Journal of Computer Science 1 {3}: 341-345, 2005
[SSN 1549-3636
© Science Publicaticns, 2005

Empirical Studies on Applications of Neural Networks
as Approximation Oracle

K. K. Aggarwal, Yogesh Singh and Arvinder Kaur
G.G.S Indraprastha University, Delhi, India - 110006

Abstract: Expected results are essential to any test design. In testing, an Oracle is a trusted source of
expected results. This research examines the performance of Artificial Neural Network {ANN} as
Approximation Oracle. The supervised learning paradigm has been used and found to be svitable for

the purpose with the help of case studies.

Key words: Test Oracle, Neural Networks, Software Testing

INTRODUCTION

Software testing is the process of attempting to detect
discrepancies between a program’s specification and its
actual behaviocur. This requires test suite development.
In this phase, a set of test cases has to be constructed
that {(in principal} has the capability of exposing
any/every fault in the software. A single test case may
be interpreted as a tuple in which the first element is the
member of set of possible inputs to the software and the
second element is the correspending (desired) cutput
for the implementation under test (IUT) [1-4]. So a test
case may be represented as:

Test Case ={ <inputs:>, <outputs>} (1
The set of all test cases of this type constitute the test
suite.

The test suite cannot be used without the desired cutput
value being a part of the test case. Therefore in many
approaches in software testing the presence of a
Software Oracle is assumed [5]. An oracle is a trusted
source of expected results for a given input. The Oracle
(for a specific system} can be a program specification, a
table of examples, or simply the programmer’s
knowledge of how a program should operate [6]. If an
Oracle can be built for the [UT, the development of test
suite can easily be implemented but developing a
perfect oracle however is something like a
philosopher’s stone for software. We cannet guarantee
the ability of any algorithm te decide that an algorithm
is correct in all possible cases [7]. So in simple
situations the expected results are generally obtained
manuvally or some partial or approximation oracle is
used [6]. An Approximation Oracle develops
approximate expected results. In many complex
situations such as simulation in mechanical design,
weather and economic forecasting and geological
exploration there is no simple way to check the oufput
generated by [UT and errors in these problems are as
high as 500%. So an Approximation Oracle is one of

341

the solutions that will give confidence in the results
obtained from [UT. In this research, we present an
Artificial Neural Network {ANN} based approach to the
development of an Approximation oracle for a given
[UT.

Neural Network Methodology

Neural Network: Neural Networks (NNs} comprise a
set of inferconnected neurons, each having a
transformation function that it performs on the
weighted sum of its inputs to preduce an cutput. In NN
maedeling, we determine a pattern of connections
{architecture}, a methed of determining interconnection
weights w {training algorithm) and a transformation
function. To select the architecture of NNs, the number
of nodes in the input and cutput units, the number of
hidden units and the number of nodes in each hidden
unit needs tc be decided along with the types of
connection between all the nodes. The number of input
units and the number of output units are problem
dependent. The number of hidden units is usvally not
known. Hidden units allow the neural network to learn
by forcing the network to develop its own internal
representation of the input space. The network that
produces the best classification with the fewest units is
selected as the best topology. There is no clearly
defined theory that allows for the calculation of the
ideal parameter settings and as a rule even slight
parameter changes can cause major variations in the
behavior of almost all netwoerks [8]. There are breadly
two paradigms of neural learning algorithms namely
Supervised and Unsupervised. Supervised training
involves the process of adjusting the weights in a neural
network using a training algorithm where the desired
output for each of the training input vectors is presented
to the network. As a guideline approximately 10
training data/observations are required for each weight
in the neural network [8] In Unsupervised training, the
weights in a neural network are modified without
specifying the desired cutput for any input patterns.
Supervised training has been used in this work. Error

J. Computer Sci., 1 (3): 341-345, 2005

Backpropagation is the most popular training algorithm
for multilayer neural networks [9-12].

Many software engineering tasks can be formulated as
basic learning tasks that ANN can perform. So several
areas in software development have already witnessed
the use of Neural Networks. Finnie and Witting used
back propagation neural network models for effort
estimation and reported accuracies of within 10% for a
model of this type. They compared analogy based
method using CBR with different versions of FP-based
Regression models and ANN. The data used consisted
of 299 projects from 17 different organizations and
concluded that ANN performed better than Analogy
followed by regression models [8]. According to Gray
and McDonnell, neural networks is the most common
software estimation model-building technique used as
an alternative to mean least squares regression. These
are estimation models that can be “trained” using
historical data to produce ever better results by
automatically adjusting their algorithmic parameter
values to reduce the delta between known actual and
model predictions [13]. ANN has also been used for
metrics generation [14, 15], reliability prediction [16]
and reverse software engineering [17, 18]. A.
Mayrhauser et al. has shown neural network to be a
useful approach for test case effectiveness prediction
[10, 11, 19].

