Journal of Computer Science 1 {2}: 290-295, 2005
[SSN 1549-3636
© Science Publicaticns, 2005

On Analysis and Design of the Enhanced Firewall for Intranet Security

"U.K. Singh, *A.K. Ramani and °N.S. Chaudhari
'MICS, Mahakal Institute of Technology, MIT Campus, Ujjain (MP)-India
"Institute of Computer Science and Electronics (ICSE), D.A.V.V., Indore (MP)-India
3School of Computer Engineering, Nanyang Technological University (NTU), Singapore

Abstract: Intranet often employ an Internet firewall to mitigate risks of system
penetration, data theft, data destruction and other security breaches. Conventional
Internet firewalls impose an overly simple inside vs. outside model of security that is
incompatible with many business practices that require extending limited trust to
external entities. Additionally, firewall security perimeters are somewhat weak: they
provide no protection from inside attacks and do not protect sensitive data, which
can he exported by tunneling through permitted protocols. In this study we have
suggested the integration of some useful additional information along-with intrusion detection system
and virus monitors into firewall. In particular, we aim at integrating as many security measures as
possible into the firewall, creating what we will call an enhanced firewall. One of the main features of
the enhanced firewall will be protecting intranet against various malicious attack.

Key words: Firewall, Intranet, [P-datagram, Packet

INTRODUCTION

Firewalls have been arcund for several vears and they
are a natural component of most networks connected to
the Internet. In general, a firewall protects a network
from unintended access from the external network,
which could be the Infernet. At the same time, the
firewall allows the protected network to communicate
with the external network. This is possible because a
firewall is able to distinguish between a connection
initiated from the oufside (inbound) and a connection
initiated from the inside {cutbound}. It is therefore able
to restrict inbound connections to specific services,
intentionally offered to the external network. At the
same time, cutbound connecticns are largely allowed.
This makes the firewall almost transparent to the
protected network. It also means that any application,
started on the protected network, is able to
communicate freely to the external network.
Unfortunately, this is not always what we want. For
instance, a backdoor application may run inside the
protected network and secretly make a connection to a
hacker on the Internet. The firewall is not able to tell
whether network packets are sent from a backdoor
applicaticn or a simple web-browser.

We can enhance the firewall in such a way that it is able
to distinguish outgoing network packets based on the
identity of the host, user and application responsible for
(ransmitting them. If a protected host wants to
communicate with the external network it is forced to
reveal its identity, together with the identity of the
sending application and user, for each network packet
sent to the firewall. The identities are communicated
using cryptographic authentication, which ensures the

290

firewall that they are correct. This enables the firewall
to employ a very strong rule-set. The rule-set
guarantees that no network packets pass the firewall
except when the firewall explicitly allows the specific
host, user and application to send it to the external
network.

In this study we recommends the design of an enhanced
firewall with some additicnal information and
techniques. These recommendations are based on the
study of varicus research papers and work already
carried out in this area. The suggested design of
enhanced firewall for an Infranet prohibits the
adversary from using arbitrary applications to transmit
packets to the external network through the firewall,
except when the adversary has valid credentials to do
so. For each I[P-datagram, destined to the external
network, we want the firewall to be able to distinguish
the identity of the sending host, user and applicaticn
responsible for transmitting it. This requires the
protected hosts to supply the firewall with this
information, as it is not present in ordinary
[P-datagrams. Since applications use direct calls to the
operating system, when transmifting [P-datagrams, we
will have to change the operating system on the
protected hosts in order to supply this information.
Furthermore, it is essenfial that the additional
information is authenticated to the firewall, as our
adversary is able to read, modify and inject arbitrary
[P-datagrams on the profected network. Therefore, the
protected hosts will have to authenticate each
[P- datagram sent to the firewall. In turn, the firewall
must verify the authenticity of the [P-datagrams before
making a decision on whether to forward or drop the
outgoing packet. The extended firewall has a better

J. Computer Sci., 1 (2): 290-295, 2005

basis when making the forwarding decision, compared
tso the conventional firewall, since it has access to the
host ID, vser [D and application [D.

