Journal of Computer Science 1 {2}: 259-269, 2005
[SSN 1549-3636
© Science Publicaticns, 2005

Artiflicial Neural System for Packet Filtering

'M.1. Buhari, *M.H. Habaebi and “B.M. Ali
1King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
“Department of Computer and Communications Engineering
University Putra Malaysia, Serdang 43400 Selangor-Malaysia

Abstract: In this study, we analyzed the use of neural network for packet filtering. The neural network
system was designed in eight ways with input to the neural network in the form of either access rules
or optimized access rules or binary form of access rules or representing wildcards as O and 255, or
combination of them. These trained neural networks were analyzed for their correctness and the
performance aspects such as training time using test data. In order to further improve the security, the
data related to the local usage of the network was also used feo frain the network. An example of
implementing these trained systems in active networks packet filtering was presented.

Key words: Packet Filtering, Back Propagation, Firewall, Active Network, TCP

INTRODUCTION

The firewall has to use an [P router to contrel the
passing of any packet from the Infernet into the
Intranet. Packet filtering parses the headers of the
received [P packets and forwards or discards the
packets according to an Access Control List {(ACL)
specified by a network administrator. The performance
of the whole router depends on the procedure on which
the rules in the ACL are applied to the packet and a
decision made to allow or reject the packet. Processing
all packets passing through a router degrades the
packet-forwarding performance. Also, the performance
of the off-the-shelf routers is degraded in proportion to
the complexity of the ACL. Hence, IP routers that
forward packets more efficiently are to be explored.

As the performance of the firewall has been highly
affected due to the process of sequential parsing, Miei
ef al [1] have proposed a compiler for parallelizing
[P-packet filter rules, to improve the network security
and reduce the degradation in packet-forwarding
performance. In the proposed methed there is ne need
for any intermediate program. The current day packet
filtering is done using sequential parsing metheds [1].
With the sequential parsing technique, increase in the
number of rules in the ACL list will cause the parser to
consume more time and become inefficient.

According to Murthy ef al. [2], a firewall can be made
of an external router along with a bastion host. A
bastion host is the important compoenent of a firewall
that performs the tasks of user authentication, machine
verification, logging of all security events to an internal
host and the execution of proxy servers for all allowed
services. The most sericus drawback of this kind of
system is that if the traffic through the host increases,
the system might be overloaded. This can be aveided by
using multiple hosts. The second drawback is that the
user may feel that the system is too restrictive.

259

To overcome the drawbacks of bastion host {(i.e., to
reduce the overload on the firewall), Gittleson er al. [3]
proposed the concept of smart filter. The smart filter
reads the header of a session’s first packet, compares it
to the rules and if approved, routes successive packets
through a cache. While each packet files through
the cache, the filter compares its header to that of
the first packet to verify that it belongs to the same
session. Thus, it doesn’t need to verify each packet
against the rules.

Access Rules Implementation Using Various
Techniques: Currently, packet filtering is done using
access cenfrol lists, which are processed sequentially.
[P packet filtering using optimized-sequential
processing, neural network and expert systems was
done and results are reported in Table 6. In each of the
above three methods proposed, the rules are optimized
and hence reduce the degradation in packet filtering
performance. Time is an impertant criterion in the
[P packet filtering. Even in the case of increased
network traffic, the proposed methods can be efficiently
employed for 1P packet filtering. From Table 6, it is
clear that out of all the three metheds considered, the
expert systemn has an edge over the other methods as it
processes a fewer number of rules than the other
metheds. It is found to be better than the optimized
sequential parsing and the neural network methods of
packet filtering. But, security lapse was found with both
the neural network and expert system implementation.
In this paper, we try to improve the performance of
neural network system by applying different techniques
and then take care of the security lapse also.

