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Abstract: The explosive growth of the high-speed multimedia networks and the widespread use of 
web-based related applications place new demands on the network servers. The network end systems 
such as PC-Router, network server and host connected to high speed links must satisfy QoS require-
ments for multimedia traffics such as delay and loss ratio. Most works on operating systems support 
for high-speed network interface have focused in increasing the throughput and decreasing the inter-
rupt handing overhead. However, the problem is that not all traffic streams are equal in terms of QoS 
requirements. Multimedia applications often depend more on low-latency than on high throughput. 
This study first compares the performance measures of hard timer and soft timer polling schemes used 
for high-speed network interface with high traffic load. Then it modifies the polling-based interrupt 
handling for high-speed network to not just eliminate the interrupt overhead but also to guarantee the 
QoS requirements for multimedia traffic. Meanly we propose an input network interface mechanism, 
which combines the advantages of using polling interrupt handling under high traffic load and using 
multi-priority queues scheduling algorithm to provide the QoS requirements. In addition to the 
throughput performance metric in which most of the literatures focus on only, other performance met-
rics such as CPU availability, loss ratio, packet delay are defined and studied. The performance 
evaluations, which are performed using a discrete event simulation, indicate that under conditions of 
high   traffic load, the proposed system offers increased throughput and reduced latency for real time 
traffics. 
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INTRODUCTION 

 
The explosive growth of the high-speed multime-

dia networks and the widespread use of web-based 
related applications place new demands on the network 
end system such as PC-Router, network server and host 
connected to high speed links. Multimedia applications 
over high-speed networks can generate heavy load 
conditions. When the network end system is involved 
in processing this high network traffic, its performance 
depends critically on how its tasks are scheduled. The 
polices and mechanism that schedule incoming network 
traffic and other tasks should guarantee acceptable 
system throughput, reasonable latency and jitter (vari-
ance in delay), reasonable system availability, fair allo-
cation of CPU resources among multimedia traffic 
reception, packets transmission, protocol processing, 
application processing and over all system stability, 
without imposing excessive overhead, especially in 
case of high traffic load.  

We can define throughput as the rate at which the 
system delivers packets to their ultimate consumers. A 

consumer could be an application running on the re-
ceiving network end system, or the network end system 
could be acting as a router and forwarding packets to 
consumers on other hosts. We expect the throughput of 
a well-designed system to keep up with the offered load 
up to a point called the Maximum Loss Free Receive 
Rate (MLFRR) and at higher loads throughput should 
not drop below this rate. Such rate is an acceptable rate 
and is relatively flat after that. Of course, useful 
throughput depends not only on successful reception of 
packets but also the system must transmit the packets. 
Multimedia applications often depend more on low-
latency and low-jitter communications than on high 
throughput. During high traffic loads, we want to avoid 
long queues, which increase latency and bursty sched-
uling, which increases jitter. When the network end 
system  is overloaded with incoming network packets, 
it must also continue to process other tasks, so as to 
keep the system responsive to the management  and 
control requests and to allow applications to make use 
of the arriving packets. Availability is the percentage  
quantity that measures how much of the time the CPU 
power is available for other processes including user  
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applications. This is actually the probability when there 
is no polling processing and there are no packet being 
processed by the protocol stack. Therefore, the schedul-
ing subsystem must fairly allocate CPU resources 
among packet reception, packet transmission, protocol 
and application processing. 

The mean contributions of this study are two-fold. 
First, we compare the performance measures of hard 
timer   and soft timer polling schemes used for high-
speed network interface under high traffic load. Sec-
ond, the polling-based interrupt handling for high-
speed network are modified to not just eliminate the 
interrupt overhead but also to guarantee the QoS re-
quirements for multimedia traffic. Meanly, we propose 
an input network interface mechanism, which combines 
the advantages of using polling interrupt handling un-
der high traffic load and using multi-priority queues 
scheduling algorithm to guarantee some level of QoS 
requirements for Real Time (RT) traffic. Most of the 
previous works study the system performance from the 
throughput point of view only. In addition to the 
throughput performance metric, other performance 
metrics such as CPU availability, loss ratio, packet 
delay are defined and studied. Therefore, our objective 
is to produce a reliable, low latency and acceptable 
throughput, Network Interface Card (NIC) scheduling 
scheme for Gigabit Ethernet. By this, we can maintain 
the QoS requirements by giving a higher priority to RT 
traffic and retain the system availability by using the 
polling process to handle the network interrupt. The 
proposed mechanisms are evaluated and compared 
using a discrete event simulation under high traffic 
load. 
 

