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Abstract: For large software systems, testing phase seems to have profound effect on the overall
acceptability and quality of the final product. The success of this activity can be judged by measuring
the testability of the software. A good measure for testability can better manage the testing effort and
time. Different Object Oriented Metrics are used in measurement of object-oriented testability but none
of them is alene sufficient to give an overall reflection of software testability. Thus an integrated
measure considering the effect of all these measures is required to well define the testability. The paper
combines OO software mefric values into a single overall value {called Testability Index} that can be
used to calculate the testability of a class. The approach uses fuzzy techniques and concepts
(fuzzification of crisp metric values, inference and aggregation, defuzzification of fuzzy cutput). We
include empirical data of testing time of 25 different Java classes, which proves that individual metric
values are not sufficient to arrive at the testability of a class and validates the testability index as a

good integrated measure for arriving at the testability of the class.

Key words: Testing Effort, Testability Metric, Object Oriented Testability

INTRODUCTION

When dealing with software testability, some questions
naturally come to one’s mind. What is it that makes
code hard to test? Why is one class easier to test than
ancther? How can we tell that we are writing a class
that will be hard to test? What contributes to a class’
testability? There are many definitions of testability.
The moest commen is the ease of performing testing [1].
This definition has its roots in hardware testing and is
usvally defined in terms of observability and
controllability. Binder defines these two facets of
testability succinctly [2]: *To test a component, you
must be able to control its input (and internal state} and
observe its output. If you cannot contrel the input, you
cannct be sure what has caused a given output. If you
cannct observe the oufput of a component under test,
you cannot be sure how a given input has been
processed.” Testability holds a prominent place as part
of the maintainability characteristics of the [SO 9126
quality medel [3]; this alsc increases our understanding
of Software in general. Having quantitative data on
testability is of immediate use in the software
development process. The software manager can use
such data to plan and meniter festing activities. The
tester can use testability information to determine on
what code to focus during testing. And finally, the
software developer can use testability metrics to review
his code, trying to find refactorings that would improve
the testability of the code.
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Several measures for OO designs have been proposed
(Li and Henry [23]; Chidamber and Kemerer [11]; Brito
e Abreu [24]; Briand ef al. [25]; Bieman and Kang
[26]) and validated (Basili ef al. [27]; Brito e Abreu and
Melo [28]; Briand er al., [29,30,33,34]: Harrison
et al. [31, 321;). For historical reascns, the “CK metrics
suite” proposed by Chidamber and Kemerer [11] are the
most frequently referenced OO-design measures.
Chidamber and Kemerer [11] have proposed the
following 6 metrics - Weighted Methods per class
{(WMC), Response for a class (RFC), Lack of Cohesicn
of Methods (LCOM), Coupling Between Objects
{CBO}, Depth Inheritance Tree (DIT) and Number of
Children (NOC), which measures the different software
quality  atfributes like  efficiency, complexity,
understandability, reusability, maintainability and
testability. Our appreach is to evaluate a set of cbject-
oriented metrics with respect to their capabilities to
predict the effort needed for festing. We selected the
subset of mefrics consisting of WMC, RFC, CBO and
DIT for measuring the testability of the software.

Factors Affecting Testability: Chidamber and
Kemerer [11] have suggested that WMC, RFC, CBO
and DIT metrics have bearing on fest effort. The
evaluation of metrics that are thought to have a bearing
on the testing effort allows us, on the one hand to gain
insight into the factors of testability [12] and to obtain
re-fined mefrics on the other. All of the above
measurements assess different properties and
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Table 1: Summary of Metrics Used in Our Study

Metric Acronym

Definition

Average Cyclomatic
Complexity (ACC)

Cyclomatic complexity {McCabe} is used to evaluate the complexity of an algorithm in a
method. It is a count of the number of test cases that are needed te test the method
comprehensively.