Problem Motivation: Security lapse was noted for
both neural network and expert system oriented packet
filtering. To solve the security lapse, we analvse the

. Comp. Sci., 1{2): 259-269, 2005

correctness of the trained neural network oriented
[P packet filtering and its performance impact. As the
use of access control rules alone for neural network
does not provide correct cutput as required by
the packet filtering system, different neural network
systems were designed and trained in the
following ways:

* Using Access Control rules.
Using Access control rules and replacing wildcards
with O and 235,

* Using Access control rules in binary format.

* Using Access confrol rules and wildcards with O
and 255 in binary format.

* Using Optimized Access Control rules.

* Using Optimized Access control rules and replacing
wildcards with (and 253.

* Using Optimized Access contrel rules in binary
format.

* Using Optimized Access control rules and

wildcards with 0 and 255 in binary format.

As the number of inputs and in turn the architecture
(number of input and hidden neurons) of the neural
network with the above-mentioned methods varies, the
training process of the neural network also varies.
These frained neural network systems were (ested for
consistency with the actual action frem the ACL rules
described in Tables 1, 2, 3,4 and 5. The selected test
data is used to check the correctness of the trained
neural network system. The security and performance
aspects of the trained system were determined
based cn:

* Whether the system attained the maximum allowed
error during the training process.

* The result of the trained system is compared with
the action based on the ACL rules.

* Amount of fime taken in terms number of iterations
or epochs by the neural network system to train.

* Number of input needed to train the system along
with the architecture of the network.

* Number of rules and its impact cn the training of
the system.

Use of wildcards and hew neural networks is
affected by that use.

s

[mpact of optimization of the access rules and the
conversion of the access rules into binary.

BACKPROPAGATION NETWORK APPROACH
TO IP PACKET FITLERING

In an attempt te improve the performance of IP routers
in forwarding packets, we propose to use the back-
propagation oriented neural network algorithm to
train the network to learn the ACL rules as
demonstrated below.

260

Usage of Bakpropagation Network: The neural
network algorithm proposed for this experiments is
designed to be real-time trainable because any addition
of ACL rules doesn’t incur the repetition of the whole
training process. The network sees the N most recent
patterns through a shifting time window. It learns to
predict the next value of the series. First, the network is
trained to the point of convergence using a set of access
rules previously designed. During this process, the
weights are updated from a random start configuration
to the values comesponding e the desired transfer
function. Then, this function is inserted online and
works well without further modification.

The disadvantage of a neural network is that it takes a
long time for training depending upon the various sets
of patterns provided to it. In the case of general neural
networks, it is possible that the already (rained set of
data is affected by a newly arriving training patiern. In
order to avoid this kind of discrepancy, a part of the
output is fed back to the input of the network.

In the case of a back propagation network, the fraining
phase needs beth the input and their corresponding
oufput. So, the network is made of varying inputs and
one cufput. The number of inputs varies with regard to
the different forms of input provided to the system, like
binary or optimized. The "newff" (Feed forward back
propagation) function was used to train the network and
the trained network is simulated to identify the output
for any specific input pattern.

If in one case, any one of the input parameters is absent
then the wild-card character is uvsed, which represents
two input patterns-the lower (value as 0) and
upper bound (value as 235) of the corresponding
parameter. Only one output neuron is used to identify a
permit or deny.

The weights are randomly chosen during initialisation
of the network. The network is trained to give the same
output for the two extreme values of any input, which is
represented by wild-card character. This has been
ascertained using the justification that the cutput for
any intermediate input value will be the same as the
output that it’s got when the extreme values are used to
frain a system to atfain a fixed value.

Neural Network Based IPv4 Filtering: Originally, as
per the data available from the packet, the number of
input parameters is twelve. These are Packet Type (One
input}, Scource [Pv4 address (Four inputs, standing for
/8, 116, /24 and /32 part}, Source UDP/TCP Port {One
input), Destination IPv4 address (Four inputs, standing
for /8, /16, /24 and /32 part}, Destination TCP/UDP Port
{One input} and Acknowledgement bit {One input).
These twelve input parameters are to be processed for
identification, by the router.