A MODEL OF THE NETWORK INTERFACE 
The network interface consists of several hardware 

and software interacting units in both the computer and 
the NIC. The NIC consists of a receive part and a 
transmit part which are completely symmetrical [1]. The 
major components of the receive part of the network 
interface system are shown in Fig. 1. We generally 
focus on the performance of the receive side of the 
network interface and attempt to ensure that it is de-
signed well. The design of the receive side is critical 
because there is less control over receiving concur-
rently multiple-traffic from multiple stations and the 
bursty nature of the received traffic. 

The Programmed Input/Output (PIO) and Direct 
Memory Access (DMA) are two mechanisms available 
by   which data can be moved from NIC to the host 
memory, or the reverse, as defined by the Peripheral 
Component Interconnect (PCI) specification. With PIO, 
the copying of an arrived packet from NIC buffer to 
host kernel memory or transferring of packets from 
host kernel memory to adapter is performed by the  
CPU as part of Interrupt Service Routine (ISR) han-
dling for each incoming packet.  A major drawback for 
a PIO-based design is burdening the CPU with copying  

 
incoming packets from the NIC to kernel memory. 
Currently, most network interfaces are DMA-capable. 
With DMA, the NIC directly reads and writes from/to 
the host system memory without any CPU involve-
ments. The CPU simply gives the NIC a memory ad-
dress and the NIC writes to (reads from) it, through the 
bus interface such as the PCI. The CPU is therefore 
responsible for providing the NIC a pair of buffer de-
scriptor lists; one to transmit out of and one to receive 
into. A buffer descriptor list is an array of ad-
dress/length pairs[1, 2].  

We consider here that all the network functional-
ities are performed by Operating System (OS) proc-
esses running in the kernel address space, while the 
application processes run in the user address space. 
When packets arrive at the receive part, the DMA en-
gine handles the movement of packets from the NIC 
internal buffer to the host memory transparently. The 
NIC can read and write host memory without the need 
to buffer frames on the NIC internal buffer except view 
bytes of buffering to stage data between the bus and the 
link. After additional context switch, the device driver 
complete the receive transaction with the device con-
troller and the packet processing continues with the 
network protocol processes (e.g, IP, UDP).  

Finally, the packet is copied from the kernel space 
to the user space and the recipient application is noti-
fied. Both DMA engines operate in a bus-master fash-
ion, i.e. the engines request access to the PCI bus in-
stead of waiting to be polled. It is worth noting that the 
transfer rate of incoming traffic into the kernel memory 
across the PCI bus is not limited by the throughput of 
the DMA channel.  These days a typical DMA engine 
can sustain over 1 Gbps of throughput across the 
bus[2,3]. In order to save  CPU  cycles  consumed  in  
copying packets, major  network   vendors  equip  high-
speed  NICs  with  DMA engines.  

The simple DMA-based architecture, shown in Fig. 
1, implements all NIC packet transfer based on First 
Come First Serve (FCFS). This simple architecture is 
important because it represents the most efficient base 
case, but it has serious limitations. It processes packets 
in FCFS order and so is unable to differentiate the level 
of service required by each traffic types. Recognition of 
this limitation has prompted the architecture shown in 
Fig. 2, where the key idea is to filter incoming packets 
in   multiple buffers (two in our case) based on QoS 
requirements. 

 
Fig. 1: The basic component of the receive part of the 

network interface 
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Fig. 2:  Proposed QoS-aware network interface 
 

These queues (buffers) each require access to a single 
resource, namely the protocol stack. When packets 
arrive to NIC (1), DMA, which is equipped with a 
preinstalled packet filtering, filters the packets (2). 
Then each traffic type is inserted into its queue (3). 
When the queues are polled (4), the appropriate sched-
uling scheme (5) selects the next packets to be proc-
essed by protocol stacks (6). 