A method with a low cyclomatic complexity is generally better. This may imply
decreased testing and increased understandability or those decisions are deferred through
message passing, not that the method is not complex. [3-7]. For ease of calculation the
Average Cyclomatic Complexity is used.

Depth of Inheritance
Tree {DIT)

The depth of a class within the inheritance hierarchy is the maximum number of steps
from the class node to the root of the tree and is measured by the number of ancestor
classes. The deeper a class is within the hierarchy, the greater the number of methods it
is likely to inherit making it more complex to predict its behavior [6-8].

Respense for a Class
(RFC)

The REC is the count of the set of all methods that can be invoked in response to a
message to an object of the class or by some method in the class. This metric looks at the
combination of the complexity of a class through the number of metheds and the ameunt
of communication with other classes. If a large number of methods can be invoked in
response to a message, the testing and debugging of the class becomes complicated since
it requires a greater level of understanding on the part of the tester. A worst-case value
for possible responses will assist in the appropriate allocation of testing time [6-9].

Coupling Between
Object Classes (CBO)

Coupling Between Object Classes (CBO} is a count of the number of other classes to
which a class is coupled. [t is measured by counting the number of distinct non-
inheritance related class hierarchies on which a class depends. Streng coupling
complicates a system since a class is harder to understand change or correct by itself if it

is interrelated with other classes. [5-10]

characteristics of software testability. None of these
meftrics can individually arrive at the testability of an
Object Oriented class. [n this paper we propose a mefric
for Object Oriented software called testability [ndex.
Testability Index (TI}, as an integrated measure of
many characteristics of Object oriented software e.g.
polvmorphism,  inheritance,  encapsulation  and
abstraction. The WMC, RFC, CBO and DIT are
integrated with the help of a fuzzy model, which can
combine their individual contribution into a unified
metric of cobject-oriented testability.

In this study, our appreoach is to select those OO metrics
that affect testability. They are summarized in Table 1.
These metrics have been used in the evaluation of many
NASA projects and empirically supported guidelines
have been developed for their interpretation [35]. The
thresheld values for the individual metrics needs to be
derived by discussing with project managers and
programmers and studying the distributions of the
metrics collected over a period of time.

Proposed Model: All of the above measurements
assess different properties and characteristics of
software testability. All these four parameters can be
measured easily using some automated tools, but an
overall indicator of software testability is desirable,
which considers all four aspects and their relative
impact on the testability of the software. Sc an
integrated approach for measuring software testability
should be used. All of these four measures are quite
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subjective in nature and thus some metric is needed,
which not only infegrates these four factors, but also is
capable of handling their relative impact on testability.
As a fuzzy model is the best choice for managing
ambigucus, doubtful, contradicting and divergent
opinions [4], a fuzzy medel for an integrated software
testability measure {Testability Index} is proposed here
that takes into account the effect of ACC, DIT, RFC
and CBO. Fuzzy logic is also another extension realized
in Boolean legic that may be considered a
generalization of multi-valued logic. By modeling the
uncertainties of natural language through concepts of
partial truth—truth-values falling somewhere between
completely true and completely false— fuzzy logic deals
with such values through fuzzy sets in the interval [0,1].
These characteristics allow fuzzy logic to manipulate
real-world objects that possess imprecise limits.
Utilizing fuzzy predicates (old, new, high etc.), fuzzy
quantifiers (many, few, almost all etc.), fuzzy truth-
values (completely true, more or less frue) and
generalizing the meaning of connectors and logical
operators, fuzzy logic is seen as a means of
approximate reasoning. A block diagram for the fuzzy
madel is shown in Fig.1.

The fuzzy model consists of 4 modules. The
fuzzification module is the first step in working of any
fuzzy medel, which transforms the crisp inpufi(s} intc
fuzzy values. In the next stage, these values are
processed in fuzzy domain by inference engine based,
on the knowledge base {rule base or production rules)
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Fig. 1: A Fuzzy Model

supplied by domain expert{s}. During this stage, the
Tuzzy operators are applied, the implication process is
followed and then all cutputs are aggregated. Finally
the processed cutput is transformed from fuzzy domain
to crisp demain by defuzzification module.