Thus we propose to integrate intrusion detection system
and wvirus monitors along with the additional
information into the existing firewall. The enhanced
firewall with integration of IDS and virus monitors is
our propesal for increasing the strength of firewalls.
Which is much advanced than the earlier cnes as stated
in the next section. It will have the ability to examine
enfire data packets and (o apply standard as well as
intelligent detection techniques to identify misuse.

MOTIVATION AND OBSERVATIONS

In [8] Xu and Singhal proposed an ATM firewall using
a proxy cache, which uses a QcF (Quality of
Firewalling) scheme. [ts main components are call
screening, proxy, traffic monitoring service, packet
filtering service and firewall management. These
combined components determine a packet’s safeness.
The packet-filtering service inspects the headers of [P
packets to block unsafe packets, while allowing safe
packets to pass. The traffic-menitoring service checks
the packet headers against the traffic-monitoring rules,
which are similar to the packet-filtering rules. To
determine whether or not a packet is safe, only the first
cell will be checked, which contains the IP header,
protocol, TCP/UDP ports and TCP flags. However,
there are limitations: IP packets with 1P option fields
are not accepted, because [P options can be as large as
40 bytes and may push the TCP headers to the second
cell. Using CAM (Content Addressable Memory)} to
cache a safe header is not a scalable soluticn. CAM
cannot scale to a large size due to technological
constraints and is extremely expensive. This work only
considers TCP/IP headers-no paylead information is
used-to detect whether data packets are safe or not,
even though they aim to develop a new firewall
architecture. [t does not seem that inspecting only
header information is sufficient tc overcome
weaknesses of firewalls,

We have cbserved seme of limitations and possibilities
our adversary has, as it helps us to understand what we
must protect ourselves against. We observed two
different scenarios, the hostile application and the
hostile user, which define two different kinds of
adversaries: The malicious user, who is interested in
bending the rules of the security policy to their own
advantages which is internal adversary and the external
hacker, who is able to make an internal user start an
application of their choice, which is external adversary.
The internal adversary might not be interested in
deliberately harming the infranet, but they fries to
circumvent the security policy to their own benefits,
which might harm the organization indirectly. To
achieve their goal, the internal adversary might attach
an exfra host to the internal network. This enables them
to do as they pleases on that host, which includes
installing any software and eavesdrop on the network.

291

This host weould be a perfect place for the internal
adversary to install a backdoor that connects fo an
external host, which in turn enables them to connect to
the internal network from the outside.

The external adversary does not have the same direct
access to the internal network as the internal adversary.
However, once they has an application of choice started
on an internal host (for instance by luring an internal
user to start an application sent to him through an email
attachment), they should be considered more
dangerous. They are less likely fo suffer the
consequences of being caught, as they are often a fotal
stranger. As the external adversary has limited
capabilities compared to the infernal adversary, we
concentrate on the capabilities of the internal adversary.
If we can defeat the internal adversary we have
defeated the external adversary as well.

I we want the firewall to protect the trusted network
from the internal adversary, the firewall must have a
full control of what is sent between the inside network
and the cutside. If we can somehow make the firewall
reject all outbound packets that are not supposed to
leave the inside of the firewall, then the adversary
cannot make any unintended connecticns through the
firewall. If the firewall can somehow retrieve
information abeut the identity of the host, the
application and the user, responsible for sending each
network packet it receives, it has a chance of
determining whether the network packet should be
allowed to proceed to the outside or not [2].

Mainly we restrict our attention to [P-based traffic and
assume that all traffic leaving the firewall uses the
[P-protecel (Internet Protocol}. Any [P-datagram sent
over the network contains the sender and receiver
[P-addresses, which uniquely identify the sending and
the receiving hosts on that network [3]. Normally, we
would agree that the firewall knows which host sent
any given [P-datagram based solely on the IP-address
of the sender. Unfortunately, our adversary is capable
of faking an [P-address. This means that they can
impersonate any host on the trusted network-including
the firewall. Moreover, the IP protocol contains neither
information abeout which application sent a given
network packet, nor anything about the user that started
the application in the first place.