Neural Network Architecture: The network used in
this work belongs to Multilayer Feed Forward networks
and is referred to as M-H-Q network with M source
nodes, H nodes in hidden layer and Q neurons in the
output layer as shown in Fig. 1. The input nodes are
connected to every node of the hidden layer but are not
directly connected to the output node. Thus the network
does not have any lateral or shortcut connection. In our
work, log sigmoidal activation and purelin activation
function is used.

The log-sigmoid activation function is given as:

o) =——; xeR @)
l+e™

The purelin activation function is given as:

ox)=x; xeR 3

Where, R is the set of real numbers.
The weights between the jth hidden node and input
nodes are represented by W;; while the weights between
the jth hidden node and output node are represented by
;- The threshold of the jth hidden node is represented
by ; while the threshold of the output layer is
represented by . If x represents the input vector to the
network, the net input to the hidden node j is given by:

342

Inputs Outputs

> X —

XM —> Z — > yQ
Weights w a
Layer Name L, L, Lo
Layer Size M H Q
Fig. 1: Architectural Graph of ANN
M
net; = ZWﬂxi +p;5 j=12...N 4
i=1
The output from the jth hidden node is:
o, =0(net)))
The output from the network is given by:
N
y=0|220,+p &
j=1
Thus the output obtained from the network,

corresponding to input vector X is given by y, while the
actual target value for the input x is represented by t.
NN repetitively adjusts different weights so that the
difference between desired output t from the network
and actual output from NN is minimized. Figurel
represents the network used in this work.

It is known that ANN can be used to model any
arbitrary input-output mapping and are capable of
approximating any measurable function. So ANN
should be able to model the functionality of the
software also. In a broad sense, the neural network
itself is a model because the topology and transfer
functions of the nodes are usually formulated to match
the current problem [9, 20].

Software Testing Problems/Case Studies: We used
two different case studies in our experiments. So in our
work we refer these case studies as case study 1(C1)
and Case study 2(C2).

Case Study 1(Cl): The first case study taken
is the famous Triangle Classification Problem TRIYP
[1, 3, 5, 7]. The program accepts three integers that
represent the relative lengths of the sides of a triangle.

J. Computer Sci., 1 (3): 341-345, 2005

The output of the program is Equilateral, Isosceles,
Scalene or Not a triangle depending on length of sides
of triangle. The input variables can have any integer
value between 1-200. Since all the three input variables
can have any value between 1-200, the number of input
combinations is 200° = 80 Lacs.

Case Study 2(C2): The second case study taken is the
output generation for Unadjusted Function Points
(UFP). Function points are the most popular sizing
mefric given by Albrecht and Gaffney [21]. The
principal of Albrecht’s Functicn Point is that a system
is decomposed into five functional compenents {inputs,
outputs, inquiries, internal logical files and external
interfaces).

The number of each compoenent type (EIF, ILFE, EI, EQ,
EQ) present is placed into its assigned cell next to its
weightin the maftrix shown in Table 1.

Their complexity is classified as being relatively low,
average or high according to a set of standards that
define complexity in terms of objective guidelines [21].
Then UFP count of all five components is added to give
total UFP.

Table 1: Complexity Weight Mafrix

Type Complexity of component
Low Average High Total

Extemal inputs _ 3= _ M= _ =
Extemal output M= T _¥=__
Extemal inquiries _ #= _ M= _ =
Internal logical files _ #7=_ _*l0=_ _ *15=_
Extemal interface file _ #*5=_ _¥=_ _ *i=_
Total UAF

Experimental Design:The experiment conducted is to
explore the possibility of usage of ANN as
Approximation Test Oracle. We used both case studies
for this purpose.

Case Study1 (C1): In first case study, producing output
manually for 8GLac combinations of input is a tough
job. Se we explored the possibility of usage of ANN to
produce output for each combinaticn of input.

Here number of inputs{M}=3, corresponding to three
sides of triangle. The number of neurens in the cutput
layer (Q) were set to 2 to represent four possible
outputs as described below as target values.