In the case of neural networks, the wild-card character
is represented by two input patterns - the lower and
upper bound of the corresponding parameter. In the
case of addresses, the value is represented as 0 and 255

. Comp. Sci., 1{2): 259-269, 2005

Table 1: Experiment 1 ACL Rules

Conditions

Packet type Source IPv4 address Source TCP/UDP pert Destination IPv4 address Destination TCP/UDP port ACK bit Action
TCP * * 202,185 % #* * Established Permit
TCP * * 202,185 % #* 33 * Permit
TCP * * 202.185.33.44 25 * Permit
TCP * * 202.185.55.66 119 * Permit
P * * * * * Deny

* Not Available

Table 2: Experiment 2 ACL Rules

Source IP address Destination IP address Action
10.1.2.1 10.1.1.%* Deny
10.1.2.* 10.1.3.%* Deny
* * Permit
Table 3: Experiment 3 ACL Rules

Conditions

Packet type SourceIP address Scurce TCP/UDP port Destination IP address Destination TCP/UDP port ACK bit Action
TCP * * 10.1.1.2 WWW * Permit
upp 0.0.0.* * 10.1.1.1 * * Deny
IP 10.1.2.%* * 10.1.3.% * * Deny
IP * * * * * Permit

Table 4: Experiment 4 ACL Rules

Conditions

Packet type Source IP address Source TCP/UDP port Destination IP address Destination TCP/UDP port ACK bit Action

TCP 10.1.1.2 WWW % # # Permit
UDP 10.1.1.% * 0.0.0,* * * Deny
P 16.1.3.% * 10.1.2.% * * Deny
P 16.1.2.% * 10.1.3.% * * Deny
P 10.1.1.138 * 10.1.3.2 * * Deny
P 10.1.1.28 * 10.1.3.2 * * Deny
* * * 3 * * Permit
Table 5: Experiment 4 ACL Rules
Conditions
Packet type Source [Pv4 address Source TCP/UDP port Destination IPv4 address Services ACK bit Action
* * * * finger, bootp,

udp-525, ident, login * Deny
* 202.185,128,* * 202,185.11 % http, smtp * Deny
* * * 202.185.7% % smtp, imap, pop3 * Deny
* * * * smtp, imap, pop3 * Permit
* 202,185,131 % * * * * Permit
* 202.185.128.% * 202.185.130.1 http, tcp * Permit
* * * 202,185.130.3 http, tep * Permit
* 202.185.130.2 * 202,185,128 * netbeui * Permit
* * * 202.185.1304 ftp * Permit
* 202.185.128.% * 202.185.131.178 ftp * Permit

202,185.131.179
* * * 202.186.130.1 1pc, syslog tep * Permit
* 202.185.1304 * 202.185.130.3 * * Permit
* 202.185,128,* * 202,185.130.5 telnet * Permit
* 202.185.131.170 * 202.185.129.120 * * Permit
* 202.185.128.% * 202.185.131.% http, ftp, tep, telnet * Permit
202.185.130.1

* # # 202.185.130.5 tep, dns, http, nntp * Permit
* 202.185.128.% * * tep, http * Permit
* * * 202,185.130.1- 202,185.130.5 http, tcp * Permit
* 202.185,129.% # * dns, nntp, http, tcp, speol * Permit
* 202.185.128.% * 202.185.131.% snmp, icmp, eche * Permit

261

. Comp. Sci., 1{2): 259-269, 2005

instead of giving all the values from 0 to 255. Only one
output neuren is used te represent the Permit or Deny
operation.
The network is trained to give the same cutput for the
two extreme address values O and 255 and hence any
value between 0 and 255 will give rise to the same
output. This has been ascertained uvsing the following
mathematical justification.
In a neural network, the net input fo a neuron is
given by,

Net =wXi+waXo + WiXa +... + Wnkn (L
where, Net is the net input to the neuron
X1 ... Xp are the inputs
w1 ... Wy are the weights between the nodes