This proposed system model can be divided in gen-
eral into two main stages: 

 
At the first stage, the input process executes the follow-
ing steps: 

 
• Read:   read a packet from input port (DMA 

Rx). 
• Classify: classify the packet 
• Enqueue: enqueue packet on appropriate 

queue 
 
At the second stage, an output process performs the 
following steps: 

 
• Select: select queue for next packet to transmit 

(processed by protocol processing). 
• De-queue: de-queue the packet from this 

queue 
• Transmit: transmit the packet to the upper ap-

plication 
 
Therefore, the scheduling problem is how to 

choose queue to serve in each packet transmissions 
with a satisfactory performance that matches its needs.  
 

THE POLLING PROCESS AND SCHEDULING 
ALGORITHM 

 
 In high-speed multimedia network interface, an al-

ternative to   interrupts is polling. The idea of polling is 
to disable interrupts of incoming packets altogether and 
thus eliminating interrupt overhead completely.  In 
polling, the OS periodically polls its host system mem-
ory (i.e., protocol processing buffer) to find packets to 
process. The actual polling overhead is the cost of read-
ing a status register on the host memory to check   for  
a  packet  arrival  and  if  one  is  detected  to transfer  
the  packet(s)   from  the  host  memory  (i.e., protocol  

 
processing buffer) to the upper application through 
network protocol processing. Polling is used in systems 
that have a heavy network load,   such   as   routers and 
bridges, firewalls, or file servers[4].  

The main constrain that the high traffic network 
load imposes is that the polling period has to have as 
fine a time granularity as possible so that the packet 
latency to be minimized. There are two types of timers’ 
facility, hard and soft timers. The hard timer is conven-
tional timer facilities schedules events by invoking 
designated handler periodically in the context of hard-
ware interrupt. In this case, the poll interval has fixed 
value (ex, 20 µs). The soft timer is an OS facility that 
allows efficient scheduling of software events at (µs) 
granularity. It is also possible to avoid substantial con-
text switching overhead and cache pollution in polling 
by utilizing soft timers[5]. The basic idea behind soft 
timers is to take advantage of certain states (called OS 
trigger states) in the execution of a system where an 
event handler can be invoked (to poll the protocol 
buffer) at low cost.  OS trigger states can occur when 
the system is already in the right context and has suf-
fered cache pollution (e.g. at the end of handling a 
timer interrupt or a trap, when about to schedule an 
event or a task, at the end of a system call, or when 
CPU is executing idle loop).  

In addition, soft timer allows the dynamic adjust-
ments of the poll interval. A drawback of soft timers is 
that they can only schedule events probabilistically [5]. 
In fact, using hardware timers to back up soft-timers, 
which what we actually do in this study; allow very 
tight upper bounds on soft-timers delay at low costs. 

In general, pure polling is rarely implemented.  
Polling with quota is usually the case whereby only a 
maximum number of packets are processed in each poll 
in order to leave some CPU power for application proc-
essing [4]. There are primarily two drawbacks for poll-
ing. First, unsuccessful polls can be encountered as 
packets are not guaranteed to be present at all times in 
the host memory and thus CPU power is wasted, but 
this will not happen in our case where we assume high 
traffic loads.  Second, processing of incoming packets 
is not performed immediately as the packets get queued 
until they are polled. However, this will be at the bene-
fit of saving some CPU time to upper applications. At 
each poll arrival, a weighted round-ribbon scheduling is 
implemented to select the next queue to be served. 