Therefore we have observed that the firewall is net able
to distinguish between the good and the bad network
packets based solely on the information available in the
[P-protocel-it needs more information. Still, [P is a very
capable data transport layer and it is not likely to be
replaced, at least not within the next few years [5]. We
just have to accept that the information contained in an
[P-datagram is not enough, we therefore need
something additional.

Thus we want to ensure that no information leaves the
trusted network, except when the communication link
originates from a trusted source (a trusted host running
a trusted application, under an authenticated user ID}.
This means that we must provide the firewall with this
extra informaticn in every single packet a

J. Computer Sci., 1 (2): 290-295, 2005

communication link consists of. Providing the extra
information just in the first packet of a communication
link is insufficient. The adversary is capable of
hijacking an established communication link, due
to their physical access to the trusted network.
Also, providing each packet with just a user ID,
applicaticn [and host ID, is a very naive approach.
Our adversary is capable of sniffing the trusted
network and of sending/modifying packets, so
duplicating the credentials of a valid packet is easy for
them to deo. We can already see that this requires
changes to the coperating systems of all hosts, on the
protected network, that need to communicate through
the firewall.

MATERIALS AND METHODS

The design of the advanced packet filter involves both
the firewall and the protected hosts and contains several
different technologies, strategies and algorithms. The
method of design which we propose is briefly
described here:

When a protected host needs to send an [P-datagram to
the external network, it needs to send some additional
information aleng with it to the firewall. The extra
information needed is a host [, a user ID and an
application ID. Further we need a way for the protected
host to determine whether an [P-datagram is destined
for the external network. Only packets for the external
network should be taken care of. This require the
method to intercept the external packets in the kernel
before they leave the protected host. This enables us to
add an identification-token to the [P-datagram before it
is sent to the firewall. We are describing this in next
few paragraphs in this section.

In order for the firewall to determine whether the
packet is authentic, i.e. it is sent from a protected host
and has not been altered in transit, the protected host
needs to authenticate each [P-datagram and
identification token pair sent to the firewall. When an
[P-datagram is intercepted on the protected host and has
had the extra information appended, we need a way to
{ransmit the extended [P-datagram tc the firewall.

When the firewall has received an extended
[P-datagram, it must determine whether the datagram
should be allowed to pass on or not. To do this, we need
to extend the firewall rules, since we have some exfra
information to base the decision on. Furthermore, if an
extended [P-datagram is allowed to go through, we
need some way fo inject the original (unmodified)
[P-datagram info the conventional firewall.

Identifying Host, User and Application: We have
previously determined that each IP-datagram, sent from
an internal host to the external network, must contain
the identity of the sending host, the user and the
application. We refer to this extra information as the
identification token associated with the [P-datagram.
Proving that the identification token is authentic is not a
concern of this chapter; this is covered in a later
chapter. In this section, we define the contents of the

292

identification token in such a way that the sender of any
authentic IP-datagram can be determined uniquely by
the firewall.

As each [P-datagram has to confain an identification
token, the size of the identification token has an impact
on the bandwidth between the protected host and the
firewall. Thus, we want the identification token to be as
small as possible, while maintaining the property of
being able to distinguish a large number of hosts, users
and applications.

Host Identification: An [P-datagram sent from a
protected host to the firewall already contains a hest [D,
namely the [P-address in its header. The information is
obtained for free, as it is contained in each [P-datagram
already. The [P-address of the sender uniquely
identifies each protected hest to the firewall. Dynamic
Host Configuration Protocol (DHCP)} is a protocol,
which enables a host o obtain an [P-address
dynamically from a DHCP-server upon boot time. This
means that the host can have a different [P-address
whenever it is rebooted. Therefore, we need to manage
an enumeration of all protected hosts behind the
firewall and initialise each host with its unique [D. 16
bits is a reasonable size of the host ID. It enables us te
manage more than 64,000 hosts behind the firewall,
which is enough for practical uses in a foreseeable
future. The host ID should reside in a configuration file
to which only roct has access.