Let Net;, Net, and Net; be the net inputs to the neuron
obtained when the input is replaced by “a”, *b” and “¢”
(in the place of x;} respectively. The neuron is trained
to have the same outputs when Net; and Net, are
applied at its inputs. If “¢” lies between “a” and “b”
then for the same transfer function (say, sigmoidal} the
output for an input of Nets to the neuron will have the
same valve of oufputs as that of Net; and Net,. The
above statements are summarized in the following
equations:

Net; =wi + WoXg + WiXs +... + WXy, (2}
Nety =wib + WXy + WiXz + ... + WoXn (3)
Net; =WC+ WX +WiXs +... + Wakn “4)

If f{Net;} =Out; and also if

f{Net:y = 0Out; and a<= c<=b then f(Nets) = Out; (5)
A typical neural network diagram for Back Propagation
Algorithm is shown in Fig. 1.

The Rule Optimization Technique: Let us represent
the values of the six parameters of the IPv4 header
[Packet type, Source IPv4 address, Source TCP/UDP
port, Destination [Pv4 address, Destination TCP/UDP
address, ACK blt] as Xlls Xlg, Xlg, X14, X15 and XlG'
The rules specified in the Access Control List can be
denoted as R{i,j} where *1” indicates the rule number
and “j” indicates the parameter number in the ACL.
Rule: Define Xj; € R{i,j} when R(i,j) = *, or when some
part of the R{,j} is a wild-card and the rest of the R(i,j}
is equal to the correspending part of X

For example, if X “202.185.33.44” and R{,j} =
“202.185.* %, then Xy € R{,j). A Similarity function
is defined as:

Similarity{i,j} = 1 if Xj € R(i,j) =0 Otherwise.

The condition C; in the i column of the ACL is defined
as:

Cj = Similarity(1,j} A Similarity(2,j) A Similarity(3,j)
A...A Similarity{m,j}.

262

Input layer

Fig. 1: Back Propagation Algorithm

Where, “m” is the number of rules in the ACL.

If Cis equal to 1, then the corresponding parameter is
further checked for the following conditions.
Otherwise, optimized-sequential parsing is done.

If all the entries in the ™ column are wildcards then that
corresponding parameter is discarded and the next
parameter will be checked. Else, if only a part of the
parameter is matched, then the corresponding part can
be removed.

is

Mathematically, the

represented as:

optimization procedure

Wi (Column[i] = * } I ¥i {(Celumn[i] = Constant) [gnore
the celumn

Wi (Part-of-column[i] = *) Il Vi {Part-of-columnli] =
Constant} [gnore that part of the column

¥idj { row[i] =rowl[j]) Ignore any one rule (row}.

For example, the /8 part of all the rules of a parameter
{Column of the parameter) is compared. If they match
as per the Rule, then the fixed part is discarded. Then
the process of matching is dene for the /16 term and so
on. All unmatched terms are considered for inputting te
the filter.

After optimization is applied, only five parameters
are used for fraining a neural network. They are
Packet Type, Destination [Pv4 address, Destination
TCP/UDP Port and ACK bit. For Packet Type, 1
represents TCP, 2 represents UDP and 3 represents
[P. For Destination [Pv4 address, we have two inputs
standing for /16 and /32 parts of the address. For
Destination TCP/UDP Port, we have only one input.
For ACK bit, Established is represented as 1,
wildcard “*” as 0.

For processing the optimized rules, a Backpropagation
Neural network is trained. The Neural Network has five
input neurcns, twe hidden neurcns and one output
neuron. The selection of two hidden neurens is based
on the fellowing previous studies:

. Comp. Sci., 1{2): 259-269, 2005

* Arule of thumb is for the size of this hidden laver
to be somewhere between the input laver size and
the output layer size [4].

* How large should the hidden layer be? One rule of
thumb is that it should never be more than twice as
large as the input layer [3].

* The number of hidden neurons should be less than
the number of input neurons [6].

