interruptible subnet
corresponds to an interruptible resource. This resource
takes part in all the operations of this subnet and it is
the unique interruptible resource in this interruptible
subnet. At certain condition it can interrupt current
operation and then goes to run another series of
operations and when these operations end, it resumes
the status of the operation interrupted just now and
continues to finish this operation just like it hasn’t been
interrupted. Such procedure is called interrupt
procedure.
 Interruptible resource has two forms in each subnet.
One form is a token whose data type is a tuple with two
elements and the content of its first element is a sign
which is used to represents the existence of interruptible
resource in this subnet. Places of such data type are
called interruptible places. Another form is a firing
transition. Because interruptible resource takes part in
all the operations of this subnet and it is the unique
interruptible resource in this subnet, each transition in
this subnet has one and only one interruptible place
belong to its preset and the cardinality of the multiset
annotated with the arc from this interruptible place to
the transition is one. Similarly, for each transitions in
this subnet, has one and only one interruptible place
belong to its postset and the cardinality of the multiset
annotated with the arc from this transition to the
interruptible place is one too. Hence when a transition
fires, it moves a token with interruptible resource from
an interruptible place belongs to its preset. When the
transition stops firing, it also moves a token with
interruptible resource to an interruptible place belongs
to its postset.
 An active node is a node which has the
interruptible resource in an interruptible subnet. It may

J. Computer Sci., 2 (2): 127-144, 2006

 130

be a place or a transition. An interruptible place that has
a token is an active node. A firing transition also is an
active node. All the active nodes except uninterruptible
transitions are interruptible. Since the interruptible
resource in a subnet is unique, at any time, in each
subnet, exists one and only active node. Thus when an
interrupt occurs, we can get the active node which is
interrupted directly. The status of this active node at the
moment when it is interrupted is called a breakpoint.
 Each interruptible subnet has two special type
transitions, called Interrupt Switch Transition and
Resuming Transition. Interrupt Switch Transition
represents the operations when interrupt occurs and
Resuming Transition represents the operations when the
interrupt procedure ends. Each interruptible subnet has
only one Interrupt Switch Transition but may have a
group of Resuming Transitions. Thus each interruptible
subnet only can responses to one interrupt request a
time but may have many interrupt procedures
concurrently.
 At the moment when Interrupt Switch Transition
fires, it saves the breakpoint of the interrupted active
node to a special variable bp associated with it and the
data type of this variable is “BreakPoint”. Interrupt
Switch Transition interrupts the operations of current
active node at the same time. If this breakpoint is a
place, then the token in it is removed; if the breakpoint
is a transition, set the remaining firing time of this
transition 0 and the status of this transition recovers to
be “normal” just like it has not fired. At the moment
when Interrupt Switch Transition stops firing, it
resumes the breakpoint which is produced by the
function B annotated with it. When Resuming
Transition stops firing, it does the same operation as
Interrupt Switch Transition does. The breakpoint may
be a place or a transition. If it is a place, then move the
token keeping in the breakpoint to it. If it is a transition
then resume its status kept in the breakpoint. This status
includes the remaining firing time of this transition, the
values binding to the variables annotated with its input
arcs and tokens which are moved in as it fired. But
these tokens in most cases have no use for the firing of
this transition, so in the latter of this study we don’t
keep the values of these tokens.
 When we use EHLTPN model distributed real-time
embedded system, each subnet corresponds to the
software running on an embedded processor. The
processor is the interruptible resource and takes part in
all the operations of all the transitions. Interrupt Switch
Transition corresponds to operations when the
processor responds to the interrupt requests from
outside and Resuming Transition corresponds to the
machine instruction IRET.
 Figure 2 is an interrupt model represented by
EHLTPN corresponding Fig. 1. In this model, the arcs

drawing by dash style are not the true arcs of this model.
Here, they are used to represent how the interruptible
resource is moved when interrupt occurs.

Formal definition of EHLTPN
The definition of EHLTPN: At first, we recall the
definition of HLPN. All the notations without clear
definition here refer to[18].

Definition 3.1: HLPN is a structure HLPN=(NG, S, C,
AN, M0) where
(i). NG=(P, T, F) is called net graph with
 * P a finite set of nodes, called Places.

ID:P�N, is a function marking P, N=(1,2,…)
is the set of natural number. Using p1, p2, …,
pn represents the elements of P and n is the
cardinality of set P;

Fig. 1: An interrupt model represented by HLPN with

time, actions and priority

Fig. 2: An interrupt model represented by EHLTPN

corresponding to Fig. 1

 * T a finite set of nodes, called Transitions,

which disjoint from P, P ∩ T= ∅ ; ID:T�N
is a function marking T. Using t1, …, tm
represents the elements of T, m is the
cardinality of set T;

J. Computer Sci., 2 (2): 127-144, 2006

 131

 * F ⊆ (P× T) ∪ (T× P) a set of arcs, known as
the flow relation;

(ii). �=(R, �, V) is a Natural-Boolean signature with
variable. It has a corresponding �-Algebra, H=(RH,
�H). Where,

 * R is a set of sorts;
 * � is a set of operators together with their

arity in R which specifies the names of the
domain and co-domain of each of operators;

 * V is a set of sorted variables;
(iii). C:P�RH is a function which types places;

(iv). AN=(A, TC) is a pair of net annotations;

 * A:F�BTERM(�∪ V) such that for C(P)=Hr

and for all (p,t), (t�,p) ∈ F, A(p,t),

A(t�p)∈BTERM(�∪ V)r. A is a function that

annotates arcs with a multiset of terms of the

same sort as the carrier associated with arc’s

place;

 * TC:T�TERM(� ∪ V)Bool is a function that

annotates transitions with Boolean

expressions;

(v). M0:P�
p P

Cµ
∈
� (p) such that ∀ p∈P, M0(p)∈µC(p)

is the initial marking function which associates a

multiset of tokens of correct type with each place.

 Then we give the definition of HLPN with time
and actions.