Working of Fuzzy Model: First of all crisp values of
inputs are taken and then the degree to which the inputs
belong to each of the appropriate fuzzy set is
determined. Based on these fuzzy inputs, scme rules get
fired. For selection of rules all the input states are
considered  simultaneously i.e. these inpufs are
connected via AND coperator. MIN fuzzy operator is
applied to find the degree of membership of firing
[17-19]. Out of the commonly used inference
mechanisms—Mamdani  style and Sugeonc  style,
Mamdani style has been used in this model. MAX
aggregation is used to integrate the effects of all rules
fired. Centroid technique of defuzzification is used to
get a crisp value of testability index on a scale of
(0, 10}. Lower value of testability index reflects less
testing effort, while higher value indicates more testing
effort.

Membership Functions for Input Parameters: In
order to fuzzify the inputs the following membership
functions for the ACC, DIT, REC and CBO are chosen.
[13-15]. Input variable ACC is divided into three states
(linguistic variables} i.e. Low, Medium and High as
shown in Fig. 2.

0.5 | E

0 i 1 i L. i i

0 1 2 3

4 5 6
Input varisble "ACC”

Fig. 2: Membership Functicn for ACC Metric

The base variable RFC has been divided into three
states i.e. PR (Preferred), AC (Acceptable} and NA
(Not Acceptable} as shown in Fig. 3.

PR AC NA

0.5 -

0 1 1 1 1 1 1 1
0 10 20 30 40 50 L] 70 80
Input variable "RFC"

Fig. 3: Membership Function for RFC Metric

Input variable CBO is divided into three states
(linguistic ~ variables) ie. PR (Preferred), AC
{Acceptable} and NA (Not Acceptable} as shown in
Fig. 4.
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1 L) AIC T T T NAI
0.5 - X X -
o —— e R
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Fig. 4: Membership Function For CBO Metric

Input variable DIT is divided into three states (linguistic
variables} i.e. PR (Preferred}, AC (Acceptable} and NA
{Not Acceptable) as shown in Fig. 5.

PR ©ac ' NA
05| X X i
1 1 1] 1 1 1
s 1 15 2 25 3 3

=

.5 4

Input variable "DIT"

Fig. 5: Membership Function for DIT Mefric

Output Variable/Parameter: Having defined the input
metrics and threshold values we need interpretation
guidelines to assist in identifying those areas of code
deemed to be more testable. As suggested by Linda ef
al [35] a single metric should never be used alone o
evaluate code risks, it takes at least two or three to give
a clear indication of petential problems. For a class that
has greater than two metrics that deviate the
recommended limits the testability index is high. If the
value of DIT, CBO & RFC is below NA range and the
value for ACC is below the high limit then these
metrics are within the recommended limits. The output
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variable testability index is defined fo have 3-
membership functions- LOW, MED and HIGH as
shown in Fig. 6. The same are derived based on the
rules defined in Table 2.

Table 2: Term Set for Output Variable Testability Index

# 00 Metrics Deviating

from Threshold Values Testability Index
<=1 Low {0-3}
2 Med (3-6}
>2 High (6-10)
L Low Medium High
0.5F .
c 1 i 1 b I 1 1 1 I
¢ 1 2 3 4 5 6 7 8 9 19
Output variable "TestabilityIndex"

Fig. 6: Output Variable Testability [ndex Aggregation

In order to measure the software testability Index, the
four input mefrics are integrated with the help of fuzzy
model, which censists of 81 rules.

Rule Base for the Proposed Model: In the proposed
fuzzy model we are considering four inputs each
consisting of three terms therefore our rule base
consists of 81 rules after considering all the possible
combinations of inputs. Suppose if a fuzzy model is
having n inputs each consisting of m ferms then the
possible number of rules, say R, for this medel can be
calculated by considering the Cartesian product of all
the input states.