 
Weighted round-ribbon scheduling scheme: Polling 
with quota is used to poll the queues periodically. At 
each poll period, a finite number of packets (quota) 
from all queues are served. If the quota is served before 
the next poll arrival, the queue processing is disabled 
until the next poll arrival. Else, if the next poll arrives 
before serving the pervious quota, then a new quota  
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starts again. This quota is divided among the two 
queues such that the RT queue has q1 packets per poll 
period while the non-Real Time (nRT) queue has q2 
packets per poll period, such that 0< q1< q1≤ Quota and 
q1+ q1= Quota. At each poll arrival a weighted Round 
Robin (RR) scheduling algorithm is implemented. At 
the begging of each poll event the queues are served in 
a RR fashion where the RT queue is served first based 
on FCFS until it consumes its assigned quota q1. Then 
the second queue is selected and served based on FCFS 
until it consumes the rest of assigned quota q2, or the 
next poll event arrives. If the next poll event arrives, 
whether the second queue finishes its quota or not, the 
control is transferred to first queue and new quota starts 
and so on. Theses q1and q2 quotas are selected such that 
the RT traffic has higher weight while keeping accept-
able fair for the second queue. The maximum quota per 
poll period is dependent on the length of the poll period 
and the average service time of each packet. 

There could be different way to serve queues dur-
ing each polling period. One way is to keep serving 
first queue until it finishes (queue is empty). However, 
due to high traffic this will cause a starvation problem 
for second queue packets. Another way is to keep serv-
ing first queue a finite number of consecutive polls then 
the second queue is served a less number of consecu-
tive polls. However, this will result in a delay jitter due 
to burst serving. Therefore, the best way is to serve 
each queue during each period by serving the first 
queue with greater quota. 
 
System assumption and limitations: The proposed 
model is limited to the receive part of NIC equipped 
with DMA engines, where the interrupt overhead is 
more important. In addition, our design is restricted to a 
system with single processor. The traffic types consid-
ered are RT traffic such as interactive multimedia and 
nRT traffic such as file transfer. The RT traffic con-
straints limited to the delay.  

 The system is studied under heavy traffic load be-
cause of high-speed multimedia networks. Therefore, 
the performance regarding the low traffic case will not 
be considered. Also due to high traffic, at each poll 
arrival, there is a packet to serve in the queue. At low 
load, unsuccessful polls can be encountered as packets 
are not guaranteed to be present at all times in the host 
memory and thus CPU power is wasted, but this will 
not happen in our case due to high traffic loads. We 
avoid long queue, which increase the latency and bursty 
scheduling which increases jitter.  
 

PERFORMANCE EVALUATIONS 
Here we presents performance measurements of 

the implementation of NIC QoS-aware scheduling  

 
mechanisms with polling supporting using a discrete-
event simulation, which is developed and implemented 
by C programming language.  

First, the performance measures are defined and 
presented. Then the simulation parameters and assump-
tion are described. After that, the event driven simula-
tion is explained. Finally, the results of the simulation 
are discussed and compared. 
 
Performance metrics: We study the system perform-
ance in terms of system throughput, CPU availability, 
loss rate (or blocking probability) and delay. The 
throughput is the total rate with which the application 
can read packets from the NIC. The Latency can be 
defined as the time interval between the arrival of a 
packet to the network end system until its successful 
reach to the consumer.  
 

Availability is the percentage quantity that measures 
how much of the time the CPU power is available for 
other processes including user’s applications. The loss 
ratio is define as the probabilities that the arrived pack-
ets are dropped due to space unavailability (buffer is 
full).  Saturation point is the point at which the system 
cannot keep up with the offered load. These measures 
are evaluated when the simulation run ends as: 
 

• System throughput =∑packets processed / 
simulation time; 

• System availability = 1- (∑ packets processing 
time +∑  polling overhead time )/ simulation 
time; 

• Delay time of packeti = departure timei - arri-
val timei; 

• System average latency of traffici =∑  packetsi 
delay times/∑  number of packetsi processed; 

• Blocking probability of traffici =∑ dropped 
packetsi/∑ number of packetsi arrived. 