Definition 3.2: High-level Petri Nets with actions and

time, HLPNAT, is a structure, HLPNAT=(NG, S, C, AN,

AC, D, M0
*), where

(i). HLPN=(NG, S, C, AN, M0);

(ii). 0: ()
R

D T TERM V ≥→ Ω ∪ , D is a function that

annotates transitions with a rational number

representing the initial remaining firing time of

transitions. It is initiated at the moment when the

transition begins to fire. For convenience’s sake,

use set D={d1, …, dm} to represent the initial

remaining firing times corresponding to T={t1, …,

tm} respectively. R�0 is the set of nonnegative

rational numbers;
(iii). AC:T�BTERM(� ∪ V), AC is a function that

annotates transitions with a multiset of terms. AC(t)
represents the actions of transition t;

(iv). M0
*=(M0, r0), is a pair, represents the status of net

at time 0 (we assume that each net start at time 0).

Where,

 * M0:P�
p P

Cµ
∈
� (p), is the initial marking

function which associates a multiset of

tokens with each place at time 0;

 * r0:T�0, is a function representing the

remaining firing time of each transition. The

remaining firing times of all the transitions

evaluate to 0 at time 0.

 The set of interruptible places in a interruptible

subnet
jCN NC∈ is denoted by

jICP . The set of active

places which have a token in subnet
jCN is denoted by

jRunCP . The capacities of each place belonging to
jICP is

1, because in
jCN only exists one interruptible resource

Cj. TRun is the set of transitions which are firing at

current time, TRun={t�t ∈ T ∧ rcurrent(t)>0}. If t ∈ TRun

calls transition t being “running” status.
jRunCT is the set

of transitions which are firing in subnet
jCN ,

jRunCT ={t�t ∈
jCT ∧ rcurrent(t)>0}. The set of active

nodes in
jCN is denoted by

jRunCN ,
jRunCN =

jRunCT

∪
jRunCP . Later, in Theorem 3.1 gives that at any time

∀
jCN ∈NC, �

jRunCN �=1. So at any time when an

interrupt occurs, variable bp may have a unique value.
 In EHLTPN a special data type “BreakPoint” is
introduced. BreakPoint is used to save the status of the
breakpoint where interrupt occurs. Breakpoint may be a
place or a transition. If the breakpoint is a place, the
type of this breakpoint, the ID of this place and the
tokens in this place are kept. If it is a transition, the type
of this breakpoint, the ID of this transition, the left
firing time of this transition and the values of variables
annotated with the input arcs of this transition are kept.

J. Computer Sci., 2 (2): 127-144, 2006

 132

Because only variables which have bound values can
take part in the calculation of actions and the terms
annotated with output arcs, thus keep the values of
every variables is enough.
 In order to give a clear definition of the semantic of
EHLTPN, here give some definitions of notations about
data type BreakPoint. Variables of BreakPoint data type
usually are denoted by bp or bp1, bp2, bp3, …. Because
of the complexity of BreakPoint data type, it can’t be
described by normal data type. In order to get and set
the values of a BreakPoint data type, following methods
are provided:
* bp.type() returns the type of breakpoint bp. If

returns t, represents bp is a breakpoint of transition
type. Otherwise it will return p to represent it is a
place type;

* bp.settype(p or t) sets the type of bp;
* bp,ID()returns the node ID of breakpoint bp. For

example, if the bp is a breakpoint of transition t9,
then bp.ID()=9;

* bp.setID(N), sets the node ID of breakpoint bp;
* bp.token(), if bp.type()=p, returns the multiset of

place pbp.ID(), M(pbp.ID()); otherwise returns ∅ ;
* bp.settoken(M(p)), saves the multiset of place;
* bp.rt(),if bp.type()=t, returns the remaining firing

time of transition tbp.ID();
* bp.setrt(r(t)), sets the remaining firing time of

transition t;
* bp.f(var), is a function constructed by bp.Conf(var1,

var2, …, varn, val1, val2, …, valn), it will return the
value of variable var;

* bp.Conf(var1, var2, …, varn, val1, val2, …, valn),

according the input parameter constructs a function

f to save the value of each variables. ∀ varm∈

(var1, var2, …, varn), 1�m�n, bp.f(varm)=valm.

Definition 3.3: Extended high-level Timed Petri Nets is

a tuple EHLTPN=(HLPNAT, PC, NC), where

(i). HLPNAT is a high-level Petri nets with actions and

time, HLPNAT =(NG, S, C, AN, AC, D, M0
*);

(ii). PC={C1, C2, …. Ck}, K>0, k ∈ N, is a set of

interruptible resources;

(iii).
1 2

{ , , }
kC C CNC N N N= � , C1, C2, Ck∈PC, is the set

of interruptible subnets of EHLTPN and

∀
jCN ∈NC, 1�j�k,

jCN =(
jCP ,

jCT ,
jCC ,

jCB ,
jSCt ,

jRCT ,
jCbp) is a structure, where

 *
jCP is the set of places in

jCN ,
jCP ⊆ P,

jCP =
jICP ∪

jNICP
jICP ∩

jNICP = ∅ ;
jICP

is the set of interruptible places in
jICP ;

jNICP is the set of uninterruptible places in

jCP ;

 *
jCT is the set of transitions in

jCN .
jCT ⊆ T

and
jCT =

jICT ∪
jNICT ,

jICT ∩
jNICT = ∅ ,

∀
iCN ,

jCN ∈ NC,
iCN ∩

jCN = ∅ ;
jICT is

the set of interruptible transitions in
jCT ;

jNICT is the set of uninterruptible transitions

in
jCT ;

 * :
j j jC IC HCC P R→ , is a function which types

places in
jICP .

jHCR ={
jrCH |r ∈ R}

jrCH ={(Cj, r)� r∈Hr};

∀ p∈
jCP , C(p)=

()

()
j

j j

NIC

C IC

C p p P

C p p P

∈��
� ∈��

 *
jCB :{

jSCt } ∪
jRCT �TERM(�∪ V)BreakPoint is

a function annotated
jSCt and elements in

jRCT . This function gives the breakpoints of

resuming after the firing of these transitions;

 *
jSCt is Interrupt Switch Transition,

jSCt ∈
jNICT ;

J. Computer Sci., 2 (2): 127-144, 2006

 133

 *
jRCT is the set of Resuming Transitions,

jRCT ⊂
jNICT ;

 *
jCbp is a variable,

jCbp ∈V. At the moment

jSCt fires,
jCbp is binding to the value of the

breakpoint of current active node which is

interrupted. This variable only can be used in

the actions annotated with
jSCt , and the

terms annotated with the output arcs of
jSCt .