R = m*m*m*.. upte n times

Or

R=m"

For cur model R = 3" =3#*3*%3+3 = §1,

Our rule base can be represented in a tabular form

censisting of 81 rows as below:

Table 3: Rule Base of the Fuzzy Model

These inputs are fed to the fuzzification module and
after the fuzzification of the given values we find that
ACC = 2 belongs to fuzzy set preferred (PR} with
membership grade 1, DIT = 3 belongs to the fuzzy set
not acceptable {(NA) with membership grade 1, RFC =
50 belongs to fuzzy set acceptable (AC) with
membership grade of 0.5 and to fuzzy set Not
Acceptable {(NA) with membership grade of 0.5 and
CBO =1 belengs to fuzzy set preferred (PR} with the
possibility of a degree of 1. With these input values we
find that following rules get fired:

Table 4: Testability Index Calculation for the Given
Input

ACC RFC CBO DIT
2y 30y 1)  (3)  Index

Testability ~Membership

Grade of Testability

PR AC PR NA LOW
PR NA PR NA MED

Min (1,0.5,1,1y=0.5
Min (1,0.5,1,1y=0.5

Rule# CBC ACC RFC DIT  Testability Index

1 PR LOW PR PR LOW

2 AC MED PR PR LOW

3 NA PR NA PR MED

81 NA NA NA  NA HIGH
Sample Output Computation for The DModel:

Suppose we have the following crisp inputs to the
model: ACC =2, DIT =3, RFC =50 and CBO =1

First rule gives the testability value Low to an extent of
0.5 and second rule gives testability index Med to an
extent of 0.5. This is shown below in Fig. 7.

1 LOwW MEDIUM
075
0.5
0.25
1 1 1 1
2 3 4 5 6 7

Fig. 7: Output Variable Testability Aggregation

Defuzzification: After getting the fuzzified outputs as
shown above, we defuzzify them to get the crisp value
of the output variable testability index [20, 21]. For this
we are finding the Center Of Gravity (COG) of the
above fuzzy output.

COG =
membership

x dx / dx where = degree of

6 7
0.5 xdx + yxdx
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6 7
0.5 xdx + {(mx+c) xdx
¢ 6

COG =
6 7
0.5dx + (mx+c) dx
0 6

6
0.5 [x2/ 2]
0

7
+ {(7-x) xdx
6

COG =
6
0.5 [x]
¢

7
+ (7x)dx
6

CcoG =27

The effect of these rules was cbserved with the help of
MATLAB- Fuzzy Tool Bex. The value of testability
index for above-mentioned input comes out to be 2.83,
which is very close to our calculated value of 2.7 above
[22]. The integrated approach gives a true picture of the
software testability. Crisp value of testability index can
be helpful to scftware managers in judging the
testability effort. Lower value of testability index
indicates higher testing effort.

RESULTS

In crder to validate the model, we considered 25 java
classes from different I2EE based projects. The
projects, which had the similar complexity in terms of
business domain, were chosen. The projects used the
similar SDLC and the same technical environment was
used for developing them. The values of all four input
metrics were computed for each of these 25 classes and
listed in Table 5. The values of metrics for these classes
are arrived at with the help of JHawk demo versicn.
The ocutput value of testability index was also calculated
using proposed fuzzy model and the corresponding
values for each of the classes are also listed on the table
below. In the last column of this Table 5 the average
unit testing time taken for each of these classes is
mentioned.

Statistical Analysis: The average unit festing time of
these 25 classes have been plotted against each of the
four input metrics i.e. ACC, DIT, CBO and RFC in
Fig. 8,9, 10 and 11, respectively.