Test cases were divided into four categories based on
Tour types of expected oufputs and their target values
were set as mentioned below:

* T1 (Test cases corresponding to Equilateral output}
Target Value: 1 1

* T2 (Test cases corresponding to [sosceles output)
Target Value: 0 1

* T3 (Test cases corresponding to Scalene output)
Target Value: 1 0

s

T4 {(Test cases corresponding to Not a triangle
output} Target Value: G 0

To find the number of neurons (H) in the first {(hidden)
layer experiment was done with an ensemble of
networks, starting from network with 10 hidden
neurens and going up to 30 neurons te find out which
of these networks gives the best performance, keeping
the output layer neurons constant in each of the
networks i.e 2 representing the four target values.
Transfer functions were ‘log-sigmoid’ in both the
layers. In this experimentation the performance varied
from 0.0846096 to (.0298441. Each of the networks
was frained with 10000 epochs, keeping the goal as
(.03. The network with 16 and 25 hidden neurons are
found to be most appropriate for further study, as
perfoermance in both these cases is found to be 0.0299.
After deciding the network architecture, the network is
trained with the initial training set of 150 exemplars.
After the training, simulation is done on the network.
Training and Simulafion was done with 16 and 25
neurcns in the hidden layer to see the difference in
performance. It was found that the net with 16 neurons
performed better. Earlier we have shown the simulation
results with 16 neurons in the hidden layer.

Case Study 2(C2): We frained an ANN tc compute
UFP for every possible combination of input. Then
results from algorithmic equation and Neural Network
have been compared to see if ANN gives accurate
results and can act as test oracle to produce cutput for
every combination of input. In this case study number
of inputs (m)=15, corresponding to 5 input components
(inputs, outputs, enquiries, internal logical files and
external interfaces) with each component having 3
complexity levels. So for each of the five compenents,
there are three inputs corresponding to Low, Medium
and High complexity. The number of neurons in the
output layer {Q} were set to 1 to represent Unadjusted
function points. In the first (hidden} layer neurons (H}
were varied from 2 to 8.The performance is found to be
best with 6 neurons. The linear fransfer functicn
‘purelin’ is used in both the layers. All the input values
are normalized in the range of 0O tol A
program is written in C language. It chose the value of
15 input factors randomly between 0 to 100 and
correspondingly computed the Unadjusted
Function Points.

Inifially the network is trained with 20 training data.
[t was found that oufput was perfect. So three
new networks were trained with 15,10,5 exemplars only
to see the difference in the performance. It was
found that the performance change was significant.
Table 2 lists the architecture topology for each case
study

Table 2: Architecture Topeology of Case Studies

Case Input Hidden Output Transfer
Experiment Study nodes nedes nedes function
El C1 4 16 s Log sigmoid
El C2 15 6 1 Purelin

343

J. Computer Sci., 1 (3): 341-345, 2005

Measures Used for Analysis of Results: The
following measures are used for analysis of the results.

Percentage Quality of Predication (%P} :h *100 {7
N

Percentage Misclassification error (%MCE) = M *100 (8)
N

N =Ny +N, ()

Where Ny N are the numbers of test cases

misclassified, rightly classified. & is the number of
Total Test cases. The criterion for misclassification was
that if the desired value is say (0 (), then any value
different than {G 0} is a misclassification.

EXPERIMENTAL RESULTS AND DISCUSSION

Figure 2 gives the simulation plot for case studyl.
Simulation was performed on 30 different data sets with
140 test cases (T'1, T2, T3and T4 combined} in each set.
Test cases were chosen randomly, by a Random
Number Generator. From Fig. 2, we can see that the
Mean Misclassification error is 7.813% with standard
deviation of 2.273. Quality of Prediction = 92.187%

— MRE

Q11F -=- ystd

Fig. 2: Simulation Plot for Case Study 1

7000

== data
— linear

G500 -

Calculated UFF

Actual UFP

2600 L L L L L L
3000 G500 4000 4500 5000 5500 6000 6500

Fig. 3:UFP Results 20 Training Inputs, 6 Neurcns in
Hidden Layer

344

€500

5500 -

2
2

Galculated UFP
B "
&
=

2000 -

L L L L L L
3000 Q600 4000 4500 SO0 H500 BO00 G500
Actual UFP

Fig. 4: UFP Results 15 Training Inputs, 6 Neurons in
Hidden Layer

== dala
linear

B000

S500
% S000
%
§ 4500

4000

3300

o000 . ‘ ‘ . . .

G000 SR00 4000 4500 5000 5600 BOA0 A500
Actual UFP

Fig. 5: UFP Results 10 Training Inputs, 6 Neurons in

Hidden Layer

G500

=+ data
Imsal

Calculaled UFP

2000 L L L L L L
3000 3500 4000 4500 BOOD BE00 G000 G500

Actual UFP

Fig. 6: UFP Results 5 Training Inputs, 6 Neurons in
Hidden Layer

Case Study 2: Figures 3-6 show the results of test data
with 6 neurons in the hidden layer and 20, 15, 10, 5
training data, respectively. These figures are plot
between UFP computed using algorithmic equation and
calculated UFP obtained from ANN.