Definition 3.4: The definition of initial marking, M0

*,

of EHLTPN is the same as HLPNAT, however because

in each subnet only exist one interruptible resource, it

must satisfy following property:

∀
jCN ∈NC, 0 () 1

IC j
p P

M p
∀ ∈

=� .

Definition 3.5: The marking, *
timeM , of EHLTPN is

defined in the same way as the initial marking

representing the status of net at time time. *
timeM

=(Mtime, rtime), where

(i). Mtime:P� (), , () ();time
p P

µC p p P M p C pµ
∈

∀ ∈ ∈�

(ii). rtime:T�R�0, rtime is a function representing the

remaining firing time of each transition.

 If transition Runt T∉ , () 0timer t = , otherwise

() 0timer t ≠ and the value of it will decrease

automatically as the time passing. The remaining firing

time of all the breakpoints of type “t” keep no change

until they are resumed and being an active node again.

When the remaining firing time of transition

t decreases to 0, this transition stops firing and

produces output tokens and become an inactive node.

 In EHLTPN the definition of preset and postset is

the same as other kind of Petri Nets. That is,

∀ x∈P ∪ T,

 x• ={y�(y∈P ∪ T) ∧ ((y,x)∈F)},

and

 x• ={y�(y∈P ∪ T) ∧ ((x,y)∈F)},
Call x• and x• the preset and postset separately.

Behavior of EHLTPN
Definition 3.6: Enabling rule: a transition
ti∈T ∧ ti∉TRun is enabled in Marking, *

timeM , at time
time, for a particular assignment to its variables, 	time,
known as a mode of ti, iff following properties are
satisfied:
(i). it T∈ , (())bool iassign TC t true= , p P∀ ∈ ,

(,) ()
time i timeVal p t M pα ≤ , where for

(,) () ()u v P T T P∈ × ×� ,

* (,)u v F∈ , , (,)u v A u v= ,

* (,)u v F∉ , ,u v = Φ and ()
time

Valα φΦ = , the

empty multiset;

(ii).
jCN NC∀ ∈ , (({ }))

j j ji C i SC RCt T t t T∈ ∧ ∉ ∪ ,

satisfy (i) and (() | (,) |
j timeIC i ip p P t Val p tα

•∃ ∈ ∩ ∧

1) | | 1
jIC iP t•= ∧ ∩ = ;

(iii).
jCN NC∀ ∈ ,

ji SCt t= ,
j jSC Ct T∈ , satisfy (i) and

((| () | 1) ())
j j jIC time RunC NICp p P M p t t T t T∃ ∈ ∧ = ∨ ∃ ∈ ∧ ∉

'((') | (',) | 1);
j j time jIC SC SCp p P t Val p tα

•∧¬∃ ∈ ∩ ∧ ≥

(iv).
jCN NC∀ ∈ ,

ji RCt T∈ , satisfy (ii).

 To give the abstract definition about time, here a

well-defined semantics is given:

t+ and t-, are two special time relative to time t ,

' '() ()t t t t t t+ +> ∧ ¬∃ < < and ' '() (t t t t t− −< ∧ ¬∃ < <

)t .

J. Computer Sci., 2 (2): 127-144, 2006

 134

Definition 3.7: Priority rule: In each subnet

jCN NC∀ ∈ , when
jSCt and other transitions

jCt T∈ are

enabled at the same time,
jSCt has the priority of firing.

 Following definition 3.6, transition
jSCt and other

transitions t∈
jCT are able to be enabled at the same

time. But in each interruptible subnet ∀
jCN ∈ NC

only exists one interruptible resource, if t∈
jCT fires, it

would prevent the firing of
jSCt . Because the function

of transition
jSCt is to interrupt the current running

procedure of this subnet, so
jSCt should fire firstly.

Hence
jSCt must have higher priority of firing than any

other transitions in
jCT .

Definition 3.8: Transition rule:

(i). At time time, if transition ti∈T is enabled in mode

	time, for marking *
timeM , ti may occurs in mode

	time, at this moment, the value of di is evaluated:

0 (())i iR
d assign D t≥=

 At the beginning of firing, a tuple of tokens

which enable ti is moved from it
• to ti, the

marking of the net is transformed to a new marking

*
time

M + at time time+, denoted by

* *[,time i time time
M t Mα +� , according to the following

rule:
For p P∀ ∈ ,

 () () (,)
timetime itime

M p M p Val p tα+ = − −

(({ }))

(,)
time

time it Ts t p

Val p tα
•∈ − ∩

� , and

 () ()i i itime
r t d time time d+

+= − − ≈

 { | () 0 () 0}time time time
Ts t t T r t r t+= ∈ ∧ = ∧ > is

the set of transitions in T which start firing at time

time. { | () 0 () 0}time time time
Te t t T r t r t−= ∈ ∧ = ∧ > is

the set of transitions which stop firing at time time.

 These inputted tokens are kept in transition ti

for time di, until the remaining firing time of

transition ti decreases to 0. Then calculates the

terms in actions which annotated with transition ti

and produces output tokens according to the

inscriptions annotated with its output arcs, the

marking of the net is transformed to a new marking

*
itime dM + denoted by * *[,

itime i time time dM t Mα +� ,

according to the following rule:
For p P∀ ∈ ,

()

() () (,)
i timei

time d itime d
M p M p Val t pα−+ +

= +

()(({ }))

(,)
timek

ik time di

k
t Te t p

Val t pα
•

+∈ − ∩
+ � and

 () () 0
itime d ir t+ = ,

 where,
ktimeα is the model which enable

transition kt at time ktime and kt occurs in this

model.