* The number of hidden neurens is calculated as [7].

Number of hidden neurons
= {(Number of input + number of cutput}/2 {6)

Thus with five input neurons and cne output neuron, we
can have three hidden neurons as per [7]. We preferred
to have two hidden neurons after testing the neural
network with different number of hidden neurons.
With hidden neurcns = 1, the number of epochs was 41
but the data was trained well. With hidden neurcons = 2,
the number of epochs was 8§ with actual output as
(.9955 instead of 1 [target oufput]. With hidden
neurons = 3, the number of epochs was 17 with actual
output as 0.9928 instead of 1. With hidden neurons = 4,
the number of epochs was 12 with actual output as
1.0033 instead of 1. With hidden neurcns = 5, the
number of epochs was 10 with actual cutput as 0.9884
instead of 1. From the above, it is clear that the use of
two hidden neurons perform better in terms of epochs
and error in training.

EXPERIMENTAL DATA AND ANALYSIS

Here, we select a set of rules that are based on the
extended access list format where only the source and
destination addresses are used. Five sets of data were
taken among which four are shown here.

Analysis of ACL Rules Using Neural Networks: The
neural network system was designed with the access
control rules discussed above. These rules were
represented into the neural network system with back-
propagation network algorithm. The network with
inputs and acfion as the output was trained for all
the five experimental access rules set presenied in
Tables 1-5. From the Tables 1-5 we can see that
Experiments 2 and 4 alene have implicit rules
(rules that posses no specific conditions but only
indicate the action for those packets that don’t
satisfy the other access rules) al the end of the
access lists. The number of rules in each access list
varies frem 3 to 21. These five experiment access
lists are trained with eight different forms as input to
the neural network system. The output of the
system is either 0 or 1 indicating deny or permit
respectively. According to the form of the input, the
system architecture also changes as shown in Table 7.
The following are the varicus forms of input for the
neural system:

* ACL: The access list data were input as in the
access list and replacing the wildcard by . Here,
the problem was noted in the case of totally
wildcard rules like that in Experiment 2 because all
the inputs are zero there.

* ACLW: In order to cater for the range of the
wildcard, we represented the wildcards with two
sefs of inputs as 0 and 255. Any access rule with
wildcard is entered twice, with 0 replacing
wildcards in one rule and 255 replacing wildcards
in another.

* BACL: In order to make the neural network train
faster, because decimal calculation might consume
more (ime and the error rate might be high for
decimal data, we converted the data into binary
format. Decimal calculation alse creates reund-off
errors due to insufficient precision. For the packet
type, we had two bits representing it, TCP as 1,
UDP as 2 and IP as 3. The source and destinaticn
addresses and ports were represented using eight
bits. This made the number of inputs present in the
neural system (o increase. [n Experiment 5, we did
provide numbers for varicus services given there
and input them as numbers of eight bits.

¥ BACLW: With BACL as the format, we added
information for the wildcards using 0 and 255
representations in binary format. In most cases, the
number of patterns was doubled by the use of 0 and
255 representations of the wildcards.

* ACL, ACLW, BACL and BACLW were done with
optimized rules and they are named as OACL,
OACLW, BOACL and BOACLW, respectively.

The network performance was noted for how long it
takes for the neural neftwork to train and whether the
training process was completed successfully. The
number of epechs (iterations} indicated whether the
performance goal was met or not while the architectural
representation of the network was shown in Table 7.
Performance goal indicates the maximum allowed error
between the output generated by the neural network
system and the actual ideal cufput. In the case of
architecture, we note the number of inputs present in
each pattern. This number of inpufs indicates the
number of input neurons in the neural network system
and the number of patierns indicates the number of
output neurons needed for the neural network system.