 
Simulation parameters and assumptions: In this 
section, we define the system parameters.  The parame-
ters   values  and  other  assumptions  are extrapolated  
form  conducted  experiments  and  studies  appeared  
by  many  research[4-6].  The  mean protocol  processing  
rate  carried  out  by  the  kernel  is  the  time  the  sys-
tem  takes  to  process  the incoming  packet  and  de-
livers it to the application process. This time includes 
primarily the network protocol stack processing carried 
out by the kernel, excluding any interrupt handling. The 
polling period is the time between each consecutive 
poll event and the polling overhead time is the cost of 
reading a status register on the host memory to check 
for a packet arrival.   
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Fig. 3:  Simulation flow chart 
 
 
Throughout our studies, we assume the following: 

• Both of service times, protocol processing or 
Context Switching (CS) handling, change due 
to various system activities[6,7]. Therefore, for 
our analysis, we assume both of these service 
times to be exponential.   

• The network traffic follows a constant rate: we 
study the constant rate because it is closer in 
reality to the traffic generation characteristics 
used by the experiments Mogul and ramkrish-
nan[4], as packets are generated back-to-back 
with almost a constant rate. 

• The packet sizes are fixed.  This assumption is 
true for Constant Bit Rate (CBR) traffic such 
as uncompressed interactive audio and video 
conferencing.  Similarly, Morris et al.[6]  traffic 
of  fixed-size packets was generated back-to-
back to the router. The packet’s size for data 
can range from 64 to1500 bytes. 

• The queue size of both real and nRT has a fi-
nite size of K and L packets, respectively and 
the common queue size is Q=K+L. 

• Hardware polling period is fixed where as 
software polling period has empirical distribu-
tion. 

• Each poll period has a fixed quota of packets 
to be served defined as Quota. 

Our simulations parameters values are based on what 
is reported by previous experiments[4-7]. Hard timer 
polling period is 20 µs while software timer has empiri-
cal distribution with minimum 2 µs and bounded by 20 
µs. The quotas used are 1, 2, 3, 4 packets per poll 
events. The service time rate is 5.6 µs and the per-
packet overhead is (1/748) µs. The size of each queue 
is 500 packets, that is, 1000 packets in total. The net-
work link speed is assumed to be 1 Gbps and the net-
work traffic load varies. 
 
Simulation model description: A discrete-event simu-
lation is developed and implemented by C program-
ming language.  The simulation follows closely and 
carefully the guidelines given by law and Kelton[8].  

There are four events for DMA Rx system. ARRIVALi, 
occurs when a new packet of type i arrives to host 
memory form the NIC. POLL, occurs when a POLL 
starts to check the queues for packets. CS, Indicates the 
completion of context switching work done by polling 
(checking buffers). DEPARTi indicates the completion 
of protocol processing of one packet. Each event has a 
time, status and priority.  An event status can be IDLE,  
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BUSY, or SUSPEDNDED. IDLE indicates the event 
has not been selected by the scheduler, i.e., not being 
served by the CPU.  BUSY indicates the event is being 
served by the CPU.  SUSPENDED indicates the event 
was BUSY but got preempted by a higher priority 
event. Only DEPARTi event can has SUSPENDED 
status.  The selection of the next event by the scheduler 
is based on the event's time, status and priority. When-
ever a SUSPENDED   event   is   selected   again   to 
run (i.e., resumed running), its finish time will incur the 
service times of all higher priority events which oc-
curred between its suspension and its resumption. Fig-
ure 3 shows the simulation flow chart. 

In the case of non-prioritized polling scheme, the 
simulation has one buffer implemented as FIFO queue. 
In the case of prioritized polling scheme, the simulation 
has two buffers each implemented as FIFO when it is 
given chance to be served based on a predefined sched-
uling scheme mentioned earlier. The simulation run   
ends when the total number of events reaches five mil-
lions. 
 
Simulation results: This section analyzes the simula-
tion results conducted to study the proposed system 
performances. Three scenarios are compared with and 
without packets prioritization. At each experiment the 
sources PCs gradually increase their aggregate offer 
loads from 20000 to 500,000 Packets/sec while the 
systems (PC-router, Server, etc.) attempt to forward the 
packets as best as it can. The simulation results consist 
of two main parts. First part is to compare the perform-
ance of hard-timer polling and soft-timer polling 
schemes using different quota limits and the second 
part is to study the QoS-aware scheduling under differ-
ent traffic mix situations. 
 