(ii). At time time ,
jCN NC∀ ∈ , (

ji C it T t∈ ∧ ∉

({ }))
j jSC RCt T∪ , if transition

ji NICt T∈ is enabled in

mode timeα , for marking *
timeM , then it may occurs

in mode timeα according rule (i) and following

property should be satisfied:

(() | (,) | 1) | | 1
j time jIC i i IC ip p P t Val t p P tα

• •∃ ∈ ∩ ∧ = ∧ ∩ =

J. Computer Sci., 2 (2): 127-144, 2006

 135

; If transition
ji ICt T∈ is enabled in mode timeα ,

for marking *
timeM , then at time time , it may

occurs in mode timeα according rule (i). Suppose

the remaining firing time of transition it decrease

to 0 at time 'time . Then calculates the terms in

actions which annotated with transition ti and

produces output tokens according to the

inscriptions annotated with its output arcs, the

marking of the net is transformed to a new marking

*
'timeM denoted by * *

'[,time i time timeM t Mα � , according

to the following rule:
For p P∀ ∈

 ' (')
() () (,)

timetime itime
M p M p Val t pα−= +

'(({ }))

(,)
timek

itimek

k
t Te t p

Val t pα
•∈ − ∩

+ � and

 (') () 0time ir t = ,

 Because transition it may be interrupted and

be resumed in the procedure of firing , so
' itime time d≥ + . Following property also should

be satisfied:

(() | (,) | 1) | | 1
j time jIC i i IC ip p P t Val t p P tα

• •∃ ∈ ∩ ∧ = ∧ ∩ =

;

(iii). At time time ,
jCN NC∀ ∈ ,

ji SCt t= , if transition

jSCt ∈
jCT is enabled, for marking M*

time,
jSCt may

occurs in mode timeα according rule (i) and does

following operations:

 a). At time time+ , evaluates
jCbp the value of

breakpoint to keep the status of breakpoint;
 If breakpoint is mP , then,

 . ()
jCbp settype p ; . ()

jCbp setID m ;

 . (())
jC time mbp settoken M p ;

 If breakpoint is mt , then

 . ()
jCbp settype t ; . ()

jCbp setID m ;

 . (())
jC time mbp setrt r t ; . (

jC 1 2bp Conf var ,var , ,�

1 2, (), (), , ())
m m mn time time time nvar var var varα α α� ,

{ } ((,))
m

1 2 n m
p t

var ,var , ,var Var A p t
•∈

=� � ;

 ()Var terms is the set of variables in terms .

mtimeα is the mode which enable transition

mt .

 b). At time time+ , interrupts the operations of

current active node. If current active node is

mp , then moves all the tokens in mp ,

()mtime
M p+ = Φ ; If current active node is mt ,

then () 0mtime
r t+ = , recovering its status to

“normal” status just like it has not fired.

 c). At time
jSCtime d+ , resumes the breakpoint

()
j jC SCBp t .

 If (). ()
j jC SCBp t type p= then

() (). ()()
SC C SCj j j

time d BP t IDM p+ =

(). ()()
() (). ()

C SC j jj jSC j
BP t ID C SCtime d

M p Bp t token−+
+

;

 If (). ()
j jC SCBp t type t= then

 () (). ()() (). ()
SC C SC j jj j j

time d Bp t ID C SCr t Bp t rt+ = and,

(). ()

(). ()((,))
C SCj j

C jBp t IDSC j

Bp t ID
p t

var Var A p t
•∈

∀ ∈ � ,

 (). ()
j jC SCvar Bp t f var= .

(iv). At time time ,
jCN NC∀ ∈ , if

ji RCt T∈ is enabled

in mode timeα , for marking *
timeM , it may occurs

J. Computer Sci., 2 (2): 127-144, 2006

 136

in mode timeα , according rule (i) and at time

itime d+ resumes breakpoint ()
jC iBp t :

 If (). ()
jC iBp t type p= then

 () (). () (). ()()
() ()

i C i C ij ji
time d Bp t ID Bp t IDtime d

M P M P−+ +
= +

 (). ()
jC iBp t token ;

 If (). ()
jC iBp t type t= then

 () (). ()() (). ()
i C i jj

time d Bp t ID C ir t Bp t rt+ = and

(). ()

(). ()((,))
C ij

iBp t IDC j

Bp t ID
p t

var Var A p t
•∈

∀ ∈ �

 (). ()
jc ivar Bp t f var= .

Theorem 3.1:
jCN NC∀ ∈ , at any time, | | 1

jRunCN = .

Proof: The proof is by induction on time. For the

inductive step, we need to consider two cases.

Case 1: At time 0, by definition 3.4
jCt T∀ ∈ ,

0 () 0r t = and 0, | () | 1
j

IC j

C
p P

N NC M p
∀ ∈

∀ ∈ =� . So all

the transitions are inactive and there is only one

place
jICp P∈ which has a token with interruptible

resource. Since
jRunCT = ∅ , | | 1

jRunCP = therefore,

| | 1
jRunCN = obviously holds.

Case 2: At time 0time > , if
jCt T∀ ∈ , none of these

transitions fire, 0timeM M= , from case 1, | | 1
jRunCN =

is immediate. By Definition 3.6, at any time,
jCt T∀ ∈

except
jSCt exist and only exist one

jICp P t•∈ ∩ and

| (,) | 1
time

Val p tα = , thus when t fires, it will move a

token with interruptible resource from p . Because at

time 0 | | 1
jRunCP = , hence only one transition can fire,

thus at this moment | | 1
jRunCT = . At the moment,

time 'time , transition t stops firing, according

Definition 3.8, exist and only exist one place

jICp P t•∈ ∩ and
'

| (,) | 1
time

Val t pα = . So when

transition t stops firing, it will produce only one

token with interruptible resource and moves this token

to a place
jICp P t•∈ ∩ . At this moment at most one

transition
jCt T∈ will be enabled just like at time 0.

jSCt and
jRCt T∈ are two special type transitions in

jCT .