Frem Table 7, we can infer that the neural network
system has learned well in most cases and the
performance geal was met not only in three cases. The
neural network stops the training process when the
performance goal is met {(which means the error
between the output of the neural network and the actual
output is less than the allowed error) or when the
change in weights is minimum and that this change
doesn’t make the neural network learn further. From

. Comp. Sci., 1{2): 259-269, 2005

Table & : Comparison of all the Five Experiments

Sequential [Compariscn]

Opt. sequential [Compariscn]

Neuvral network

Expert system [Compatiscn]

Min Max Min Max Addition Multiplication Min Max
Exl 12 60 5 25 7 11 1 4
Ex2 8 24 7 21 11 15 1 7
Ex3 12 48 9 27 12 30 1 18
Ex4 12 84 10 70 13 31 1 14
Ex5 12 290 9 210 12 28 1 18
Table 7: Performance Comparisons
ACL ACLW BACL BACLW OACL CACLW BOACL BOACLW

Exl No. of Epechs 5 18 11 33 12 17 10 43

Goal met? Ne

Inputs/Patterns 12/5 12/16 8375 83/10 3/5 5710 2715 27710
Ex2 No. of Epochs 3 6 6 8 3 5 5 14

Goal met?

Inputs/Pattems 8/3 875 64173 6415 Ti3 T4 56/3 56174
Ex3 No. of Epochs 8 25 8 20 10 72 15 18

Goal met?

Inputs/Pattems 1274 12/8 84 /4 84 /8 9/4 978 56/4 56178
Ex4 No. of Epochs 26 24 14 23 14 38 21 23

Goal met?

Inputs/Patterns 1277 12/13 8377 83713 1077 10/13 7417 741713
Ex5 No. of Epechs 27 163 49 39 25 50 53 57

Goal met? Ne Ne

Inputs/Patterns 21712 21742 83721 83742 9/21 9/42 72121 721742
Table 8: Impact on Number of Epochs

ACL ACLW BACL BACLW CACL CACLW BOACL BOACLW Mean Impact on experiments
Exl 30 18.0 116 33.0 12.0 17.0 10.0 43.0 18.623 -7.40
Ex2 30 6.0 6.0 8.0 38 5.0 5.0 14.0 6.25 -19.775
Ex3 8.0 25.0 8.0 20.0 10.0 72.0 15.0 18.0 22.00 -4.025
Ex4 260 24.0 148 2380 14.0 38.0 21.0 23.0 22875 -3.15
Ex3 270 163.0 490 590 25.0 50.0 53.0 37.0 60375 34.33
Mean 13.8 47.2 17.6 28.6 12.8 36.4 20.8 31.0 26.025
Impacton -12.225 21175 8425 2575 -13.215 10.375 -3.225 4.975
methods
Table 9: Experimental Errors in the Number of Epochs
ACL ACLW BACL BACLW OACL OACLW BOACL BOACLW

Exl -1.40 -21.8 0.80 11.80 6.60 -12.00 -340 19.40
Ex2 8.975 -21425 8.175 -0.825 9.975 -11.625 3.975 2775
Ex3 -1.773 -18.173 -5.573 -4.575 1.225 39.625 -1.775 -8.975
Ex4 15.33 -2005 -0.45 -2.45 4.35 473 335 -4.83
Ex5 -21.15 81.45 -2.95 -3.95 -22.15 -20.75 215 -8.35
this table, we can also infer that the binary form of of epochs required is less than average for
neural network requires additional iterations to train BACL, OQACL and BOACL methods. But, the

due to the increase in number of inputs. The
number of rules present in each experiment
determines the number of patterns. Even though
converting to binary increases the number of input
nodes and with it the complexity of the network
architecture, the number of epochs deesn’t seem to
be affected much due to the fact that the binary
operations are performed faster than the decimal
operations.

The results of the analysis (Table 8) are interpreted as
follows : An average experiment using an average
method of access control requires 26f.025 epochs.
The number of epochs needed for ACL method is 12.
225 epochs less than the average. The number

264

number of epochs required is more than average
for other methods.