Polling schemes with different quota limits: In this 
subsection, we are to compare the performance of hard-
timer polling and soft-timer polling schemes using 
different quota limits.  For hard-timer polling, we use 
constant polling period of 20 µs and polling overhead 
of 1.59 µs. For soft-timer polling, we generate the 
measured empirical period Cumulative Distribution 
Function (CDF) of ST-Apache[5] with a bound of 20 
µs.   The   measured   empirical   period CDF of ST-
Apache gives us the resulting distribution of soft timers 
delay   from   2 µs   until   150 µs[5]. As we state before, 
using harware timers to back up soft-timers allow very 
tight upper bounds on soft-timers delay at low costs. 
Therefore, the new distribution of soft timer delay after 
bounding it by the hard timer (20 µs) is obtained by  

 
using the Best Fit package found[9].  Figure 4 shows our 
soft timer interval distribution, which is used to gener-
ate the soft timer poll period in our simulation. A poll-
ing overhead of 1.11 µs for soft-time polling is consid-
ered. 

Four different quota limits is used to compare the 
system performance. The system has one common 
queue of size 1000 packets for all packet types where 
no differentiation is made. System throughput, latency 
and CPU availability are shown in Fig. 5, Fig. 6 and 
Fig. 7, respectively. As seen in these figures in case of 
ISR handling, the throughput start decreasing at high 
traffic load leading to what is called livelock, because 
the CPU spent most of its time serving the interrupt. 
Therefore the system delay increases as high traffic 
increases (Fig. 6) and the CPU availability (Fig. 7) with 
respect to protocol processing reaches zero (CPU al-
ways busy serving the interrupt). Using polling 
schemes, the system throughput keeps up with the of-
fered traffic to MLFR rate at high traffic load (Fig. 5). 
In addition, the system delay and CPU availability keep 
with a fixed value at higher traffic (Fig. 6 and Fig. 7). 
For both soft and hard timer polling as we increase the 
quota limit the throughput has higher MLFR rate. At 
high quota (Q=4) the throughput of soft timer and hard 
timer polling is almost equal in term of system 
throughput, delay and CPU availability and this is be-
cause that each poll period spent most of its time serv-
ing packets. But at low quota (1, 2, 3) the throughput of 
soft timer polling is higher than that of hard timer and 
this is because that the average poll period  of soft timer 
is less than that of hard timers, therefore the buffer will 
poll more frequently than the hard polling. This will 
lead to lesser CPU availability and lesser delay than 
hard timer polling does. 

To summarize, with very small quota with respect 
to the poll period, the throughput is very low and the 
latency and CPU availability are very high, where as 
with very big quota with respect to the poll period, we 
will have higher throughput, lower latency and lower 
CPU availability. Therefore, selecting the quota is an 
important issue and based on the throughput, delay, 
CPU availability requirements, the required quota can 
be selected. A soft timer polling outperforms the hard 
timer with respect to the system throughput and la-
tency, but the CPU availability is better in the case of 
hard timer polling. However, at very high quota this 
different disappears. In general, at higher quota pack-
ets, the hard timer polling is preferred since it gives 
reasonable throughput, latency and higher CPU avail-
ability to increase the packet forwarding to its higher 
applications.   
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Fig. 4:  Soft timer delay distribution 
 

 
 

Fig. 5: System throughput 
 

QoS-aware scheduling under high traffic loads: In 
this subsection, the performance of the new proposed 
design (polling-bases NIC with traffic differentiation, 
denoted by P in Fig. 8-11) is studied and compared 
with the traditional system (polling-bases NIC without 
traffic differentiation, denoted by NP in Fig. 8-11) 
under different environments (or scenarios). For each 
case, we compare the system’s performance in terms of 
system’s throughput, latency, loss ratio or CPU avail-
ability. The total throughput for all cases is the same as 
shown in previous subsection. However, the through-
put, packet delay and loss ratio of each class are de-
pendent on the used scheduling algorithm and also 
depend on how the queue sizes, traffic loads of each 
class and quota per poll period are selected. 
Scenario 1:  RT and nRT traffic have the same traffic 
load and two queue sizes are used. In this scenario the 
total quota is 4 and the size of quota assigned to RT is 2 
packets per poll period and served first while the quota 
assigned to nRT is ≤ 2 packets per poll. 