User Identification: A user ID con one protected host
behind the firewall might not be unique for all of the
protected hosts-this depends totally on the Intranet
policy, but it is definitely unique for a single host. As
long as we can identify the protected host uniquely, the
user can be determined uniquely as well by using the
host ID along with the user ID. The user ID must be
large encugh to contain the identity of all users within a
single operating system protected behind the firewall.
In the Linux operating system, a user [D is 16 bits, so
for a Linux implementation, 16 bits is a reasonable size.
This allows about 64,000 users.

Application Identification: When identifving the
application respensible for sending an [P-datagram, we
are interested in exactly what application we are dealing
with, as a certain version of an applicaticn, started by a
specific user on a certain host, might be allowed to
communicate, while another version of the same
application might not.

Apart from application inpuf, an applicaticn is fully
determined by the binary code the process is running,.
Therefore, cne solution could be to send the binary
code of the running process to the firewall for
verification. At the firewall, the binary code would be
matched to a set of registered application binaries to
find the communication policy for this application.

The firewall and the protected hosts agree on an
enumeration of all applications, which means that each
application is given a unique identification number. The
appropriate idenfification number will then be present
in each [P-datagram sent by any application. This
would, however, mean that we have to manage this list

J. Computer Sci., 1 (2): 290-295, 2005

on every protected host and at the firewall as well.
Furthermore, we have to add tokens to those lists
whenever new applications are installed. Distributing
such a list should be done with care, as unauthorised
changes to the file could prove disastrous. Another
solution is to calculate a hash value for the binary
code of the application and to use this value as an
application [D.

Incorporating External Packet in OS: In previous
section we have described that how the identification
token is to be associated with each [P-datagram, which
is needed in order to identify the host, user and
application to the firewall. In next few paragraphs we
describe how this information can be retrieved/
calculated in a modern operating system. Our
suggestions for design so far tells us that we have a
user-level daemon, which is responsible for calculating
the identification token. Since a user-level process has
no direct access to the kernel, we have to modify the
kernel to supply it with the information it needs.
[P- datagrams sent between the internal hosts do not
need special handling, as they never cross the firewall.
This means that somewhere, we have to distinguish
between the [P-datagrams for the external network and
for the internal network. As the operations are
inherently connected with the operating system that is
used, we describe how it is dene in the Linux operating
system, since this is the platform on which we
implement cur design. However, there should be no
problem in making similar operations in most other
operating systems. Thus in this section we actually
describe two tasks. We describe how to divert an IP-
datagram to a user-level daemon and we describe how
we decide which packets actually pass the firewall and
should therefore be diverted to the user-level daemeoen.
In the literature and similar work carried out in this area
the description regarding a utility which can solve this
issue is available. This utility which is a patch i.e.
called divert sockets for the Linux kernel [3]. It
immediately scolves the how issue, since it is designed
to let us pass [P-datagrams from kernel to user space.

If we install an enhanced firewall, the individual hosts
have to know more about the network, since any host
must be able to decide whether a given packet has to
pass through the firewall or not. In particular, they have
to know which cne is the firewall, since this is where
[P-datagrams should be sent after they have been
diverted. The divert sockets allow us either to divert
packets destined for one or more hosts/networks and
nothing else or not divert packets that are destined for
some hosts/networks but everything else.

To use divert sockets cn the clients, we must have
firewall capabilities compiled into the client’s kernel.
On ancther operating system, the diversion may very
well be implemented in another way, or one might
even have to implement it from scratch. We find the
divert sclution very flexible and easy to use for our
purpose- especially since we can easily configure the
diversion from user space through ipchains. We must
have super-user privileges in order to configure

293

diversion and the application that opens the divert
socket must alse be run with super-user privileges. This
helps guarantee that no ordinary user can circumvent
security, by creating his own daemen to read from the
divert socket.

Thus solution for both the how and which issue is
available, which means that we know which packets
will have tc pass the firewall and how to divert these
packets. However, we still have to supply some extra
information from the kernel when the packets are
diverted.