When
jSCt fires, it breaks up the options of current

active node and lets himself to be an active node so the

firing of
jSCt doesn’t change number of active nodes. At

the moment
jSCt or

jRCt T∈ stops firing, they may

recover the breakpoint ()
j jc SCBp t or ()

jcBp t . The

breakpoint becomes an active node again. So the

number of active nodes doesn’t change. Therefore case

2 is immediate.

Definition 3.9: A finite occurrence sequence is a

sequence of markings and modes:

1 1 2 2 1

* * * *
1, 2, ,[[[

n n ntime time time time time n time timeM t M t M t Mα α α
+

� � ��

Such that n N∈ and
1

* *
,[

i i itime i time timeM t Mα
+

� for all

{1,2,3, , }i n∈ � ,
1

*
timeM is the start Marking,

1

*
ntimeM

+
is

the end marking and n is the length.

Property analysis

J. Computer Sci., 2 (2): 127-144, 2006

 137

Fig. 3: An example of transform rule step 1

 Here, we will define an equivalent relation between
interruptible subnet of EHLTPN and ATHLPN with

priority. Each interruptible subnet of EHLTPN

jCN NC∀ ∈ , ,(, , , , ,)
j j j j j j j jC C C C C SC RC CN P T C B t T bp=

can be transformed into a behaviorally equivalent

subnet of HLPNAT with priority, denoted by

*
0(, , , , , , ,)riATH L PN = NG S C AN AC D P M , where

(, ,)NG = P T F , (,)AN = A TC , :ri N→P T is a

function, annotated each transition with a natural

number representing the priority level of each transition.

Of two natural numbers, the bigger one has higher

priority level.

The transform rule includes following steps:
Step 1: Construct ATH L PN and instead of

ji ICt T∀ ∈ with a subnet which is composed of a serials

of places and transitions.

(i). All the places of
jCP belong to P and the types of

these place keep no change. Thus p∀ ∈ P iff

jCp P∃ ∈ and , () () iff ,
j jC ICp p C p p P∀ ∈ = ∈P C

() () iff
jNICp C p p P= ∈C ;

(ii). All the transitions which belong to
jNICT belong

to T and the input arcs, output arcs of these
transitions also belong to ATH L PN . The guards,

the actions and the initial remaining firing times

annotated with these transitions and the annotations

annotated with their input arcs and output arcs keep

no change. Hence t∀ ∈ T iff
jNICt T∃ ∈ . For

t∀ ∈ T , following properties should be

satisfied: p t•∀ ∈ , (,)p t ∈ F iff (,)p t F∃ ∈ , and

for p t•∀ ∈ , (,) (,)p t A p t=A ; p t•∀ ∈ , (,)t p ∈ F iff

 (,)t p F∃ ∈ , and for p t•∀ ∈ , (,) (,)t p A t p=A ;

() ()t AC t=AC ; () ()t D t=D and () ()t TC t=TC ;

(iii). Transition it ,
ji ICt T∈ , are replaced by a serials of

transitions and places, denoted by

1 1 2 2 (1), , , , , ,i i i i i n int p t p p t−� , n N∈ and

1 2, , ,i i int t t ∈� T , 1 2 (1), , ,i i i np p p − ∈� P . They are

connected by arcs in sequence. These arcs are all
belong to F , so that, imt∀ , 1 1m n≤ ≤ − ,

| | 1im im imt p p• •∈ ∧ = , (1) | | 1i m im imt p p• •
+ ∈ ∧ = . The

initial remaining firing times corresponding to

1 2, , ,i i int t t� are denoted by 1 2, , ,i i ind d d� and

they satisfy following equation

1 2i i in id d d d+ + + =� . The number of n lies on

the time precise of this net. Assume the number of
n is big enough, so that, for d∀ , 0 id d< < ,

exists a place mp and 1 2i i imd d d d+ + + =� ,

1 m n≤ < .
(iv). Reconnect all the input arcs of it to 1it and the

annotations annotated with these arcs keep no

change. That is for ip t•∀ ∈ , 1(,)ip t ∈F iff

 (,)ip t F∃ ∈ and for ip t•∀ ∈ , 1(,) (,)i ip t A p t=A ,

J. Computer Sci., 2 (2): 127-144, 2006

 138

hence 1i it t• •= .

(v). Reconnect int with all the output arcs of it and

the annotations annotated with these arcs keep no

change. That is, for ip t•∀ ∈ , (,)int p ∈F iff

(,)it p F∃ ∈ and for ip t•∀ ∈ , (,) (,)in it p A t p=A ,

hence, i int t• •= .

(vi). Assume { } ((,))
i

1 2 m i
p t

var ,var , ,var Var A p t
•∈

=� �

is the set of variables annotated with input arcs of

it . Then assign the multiset of terms annotated

with arcs, for (,)ik ikt p∀ , 1 1k n≤ ≤ − ,

(,) (, ())ik ik j 1 2 mt p C var ,var , ,var=A � . For

(1)(,)ik i kp t +∀ , 1 1k n≤ ≤ − , (1)(,)ik i kp t + =A

(, ())j 1 2 mC var ,var , ,var� .

(vii).Type the new added places. 1 2 (1){ , , , }im i i i np p p p −∀ ∈ � ,

()
i jim r Cp H=C , 1 2{(, (, , ,)) |

i jr C j mH C val val val= �

21 2, ,
1var varval H val H∈ ∈ � , }

mm varval H∈ ,
mvarH is

the type of variable mvar .

(viii).Assign actions, 1 2 (1){ , , , }im i i i nt t t t −∀ ∈ � ,

()imt = ΦAC and () ()in it AC t=AC ;

(ix). Assign guards, 2 3{ , , , }im i i int t t t∀ ∈ � ,

()imt true=TC and 1() ()i it TC t=TC ;

(x). For all
jICt T∈ except it do the same operations

as (iii), (iv), (v), (vi), (vii), (viii) and (ix).

Step 2: Transform
jSCt .