 

 
 

Fig. 6: System latency 
 

 
 

Fig. 7: CPU availability 
 
The queue sizes of each traffic class are (K=L=500), 
(K=L=1000) packets and the common queue size for all 
classes without differentiation are (Q=1000, Q=2000). 
In this experiment, as aggregated traffics (offered traf-
fics) increase, we measure the delay using these two 
different queue sizes and we fix other parameters. The 
packet delay is most important, so it is compared and 
studied at these different queue sizes. 

The latency of the two systems (NP and P) at dif-
ferent queues sizes are shown in Fig. 8. The latency of 
RT traffic using differentiation techniques is much 
lesser than its latency in case of using one common 
queue for both traffics classes, but this is at the expense 
of acceptable increase in the latency of nRT traffic 
which is actually delay tolerable. With respect to the 
queue size, as we increase queue sizes for both systems, 
the latency increases. 
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Fig. 8: System latency per traffic class 
 

 
 

Fig. 9: Latency per traffic class 
 
Therefore we can say that, differentiation is very im-
portant since it decreases the latency of RT traffic, but 
at the same time we should avoid long queue, so to 
avoid long delay. Choosing queue size will be based on 
the actual maximum delay allowed for each traffic 
class.  
Scenario 2: Different Quota limits: In this experiment, 
the variable parameter here is the quota size of each 
traffic class during each poll period, other parameters 
are fixed. The blocking probabilities and throughput of 
each traffic class using different quota are compared as 
seen in Fig. 9 and 10. First we assume that (q1=2, q2 ≤2) 
and (q1=3, q2 =1). In general, serving the RT traffic 
first at each poll period with quota greater than nRT 
traffic will result in decreasing the blocking probability 
and increasing the throughput of RT traffic compared 
to the system without doing the differentiation. But, as 
we increase the quota assigned to RT traffic, the 
throughout and blocking probability of nRT traffic will 
become worse. 

 
 

Fig. 10: Throughput per traffic class 
 

 
 

Fig. 11: Blocking probabilities 
 
So, it is very important to choose an appropriate quota 
limit such that the blocking probability of RT traffic 
decreases while we keep   the   blocking   probabilities 
of nRT traffic with acceptable limit, since we can re-
transmit the nRT traffic. 
 
Scenario 3:  Different traffic loads: In this experiment, 
we want to investigate the proposed system and the 
traditional one in terms of the blocking probabilities. 
We assume three cases for the aggregated traffic: case 
1:  RT is 50%, case 2:  RT is 30% and case 3: RT is 
70% of the total aggregated traffic. 

As  seen in Fig. 11,  if the RT traffic portion is 
≤ the nRT traffic portion then, the blocking probability 
will improve with differentiation methods, however, in 
case 3, the blocking probability of RT traffic will be 
worse than in case of traditional system without differ-
entiation. This is because, RT traffic is limited to its  
queue  size  and  nRT  traffic  will  benefit from this, 
since   it  will  not  be  affected  by  the  high  RT traf 
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fic. Therefore its blocking probability is less in this 
case. In case of traditional system, any traffic class with 
higher portion of traffic load will benefit more since it 
can use the whole queue (common queue) more than 
the traffic class with lesser traffic portion. Therefore the 
priority schemes will be more efficient in the case of 
environments with higher nRT traffic than RT traffic. 
 

RELATED WORKS 
 

A number of solutions have been proposed in the 
literature to address network and system overhead and 
to improve the OS performance. Some of these solu-
tions include interrupt coalescing, OS-bypass protocol, 
zero-copying, jumbo frames, polling, pushing some or 
all protocol processing to hardware, etc. Interrupt over-
head of Gigabit network devices can have a significant 
negative impact on system performance[4]. Interrupt- 
 