[t can be easily observed that there is hardly any
correlation existing between average unit festing time
and any of the four input metrics. The correlation of
testing time with ACC comes out to be approximately
0.4, while it is .012, 0.6, 0.6, for DIT, CBO and RFC
respectively. These values of correlation clearly depict
that none of these meftrics individually is sufficient to
predict the testability. On the other hand a plot of
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Fig. 8: Plot of REC Versus Unit Testing Time

ACC vs Hours
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Fig. 9: Plot of ACC Versus Unit Testing Time

CBO vs Hours

= CBO
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Fig. 10: Plot of CBO Versus Unit Testing Time
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Fig. 11: Plot of DIT Versus Unit Testing Time
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Fig. 12: Plot of Testability Index Versus Unit Testing
Time

average unit testing time with computed values of
testability index is drawn in Fig. 12, which clearly
shows a strong correlation between the two curves.
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Table 5: Values of Testing Time and Input and Qutput Metrics

Class Name ACC REC CBO  DIT Testability Index Hours
AgingCashSchllReportDAO 7.5 37 4 ¢ 1.53 4
AuditCashSchllReportDAQO 7.5 38 4 ¢ 1.53 4.5
BusinessMasterDAO 34 38 6 1 1.9 5
BusinessMasterReportDAO 2 22 4 1 1.79 2
BusinessMetricDataEntryDAQO 6 o 19 2 5 8
BusinessReportDAO 4.8 35 8 ¢ 4.5 9
CombinedSchlIReportDAO 7.5 37 4 2 4.41 2.5
CombineReportDAQ 7.5 36 3 t 1.74 2
ExcelllploadDAO2 2 30 3 ¢ 1.74 2
GeneralDataDAO 32 30 8 1 1.83 2
GroupMasterDAO 7.6 40 9 1 7.65 15
LoginDAO 3 22 2 ¢ 1.63 2
MetricBusinessMasterDAO 1.5 14 1 1 1.74 2
MetricMasterDAO 571 40 12 0 5 10
PendingCashSchllRepertDAO 7.5 37 4 0 1.53 4
UserMasterDAO 4 49 8 ¢ 3.59 4.5
ExportExcel2 4.86 50 7 ¢ 3.83 10
AgingReportHandler 0.5 13 1 1 1.74 2
AuditReportHandler (0.33 13 1 t 1.53 2
BusinessMasterHandler 2 22 2 1 1.74 2
BusinessMasterReportHandler 1 17 1 ¢ 1.53 3
BusinessMetricDataEntryHandler 2.67 37 4 1 1.85 5
BusinessReportHandler 1.67 32 3 t 1.79 2
CombinedSchlIReportHandler (0.33 13 3 2 1.79 3
CombineReportHandler 0.3 12 1 ¢ 1.53 2

The correlation between the computed testability index
values and observed testing time comes out to be 0.866,
which indicates that testing time is strongly correlated
with cur computed value of testability index. This
strengthens our belief that the proposed integrated
measures can prove to be a good metric of software
testability. As the infegrated measure combines effects
of four different mefrics, each of which has got an
effect on testability, this measure is expected to give
better results than any of the individual metrics and the
intuition has been verified with the help of empirical
results shown above.

DISCUSSION

The proposed model measures the Software Testability
based on four important measures of Object Oriented
system- ACC, DIT, REC and CBO. The fuzzy approach
is used to integrate these four inputs and arrive at
Testability Index for a class. The empirical data of unit
testing time for Java classes has been collected and
results have been validated. A strong correlation exists
between unit testing time and output value of this
model i.e. Testability Index. In most software projects
managers feel challenge in estimating effort that should
be spent on testing. Other side to look at the same
problem is to find cut if enough rigor has gone into the
testing activity and hence what is the confidence on
software quality? To be confident on software quality
and at the same time to ensure software gets delivered
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within cost and schedule-Testability Index can be used
to estimate testability of software unit {in OO world
class}. We for-see the following extension of our work.
Our experimental basis should be extended. It is
desirable to extend our findings to a large number of
systems, developed by all sorts of teams using different
development methodologies.
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