Data Packet Detection: There are several types of
computer virus classes: viruses, Trojan horses, worms,
hoaxes, jokes etc. Among these types, a virus is a piece
of code that adds itself to other programs and cannot
run independently. However, worms are programs that
can run by themselves and propagate a fully working
version of themselves to other machines. As Microsoft
Windows became popular, windows viruses and
windows- application-derived viruses using VBA
(Visual Basic for Applications) spread widely.
Moereover, a commoen way of windows virus
prevalence is through emails. The recent important one
was Code Red. The Code Red worm is a malicious
self-propagating cede that spreads surrepliticusly
threugh a hole in certain Microsoft software, such as
Internet Information Server {IIS} Web software and the
Windows NT and Windows 2000 operating systems. To
identify viruses/worms in e-mail attachments, one
exploits that data packefs have a unique character, the
virus signature. [n addition to the usual network contrel
ability of a firewall, data packet detection is necessary
in the intelligent firewall to identify packets containing
malicicus data: The virus signatures are also appearing
in data packets. For instance, the beginning of the Code
Red's attack packet looks like the following:
Network-based [DSs also monitor network traffic on
the wire for specific activities or signatures that
represent an attack [7]. Strengths of [DSs are to monitor
a large network and to have liftle impact on an existing
network [1]. Moreover, they detect malicious and
suspicicous behaviour in true real-time and provide
faster response and notification to the attack at hand.
They examine all packet headers for signs of malicious
and suspicious activity and can also investigate the
content of the payload. They use live network traffic for
attack detection in real-time and a hacker cannot
remove this evidence once captured. However, a
weakness of IDSs is their inability to process all
packets, which can lead to possibly failing to recognise
an aftack during high traffic and the need to analyse
packets quickly. Performance problems, especially with
increasing network speeds and resource exhausticn
problems can lead to difficulties [6]. Rescurce
exhaustion problems can occur when an [DS must
maintain attack- state information for many attacked
hosts over a long period of time. [t is also possible to
misunderstand normal traffic as malicicus traffic. Many
approaches can trigger numerous false positives,
because of normal traffic locking very close to

J. Computer Sci., 1 (2): 290-295, 2005

malicious traffic. In addition, a network-based [DS does
not control the network or maintain its connectivity.
Hence these systems are vulnerable to DoS (Denial of
Service} aftacks.

Deriving Identification Tokens in OS: When the user-
space daemon receives a diverted [P-datagram from the
kernel, it needs to create an identification token for the
[P-datagram. It therefore has to know the host [D, user
ID and application ID.

As described earlier that the host ID is an enumeration
of all hosts. Each host is given a unique ID at
installation time, which is read by the user-space
daemon from a configuration file to which cnly root has
access. Obtaining the host ID is therefore very
simple for the daemon, since it is run as root.
When the user-space application receives the diverted
[P-datagrams, it has no way fc derive the user or
process [D that caused a given packet to be sent. As the
actual diverting takes place in the kernel and the kernel
holds this information, we need to change the diverting
cade in the kernel. We want the diverting code to send
the user and process ID along with each IP-datagram to
the user process.

The diverting code in the kernel might use the
following kernel function (o obtain the [D of the
process responsible for sending any given [P-datagram:

static inline struct task_struct * get_current{void}

[t returns a pointer to the current running task/process,
which holds several items of information including the
user and process [D. So, when diverting a packet {o a
user process, we could simply retrieve the current task
struct pointer and ask it for the current user and process
[D. Unfortunately, when the diverting cede of the
kernel runs, we cannot rely on the current task to be the
process responsible for sending the [P-datagram. Each
[P-datagram sent might reside in buffers for some time,
before transmission, or it might get retransmitted at a
later time. The current process could therefore be some
random process that was running when the kernel
decided to actually send/retransmit the packet. We are
therefore forced to look for the information in the
containers used by the kernel to hold IP-datagrams that
are to be transmitted.