(i). BP is the set of all interruptible places after the

implementation of step 1.
jICBP P= ∪ all the

new added places in step 1

{ | () , }
jrCp p H r R= = ∈C , is the set of

interruptible places in ATH L PN .

(ii). 1 { | { (())}, }
j j jC SC SCBp bp bp Val B tα α= ∈ ∈� , is a

finite set of all the possible resuming breakpoints

of
jSCt in subnet

jCN , where
jSC� is the set of all

the modes which possibly enable
jSCt when

jSCt

fires. Suppose the cardinality of 1Bp is

| 1 | , 1R RBp n n= ≥ .

(iii). Transform all the breakpoints in 1Bp to *1Bp , a

finite set of all the possible resuming breakpoints

of
jSCt in ATH L PN . All the breakpoints’ type in

ATH L PN are p . At first add all the breakpoints of

type p in 1Bp to *1Bp directly. Then transform

all the breakpoints of type t to type p and add

them to *1Bp . If 1 . ()bp Bp bp type p∈ ∧ = , then

*1bp Bp∈ . If 1 . ()bp Bp bp type t∈ ∧ = , then find a

place . ()bp ID mp added in step1, 1 1m n≤ ≤ − in

the serial . ()1 . ()2 . ()(1), , ,bp ID bp ID bp ID np p p −� , so that

. () . ()(1) . () . ()bp ID m bp ID m bp ID nd d d bp rt++ + + =� . Then

transforms bp to bp* , bp*∈ Bp1*. Assign the value

of *bp , *. (. ())bp setID bp ID m , *. ()bp settype p .

Let
. ()

. (){ } ((,))
bp ID

1 2 n bp ID
p t

var ,var , ,var Var A p t
•∈

=� �

is the set of variables annotated with the input arcs

of . ()bp IDt then *
1. ((, (. (),jbp settoken C bp f var

2. (), , . ())))nbp f var bp f var� . Obviously, | 1 |Bp =

*| 1 | RBp n= . The elements of *1Bp are denoted by

J. Computer Sci., 2 (2): 127-144, 2006

 139

*
1 21 { , , , }

RnBp bp bp bp= � .

(iv). If place ip BP∈ and *1kbp Bp∈ then add a new

transition ikt to T and connect it with all the input

places and output places as
jSCt , terms annotated

with these arcs keep no change, the actions, the
guard and the initial remaining firing time of ikt is

same as that of
jSCt . Hence ikt ∈ T ,

jik SCd d= ;

for , (,) , iff (,)
SC SCj j

ikp t p t p t F•∀ ∈ ∈ ∃ ∈F , for

, (,) (,)
SC SCj j

ikp t p t A p t•∀ ∈ =A ; for
jSCp t•∀ ∈

(,) , iff (,)
jik SCt p t p F∈ ∃ ∈F , for

jSCp t•∀ ∈

(,) (,)
jik SCt p A t p=A ; () ()

jik SCt AC t=AC ,

() ()
jik SCt TC t=TC . Add a new arc (,)i ikp t ∈ F

and (,)i ikp t tokens=A . Declare variable
jCbp of

BreakPoint type and variable token of ()
jC iC p

type in the declarations of this net (just need

declare one time of the same data type) and then
add follow terms to the actions of ikt ,

. ()
jCbp setID i , . ()

jCbp settype p ,

. ()
jCbp settoken token . Then assign the guard of

ikt , () ((). () . ())
j jik C SC kt B t ID bp ID= == ∧TC

()
jSCTC t ; Add a new arc . ()(,)

kik bp IDt p ∈ F and

. ()(,) (). ()
k j jik bp ID C SCt p B t token=A .

(v). For all *1bp Bp∈ except kbp do the same

operations as (iv).
(vi). For all p BP∈ except ip do the same operations

as (iv) and (v);

(vii). Del
jSCt and all of its input arcs and output arcs.

Step 3: Transform
jRCT .

(i). If ip BP∈ ,
jRk RCt T∈ then add a new transition

ikt to T and connect it with all the input places and

output places of Rkt , terms annotated with these

arcs keep no change and the initial remaining firing
time is same as that of Rkt . Hence, ikt ∈ T ,

ik Rkd d= ; for Rkp t•∀ ∈ , (,)ikp t ∈ F iff,

(,)Rkp t F∃ ∈ , for Rkp t•∀ ∈ , (,) (,)ik Rkp t A p t=A ;

for Rkp t•∀ ∈ (,)ikt p ∈ F iff (,)Rkt p F∃ ∈ , for

Rkp t•∀ ∈ , (,) (,)ik Rkt p A t p=A . The actions of ikt

is same as that of Rkt , () ()ik Rkt AC t=AC . Then

assign the guard of ikt , () ((). ()
jik C Rkt B t ID=TC

) ()Rki TC t== ∧ ; Add a new arc (,)ik it p ∈ F

and (,) (). ()
jik i C Rkt p B t token=A .

(ii). For all p BP∈ except ip do the same

operations as (i);

(viii). For all
jR RCt T∈ except Rkt do the same

operations as (i) and (ii).

(ix). Del
jR RCt T∀ ∈ and all of their input arcs and

output arcs.

Step 4: Set priority.

(i). All the transitions added in step 2 and step 3 have

priority level 2.

(ii). All the other transitions have priority level 1 lower

than level 2.

 Figure 3-5 are three examples corresponding to

transforming rule step 1, step 2 and step 3 separately.

They are all composed of two subgraph (a) and (b).

They are all transformed from subgraph (a) to subgraph
(b). In Fig. 3, transition it in subgraph (a) is

J. Computer Sci., 2 (2): 127-144, 2006

 140

transformed to a sequence of places and transitions,

1 1 2 2 (1)i i i i i n int p t p p t−� . In Fig. 4, transition t31 and t32

are added in subgraph (b) to model the behaviors of tSC1

in subgraph (a) and they connect breakpoint bp1 and

bp2 separately. In Fig. 5, transition t31, t32, t41 and t42

are added in subgraph (b) to model the behaviors of
transition 11, 2 RCtR tR T∈ in subgraph (a).