driven systems can provide low overhead and good 
latency at low offered low, but degrade significantly at 
higher overload as in the high-speed network case[4]. 
This will cause a receive livelock, in which the system 
spends all its time processing interrupts. The idea of 
polling is to disable interrupts of incoming packets 
altogether and thus eliminating interrupt overhead com-
pletely[3]. Mogul and Ramakrishnan [4] implemented a 
mechanism where interrupts are only used at low net-
work load conditions, while in the high loads the 
interrupts are disabled and a polling thread is scheduled 
for reading the network interface. Every time a poll is 
executed, a certain packet quota is served. If at the end 
of polling some packets still remain at the NIC, the 
polling thread is executed again after a few millisec-
onds. Otherwise, the system switches back to inter-
rupts. Hybrid Interrupt-Polling (HIP) scheme for the 
network interface exploits the trade-off between de-
creased receive-overhead and increased receive-
latency[10]. This differs than[4], by adjusting the polling 
period based on the observed packets inter-arrivals.  

One of the most popular solutions to mitigate inter-
rupt overhead for Gigabit network hosts is interrupt 
coalescing (IC)[12,12].  Sometimes this scheme is known 
as interrupt batching in the literature[9]. IC is a mode or 
a feature in which the NIC generates a single interrupt 
for a group of incoming packets.  This is opposed to 
normal interruption mode in which the NIC generates 
an interrupt for every incoming packet. The authors 
of[13] proposed Ethernet Message Passing (EMP), a 
completely new zero-copy, OS-bypass messaging layer 
for Gigabit Ethernet on Alteon NICs where the entire 
protocol processing is done at the NIC. OS bypass 
means that the OS is removed from the critical path of 
the message. Data can be sent/received directly 
into/from     the     application     without    intermediate  

 
buffering; making it true zero-copy architecture. The 
protocol has support for retransmission and flow con-
trol and hence is reliable. All parts of the messaging 
system are implemented on the NIC, including mes-
sage-based descriptor management, packetization and 
reliability. The NIC handles all queuing, framing and 
reliability details asynchronously, freeing the host to 
perform useful work. Finally, the idea of using jumbo 
frames in Gigabits network is introduced[14].  In heavily 
loaded networks where continuous data transfer is 
required, current Ethernet frame size can actually de-
grade performance. Extended frames significantly en-
hance the efficiency of Ethernet servers and networks 
by reducing host packet processing by the CPU and 
increasing end-to-end throughput.  

All these schemes have the drawback that they do 
not distinguish between packets of different streams; 
hence applications that are latency critical suffer poor 
performance if the interface is being used for bulk data  
 
transfer. In addition, most of those solutions study the 
system performance from the throughput point of view. 
Other system performance such as, CPU availability, 
packet latency and blocking probabilities are defined 
and studies in this study. 
 

CONCLUSIONS 
 

With the appearance of high-speed networks with 
link speed reaching gigabits per second, the network 
interfaces become the bottleneck of communication. In 
this study, we have proposed QoS-aware scheduling 
mechanisms design for high speed network interfacing. 
These mechanisms enable the NIC to efficiently sup-
port both high throughput and latency-critical applica-
tions, such as multimedia traffics. The polling is used 
as interrupt handler. The idea of soft and hard timer is 
presented and used. Our discrete event-driven simula-
tion model can be used as sold base to study other sys-
tem performances metrics. This proposed system is 
compared with other traditional systems with only one 
queue for all incoming traffic. 

Performance evaluations indicate that under condi-
tions of high traffic load, the proposed system offers 
increased throughput, stable overload behavior and 
reduced latency for RT traffics. The careful selection of 
the system parameters such as quota limit of each traf-
fic class, polling period and queue size is an important 
issue. This selection allows the system designer to set 
the trade-off between them to the appropriate operating 
point in order to guarantee specific QoS requirements 
such as, CPU availability, delay, throughput and block-
ing probability. Through the event-driven simulation, 
we showed that the polling schemes are very efficient 
in case of high traffic streams.  Also, in the case of  
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multimedia traffic, we showed that the traffic differen-
tiation will give better performance to the RT traffic 
which is delay sensitive at the expense of small in-
crease in the delay of nRT traffic which is delay toler-
able. The idea of dynamically assigning the queue size, 
quota limit and the existing of more than one CPU in 
the NIC, are something that we plan to do in the future. 
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