All network packets allocated in the kernel, including
[P-datagrams, are held in a structure called sk_buff
(short for socket buffer). The sk_buff structure holds all
information the kernel needs about a network packet in
order to process it. In particular, it holds a pointer to a
second structure called sock ({short for socket).
Whenever a user process wants to communicate on the
network, it needs to create a user level socket, which is
an interface to the kernel. When the process creates a
socket, it identifies the type of protocoel it wants to use
by a call to the following functien:

int socket{int domain, int type, int protocol};

At user level, the socket number returned by this call is
simply an integer, but in fact it is a handle to a complex
kernel structure. Whenever a process transmits a
packet, the kernel’s sk_buff has a pointer to the sock
structure, which was allocated by the above call to

294

socket. This means that when we are about to divert a
packet, we can follow the sock pointer in the sk_buff
structure that holds the packet. The sock structure is our
link to the process that created it and thus fo the process
responsible for sending the packet.

Enhanced IP-datagram Authentication: In the
section we presented what extra information the
firewall needed, in order to make a decisicn about
whether to forward a packet or not. However, it is not
sufficient just to supply the extra information. In our
problem specification we state:

Providing the extra information just in the first packet
of a communication link is insufficient. The adversary
is capable of hijacking an established communicaticn
link, due to their physical access to the trusted network.
Also, providing each packet with just a user ID,
application ID and host ID, is a very naive approach.
Our adversary is capable of sniffing the trusted network
and of sending/modifying packets, so duplicating the
credentials of a valid packet is easy for him to do. Thus
it means that the authentication of each [P-datagram
and identification token pair sent is a necessity.

In our problem specification, we stated the necessity to
authenticate each packet from a trusted machine to the
firewall, which in turn meant adding extra data to each
[P-datagram transmitted to the firewall. In this section,
we discuss the varicus options available when it comes
to adding data to existing packefs. We are here
presenting some investigations carried cut in this area
about how much authentication data can be send within
or along with a packet traversing the network, with a
minimal bandwidth overhead. Various approaches are
available in the literature and research carried outin
this area. We found the approach in which the ad-hoc
[P-options 18 encapsulated into [P-header datagram.
Thus we suggest this approach only.

The recommended approach is to encapsulate ad hoc
[P-options inte the [P-header of the existing
[P-datagrams and thereby supply the authentication
data.

[P-header
0 15 16 31
A-bit |4-bit header| 8-bit type of service] . .
vmiml e | Fo 16-bit total lengfh (in bytes)
16-bit indentification it | 13 bit fragment offsct
“’b"?l'.”ﬁ‘)" '““| 8-bit protocs] 16-bit header checksum | 20 bytes
32-bit source IP address
32-bit destintion IP sddress
<+ Option (if any) <
Data

1 T

Encapsulating IP-options: The approach which we
recommends is a rarely used feature of the [P-protocol.
The I[P-header supports a set of I[P-options, which
provide for control functions needed or useful in some
situations, but unnecessary for the most common
communications.

Fig. 1: [P-header

J. Computer Sci., 1 (2): 290-295, 2005

The above Fig. 1 describes the various fields in the
[P-header. Our main interest is the [P-options field.

The [P-header has a 4-bit header length field, which
measures the length of the [P-header in 32-bit words.
The optiecn part of the [P-header is the conly reason
for the [P-header to have wvariable length. Without
[P-options the [P header length has a value of
5 {(5%4 = 20 bytes), which is the most common value, as
[P-options are rarely used. As the header length field is
a 4-bit value, it is possible to specify a maximum
header length of 15 words (15%4 = 60 bytes), which
leaves a maximum [P-option size of 40 bytes.

The currently defined [P-options include provisions for
timestamps, security and special routing. Except for a
few [P-opticns (the Hnd of Option list and No
Operation options}, each option has a one-byte
class/number field and a one-byte length field. The
actual functionality offered by the existing [P-options
are not of any interest for our current investigation. But
we do have two important observations.

* There are a total of 40 bytes available for
[P-options. For some [P-datagrams a number of
those are used.