J. Computer Sci., 1 (3): 341-345, 2005

In first case study cut of 8¢ Lac possibilities of inputs,
the net has been trained with only 135 inputs. If we
substantially increase the number of training data, the
accuracy of neural network can further be improved. In
second case study, it can be observed from the graphs
that calculated results completely mapped the actual
results with 20 training data. So a perfect Oracle is
achieved in this case. With 15,105 training data the
results are oscillating around the linear line. As we kept
on decreasing the training data the oscillations are
increased. The training data required in this case was
very less against the popular belief that neural networks
require large amount of data for training.

CONCLUSION

In first case study, the Quality of prediction achieved is
92.187%. In second case study the results are 100%
perfect. The results are very encouraging and suggest
that ANN can be used as Approximation oracle and in
some cases as perfect oracle also. [n complex situations
where there is no simple technique for checking the
output produced by the [UT, the usage of ANN based
Approximation test Oracle can give confidence in
predictions. We intend to further explore ANN with
more case studies and with different architectures. It is
also possible to explore alternative neural network
models like cascade correlation model [9] that
dynamically build the neural network architecture
model. We can further explore if we can achieve a
perfect Oracle in all cases using ANN .

REFERENCES

1. Aggarwal, K.K., Yogesh Singh, Arvinder Kaur and
O.P. Sangwan, 2004. A neural net-based approach
to test oracle. ACM SIGSOFT, 29: 1-6.
Agearwal, K.K.,, Yogesh Singh, Arvinder Kaur,
2004. Code coverage based technique for
prioritizing test cases for regression festing. ACM
SIGSOFT, 29: 5.

3. Beizer, B., 1990. Software Testing Techniques.

Van Nostrand Reinheld, New York.

Collofelle, I.S. Intreduction to Scoftware

Verification and Validation. SEI-CM-13-1.1,

Software Engineering Institute, Pittsburgh, P.A.,

USA.

5. Aggarwal, K.K. and Yogesh Singh, 2001. Software

Engineering: Programs, Documentation, Operating

Procedures. New Age International Publishers.

Binder, Rebert V., 1999. Testing Object-Oriented

Systems-Models, Patterns and Tools. Addison

Wesley.

7. DeMille, R.A., RJ. Lipten and F.G. Sayward,
1978. Hints on fest data selection: Help for
practicing Programmers. [EEE Computer, C-11:
34-41.

345

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20,

21.

Finnie, G.R. and G.E. Wittig, 1996. Al tools for
software development effort estimation. Software
Engineering and Eduvcation and Practice
Conference. IEEE Computer Society Press, pp:
346-353.

Laurene Fausett, 1994, Fundamentals of Neural
Networks. Prentice Hall: Englewooed Cliffs, New
Tersey.

Mayrhauser, A. Von, C. Anderson and R. Mraz,
1995. Using a neural network to predict test case
effectiveness. Proc. IEEE Aerospace Applications
Conference, Snowmass, CO.

Mayrhauser, A. Von, J. Walls and R. Mraz, 1994.
testing applications using demain based testing and
sleuth, Proc. Fifth Intl. Software Reliability
Engineering Symposium, Monterey, pp: 206-215.
Zurada Jacek M., 1992. Introduction to Artificial
Neural Systems. West Publishing: St. Paul.

Gray, AR. and S.G. MacDonnell, 1997. A
comparisen of techniques for developing predictive
madels of software mefrics. Information and
Software Technology, pp: 425-437.

Boetticher, . and D. Eichmann, 1993. A neural
net paradigm for characterizing reusable software.
Prec. First Australian Conference on Software
Metrics, pp: 41-49.

Boetticher, G., K. Srinivas and D. Eichmann, 1993,
A neural net-based approach o software metrics.
Prec. Fifth Infl. Conference of Software
Engineering and Knowledge Engineering, San
Francisco, CA, pp: 271-274.

Karunanithi, N., D. Whiyley and Y.K. Malaivya,
1992, Using neural networks in reliability
prediction. [EEE Software, 9: 53-9.

Whittington, G., C.T. Spracklen and J. MacRae,
1991. Applications of artificial neural networks to
reverse software engineering. Proc. Second IEE
Conference on Artificial Neural Networks,
Bournemeuth, UK.

Whittington, G. and C.T. Spracklen, 1992. The
potential for Artificial Neural Networks within
Scoftware Engineering. Presented at the I[EE
Colloquium on Software Engineering and Al
Anderson, C., A. Mayrhauser and R. Mraz, 1995,
On the use of neural networks to guide software
testing activities. Proc. Intl. Test Conference, Oct.
1993,

Haykin, S., 2003. Neural Networks. A
Comprehensive Foundation. Prentice Hall, India.
Albrecht, A. and I.E. Gaffney, 1983. Software
function source lines of code and development
effort prediction: A software science validation.
[EE Trans. Software Engineering, SE-9: 639-648.