 The set of all markings and modes of
jCN is

denoted by M and Y . The set of all markings and
modes of ATH L PN is denoted by M and Y . We

use |M P to denote the restriction of M to the subset

of places specified by P . We use V to represent the

set of variables which are added in the procedure of

transform according the transform rule. Use a\ V to

denote the restriction of mode a where the subset of

variables specified by V is discarded. All concepts

written with ImprintMT Shadow font refer to

ATH L PN , while those written with normal font refer

to
jCN if doesn’t declare specially.

 In order to model the behaviors of subnet
jCN

∈NC more practically, we divide each marking of
jCN

to two parts. One part is the marking in which all the

tokens are produced by the transitions in
jCN ; Another

part is the marking in which all the tokens are produced

by the outside environment. They are denoted by jC
timeM

and env
timeM separately, thus jC env

time time timeM M M= + .

Theorem 4.1:
jCN NC∀ ∈ , each subnet

,(, , , , ,)
j j j j j j j jC C C C C SC RC CN P T C B t T bp= can be

transformed into a behaviourally equivalent subnet of

*
0(, , , , , , ,)riATH L PN = NG S C AN AC D P M , where

Fig. 4: An example of transform rule step 2

Fig. 5: An example of transform rule step 3

, ,NG = (P T F) , =(, ,)AN A T C . Then we have the

following properties:

(i). 0, , (|)
jtime time time time CM M M P M∀ ∈ ∃ ∈ = ∧M M M

0(|)
jCP= M , 0time ≥ .

(ii). , ,time time time timeYα α∀ ∈ ∃ ∈ =a Y a \ V

(iii)
1 2 1 1 1 2
, , , [,time time time time time timeM M M Y M t Mα α∀ ∈ ∀ ∈ �

1 1 1 1 1 1 1 1 21 2[, [,time time time d time d time d dt t+ + + +⇔ � �M a M a M �

1 1 1 1 2
2 1 2 1

[,
n n

time d time d n time
d d d d

t
− −

+ + + +
+ +

�M a M
� �

, 1, , n n N≥ ∈

J. Computer Sci., 2 (2): 127-144, 2006

 141

1 1 2 2ntime d d d time+ + + + =�

Proof

(i). Given that
jCN and ATH L PN have the same

environment, so that, at any time (|env env
time timeM = M

)
jCP , 0time ≥ . Following transform rule step 1,

step 2, step 3 and step 4 we know that transform

rule doesn’t change the initial marking of
jCN

and ,
jCp P p∀ ∈ ∈P , hence 0 0(|)

jCM P= M . To

prove , , (|time time time timeM M M∀ ∈ ∃ ∈ =M M M

)
jCP , for the inductive step, we need consider three

cases:

Case 1: In the finite occurrence sequence of

jCN doesn’t exist
jSCt or

jR RCt T∈ . From

transform rule step 1, we deduce that each

transition
jCt T∈ corresponding to a finite

occurrence sequence of places and transitions of

ATH L PN , so that timeM M∀ ∈ ,

, (|)
jtime time time CM P∃ ∈ =M M M .

Case 2:
jSCt exists in the occurrence sequence of

jCN . According transform rule step 2 and step 4,

suppose
jSCt corresponds to transition t in

ATH L PN . If
jSCt occurs at time time when exist

a place | () | 1
jIC timep P M p∈ ∧ = , transition t is

enabled at the same time as
jSCt and when it fires,

it moves the same tokens from it’s preset. So they

have the same marking at that time. If
jSCt occurs

when exist a transition 1 j jRunC NICt T t T∈ ∧ ∉ ,

jSCt will keep t1’s status in variable
jCbp and sets

its remaining firing time to 0. In ATH L PN ,

transition 1t is replaced by a sequence of

transitions and places according transform rule step

1. At the moment when
jSCt fires, exists a place in

the sequence corresponding to the status of
transition 1t according transform rule step 2.

When transition t fires it moves the same tokens

as
jSCt from its preset except the places which do

not belong to
jCN . After

jSCt fires, if the type of

()
j jc SCBp t is p, then t and

jSCt would produce

the same marking. Otherwise, in
jCN a transition

would be resumed to “running” status and in

ATH L PN a token would be moved to a place and

from this place exists a sequence of places and

transitions. The sum of these transition’s initial

firing time is same as the remaining firing time of

the transition in
jCN . They all have the same

marking except the places that doesn’t belong

to
jCN . The conclusion is obtained.

Case 3:
jR RCt T∃ ∈ exists in the occurrence

sequence of
jCN . The proof is same as latter part

of case 2.

(ii). This follows directly from transform rule step

1,2,3.

(iii). This follows directly from part (i).

J. Computer Sci., 2 (2): 127-144, 2006

 142

Fig. 6: An example of EHLTPN with two interrupt

source

Example: Now, a simple example of EHLTPN is given.

Seeing Fig. 6, this model is composed of two parts, one

part models the interrupt requests from outside

environment; the other part is an interruptible subnet of

this model corresponding to interruptible resource

processor C1. Place p4, p5 and transition t3, t4, model

the interrupt requests from outside environment and
they don’t belong to 1CN .This part model has two

interrupt sources, interrupt number 1 and interrupt

number 2. They will be initialed at time 0 and will send

interrupt requests at time 3 and time 11 to the subnet

separately after the firing of transition t3 and t4. In the

left is a model of a program section, it has resource C1

in place p1 representing that it has the right to run at

time 0. p8, t6, p9 and p10, t8, p11 model two interrupt

procedures. Place p6 is used to pend interrupt requests;

Place p7 keeps the data of interrupt table. Suppose bp1

is a breakpoint at p8, bp2 is a breakpoint at p10. Place

p12 maintains a FIFO list of breakpoints and at time 0 it

is an empty list at time 0. Transition t5 is the Interrupt
Switch Transition of 1CN . Transition t7 and t9 are two

elements belong to 1RCT . The occurrence sequence of

this model is:

* * * * *
0 0 3 3 5 5 8 8 9 9

* * * * *
11 11 13 13 15 15 16 16 21

[, 1 [, 5 [, 6 [, 7 [, 1

[, 5 [, 8 [, 9 [, 2

M t M t M t M t M t

M t M t M t M t M

α α α α α
α α α α

� � � � �

� � � �

 Interrupts occur at time 3 and time 11. First time

the breakpoint is transition t1, second time the

breakpoint is place p2. After transition t3 fires, a token

with number 1 is moved to place p6 representing an

interrupt request of number 1 is pending. Thus

transition t5 is enabled and then transition t5 fires and

interrupts the firing of transition t1 at time 3. According

the tokens moved from p6 and p7 to t5, transition t5

resumes the breakpoint of p8 and then runs the interrupt

procedure p8, t6 and p9. At time 9, transition t7

resumes the firing of t1. Transition t1 continues its

firing and at time 11 moves a token to p2. At the same

time, an interrupt request of number 2 arrives and then

transition t5 fires. Program section is interrupted at

place p2. After the firing of t5, p10 is resumed and then

runs the interrupt procedure p10, t8, p11. At time 16,

transition t9 resumes breakpoint p2. Then transition t2

fires.
 This model doesn’t describe the function of
interrupt controller, so interrupt number 1 and interrupt
number 2 haven’t priority level actually.

CONCLUSION

 This study gives the formal definition of EHLPN
by introducing interruptible subnet, actions and time to
HLPN. EHLTPN includes interruptible subnets
corresponding to different interruptible resource. In
each subnet, an Interrupt Switch Transition and a set of
Resuming Transitions are used to model the interrupt
mechanism of this subnet. An example and a transform
rule are also given in this study.
 This new model cuts down the complexity of
interrupt model of Petri nets. According this net, we can
know when and where an interrupt occur and judge the
affections produced by this interrupt. Basing on this
model, models of interrupt controller and embedded
operating system can be constructed directly and easily.
The exact behaviors of distributed real-time embedded
systems can be modeled freely in spite of the
assumptions in other Petri nets about schedule, priority,
firing time and so on.
 Due to the limited of pages, the model of interrupt
controller and embedded operating system are not given
in this study, they will be given in another study.

REFERENCES

1. Wirth, N., 1977. Toward a discipline of real-time

programming. Commun. ACM, 20: 8.
2. Budkowski, S. and P. Dembinski, 1987. An

Introduction to ESTELLE: A Specification
Language for Distributed Systems. Computer
Networks and ISDN Systems, 14: 3-23.

3. Bolongesi, T. and E. Brinksma, 1987. Introduction
to ISO specification language LOTOS. Computer
Networks and ISDN Systems, 14: 25-59.

4. Saracco, R. and A.J. Tilanus, 1987. CCITT SDL:
Overview of the Language and its Applications.
Computer Networks and ISDN Systems, 14: 65-74.

J. Computer Sci., 2 (2): 127-144, 2006

 143

5. Peterson, J.L., 1981. Petri Net Theory and the
Modeling of Systems. Englewood Cliffs, NJ.
Prentice-Hall.

6. Nissanke, N., 1997. Real-Time Systems. Prentice
Hall. Englewood Cliffs, NJ.

7. Ramchandani, C., 1974. Analysis of asynchronous
concurrent systems by timed Petri nets. PhD thesis,
Massachusetts Institute of Technology, Cambridge,
MA (1974) Project MAC Report MAC-TR-120,
MIT.

8. Merlin, P., 1974. A study of the recoverability of
computer system. PhD. Thesis. Univ. California,
Irvine, CA.

9. Ghezzi, C., D. Mandrioli, S. Morasca and M.
Pezz`e, 1991. A Unified High-Level Petri-Net
Formalism for Time-Critical Systems. IEEE Trans.
Software Engg., 17: 160-172.

10. Mauricio Varea and Bashir AI-Hashimi, 2001. Dual
transitions Petri Net based modeling technique for
embedded systems specification. Design,
Automation and Test in Europe. Conf. Exhibition
2001. Proc. 13-16 Mar., pp: 566-571.

11. Mauricio Varea and Bashir AI-Hashimi, 2002.
Symbolic model checking of dual transition Petri
Nets. Hardware/Software Codesign. CODES 2002.
Proc. Tenth Intl. Symp. 6-8 May., pp: 43 – 48.

12. Miguel Felder, 2002. A Formal Design Notation for
Real-Time Systems. ACM Trans. Software Engg.
Methodol., 11: 149-190.

13. Giacomo Bucci andrea Fedeli, Luigi Sassoli and
Enrico Vicario, 2004. Timed State Space Analysis
of Real-Time Preemptive Systems. IEEE Trans.
Software Engg., 30: 97-111.

14. Giacomo Bucci andrea Fedeli and Enrico Vicario,
2003. Modeling Flexible Real Time Systems with
Preemptive Time Petri Nets. Proc. 15th Euromicro
Conference on Real-Time Systems.

15. Zuberek, W.M., 1987. Modified m-timed petri nets
in modeling and performance evaluation of system.
Proc. 15th Ann. Conf. Computer Sci. St. Louis,
Missouri, United States, pp: 261-268.

16. Christensen Søren and N.D. Hansen, 1993. Colored
petri nets extended with place capacities, test arcs
and inhibitor arcs. In: Ajmone Marsan, M.: Lecture
Notes in Computer Science, Vol. 691; Application
and Theory of Petri Nets 1993. Proc. 14th Intl.
Conf., Chicago, Illinois, USA, pp: 186-205.
Springer-Verlag.

17. Janusz Borkowski, 2002. Region-based Petri Nets
for Modeling Interrupts and Cancellations. Parallel
Computing in Electrical Engineering. PARELEC
'02. Proc. Intl. Conf. 22-25 Sept., pp: 67-71.

18. Anonymous, 1997. High-Level Petri
Nets-Concepts, Definitions and Graphical Notation.
Committee Draft ISO/IEC 15909. Version 3.4.