* We have learn that five bits are reserved for the

[P-option number, which allows a total of 32
different options. We know that 25 options
are used, which leaves 7 numbers available for
ad hoc options.
Thus, inventing an ad hoc [P-optioen number and using
two bytes for the optien type and length tag, leaves us
with anything from 0 te 38 bytes of authentication data
for each IP-datagram, when no other IP-options are
present.
Each IP-datagram, sent from any application on a
protected host to the gateway, is sent through an
Authenticator medule, which adds authentication
tokens as ad hoc options inside the IP-datagram. This
datagram is sent to the gateway/firewall, which in
turn sends the datagram to a Verifier module. The
Verifier module either discards the datagram or
forwards it towards its final destination. Note that
none of our ad hoc options leave our own network
and that [P-datagrams traveling in the opposite
direction are unaffected. The main advantage of this
approach is that we only increase the size of the
[P-datagram by 2 bytes more than the size increase
imposed by the identification/authentication data size.
38 bytes (304 bits) seem more than enough room for
identification/authentication data. Recall that our
UMAC authentication token takes up 8 bytes and our
identification token 14 bytes. Sc we can de with less.

CONCLUSION
As stated earlier in this study that attacks from the
outside are protected against very well by common
firewalls and are of no particular interest to us. In crder
for the firewall to protect against aftacks from the
inside, it needs more information than what is present in
traditional IP-datagrams. This calls for some changes in
the protected hosts, since they must provide this
extra information to the firewall. Furthermore, we want
to be able to trust the information in the packets, which

295

calls for further changes to both the protected hosts and
the firewall. We need to enhance the firewall with an
extra module that screens all packets sent from the
internal network to the external network: This module
must enable the firewall to use this exfra
information when deciding whether to allow or deny
any given packet. It would be a nice feature if the
module is able to screen packets without introducing
changes to the rest of the firewall. The common
firewall does a remarkably good job at protecting
against external attacks and we would not like our
enhancement te require a re-implementation of the
common firewall techniques.

We finally recommends that a good place to put our
enhanced filter would either be immediately before or
immediately after the incoming packet filter on the
internal interface. Another solution would be fo
completely replace the existing filter with an enhanced
one (a packet filter is a relatively simple part of a
firewall}. In this way, we can still use all the other
components of the conventional firewall with minimal
changes. Replacing the filter, or placing an extended
filter on the inside {closer to the forwarding module}, is
probably more complicated, since the forwarding
module might use information gathered in the incoming
packet filter. We therefore place the packet filter
immediately before the existing packet filter {closer to
the network interface). This should enable us to use the
existing firewall without any changes. In the enhanced
packet filter, we can make a decision on whether any
given [P-datagram may proceed based on the sending
host, user and application, before it is sent through the
conventional firewall, which handles the [P-datagram
on the rest of its journey.

REFERENCES
Bace, R. and M. Peter, 2001. NIST special
publication on Intrusion Detection System. NIST
(National Institute of Standards and Technology)
Special Publication, pp: 860-31.
Browne, H., W. Arbaugh, J. McHugh and
W.L. Fithen, 2001. A frend analysis of
exploitaticns. In Proceedings of the 2001 IEEE
Sympesium cn Security and Privacy, pp: 214-229.
Divert Sockets for Linux {online at
http://www.anr.menc.org/~divert/)
Frantzen, M., Kerschbaum, Schultz and Fahmy,
2001. A framework for understanding
vulnerabilities in firewalls using a dataflow medel
of firewall internals. Computers and Security,
20: 263-270.
Lyu, M.R. and L. Lau, 2000. Firewall security:
policies, testing and performance evaluation. In
proceedings of the COMSAC. [EEE Computer
Scciety, pp: 116-21.
Mchugh, I, A. Christie and J. Allen, 2000.
Defending Yourself: The Role of Intrusion
Detection Systems. In: [EEE Software, pp: 42-51.
Richards, K., 1999, Network Based Intrusion
Detection: A Review of Technelogy. In:
Computers and Security, 18: 671-682.
Xu, J. and M. Singhal, 1999. Design of a
High-performance ATM firewall. In: ACM
Transactions on Information and System Security,
2:269-294.