The selection of the experiment also impacts the
performance of the access control lists. An average

experiment requires 26.025 epochs. All except
experiment > require fewer epochs than average.
This result might be due to the fact that
experiment 5 is the access control list that

currenfly rules on a live university network and all
others are test phase access lists.

We can find out the experimental errors by finding
the difference between the estimated response and
the measured response, as shown in Table 9.

. Comp. Sci., 1{2): 259-269, 2005

Sum of Squared Errors (SSE} = 13919.95

2
Sum of Squared Measured Responses [y;] SSY = Z yij =58277
ij
Sum of squared overall mean (S50) =

abil 2 8454260257 = 27092025

Sum of Square of Of; (35A)= bY_ 0&? -

1
SH[(-12.225¥ + (21175
+ (-84257 + (2575 +
(-13.225Y + (10.375" +
(-5.225Y + (4.975¥]
=5050.175

Sum of Squares of 3, (SSB) = az B} =s#[-747 + (197757 +
i
(-4.025° + (3157 +
(34.35¥] = 13214.85

Sum of Squares Total (SST) = S5Y — 850 = 58277 - 27092.025
=31184.975

Sum of Squared Errors (SSE} = SST — S5A — S5B =31184.975 -
5050.175 - 13214.85 = 12919.95

The percentage of variation explained by the various
ACL metheds is

100 * SSA/SST = 100 * [5050.175/31184.975] = 16.19%

The percentage of variation explained by the various
ACL rules is

100 * SSB/SST = 100 * [13214.85/31184.975] = 42.38%

The vnexplained variation is

100 * SSE/SST = 100 * [12919.95/31184.975] = 41.43%

Looking at these percentages, it is found that the choice
of ACL rules is an important parameter and it plays a
vital role than the methods themselves. But still there is
considerable impact by the rules selection.

Neural Network Test Data Amnalysis: After training
the neural network in various different forms as
mentioned earlier, we fested the system with three data
sets for each experiment. These data sets where selected
to see the consistency of the trained neural network
system with the actual results the access control rules
provide. The test data set for all the experiments is
shown in Tables 1-14.

The neural network system with all the above data set
was tested for security aspects. The actual cutput
expected for these data sets is shown in Table 15 as Idle
Value. The output from the various neural network
systems is shown in Table 15.

From Table 15, we can infer the following:

* The neural network that is of ACL rules alone has
not trained the system and so none of the
experiments gave accurate result for all the three
test data sets.

* Experiment 2 was not properly learnt due to the
following rules:

* Presence of very few numbers of rules in the ACL
rules list and one of them is an implicit
permit. Being implicit makes the neural network
difficult to learn. Representing the implicit as ©
makes the mneural network learn only for O or
closer values and representing the implicit as O
and 255 makes the neural network confuse the
other set of rules. The impact of sequential set of
rules also has an impact on the neural network
training process.

* Referring to the number of epochs from Table 7,
the value is less compared to other experiments.
This doesn’t mean that the neural network has
trained faster and better. As already known, fast
learning doesn’t mean that the neural network has
learnt better.

* Optimizing the ACL rules and using them to train
the neural network leads to some improvement.
Experiment 3 and 5 are trained using OACL. But
the impact by representing 0 and 255 as wildcards
to OACL is not much. The outcome of the system
is the same with OACL and OACLW. So, there is
no need of replacing wildcard with 0 and 255 that
causes the increase in the number of patterns and
make the architecture of the neural network
complex.

* The use of binary input for the OACL makes some
difference in the output values but the permit/deny
decisicns remains the same.

* The case of OACLW and ACLW for Experiment 5
is ambigucus because the system cculdn’t meet the
performance goal. This is due to the fact that the
neural network would have fallen into the local
minima and so the weights cannot be further
adjusted to train the network better.

* The relationship between the number of epochs and
training is normally that with the increase in the
number of epochs, the system trains betier. But
care must be taken that the above applies only
when the performance goal is met. The case of
OACLW for Experiment 3 is an example.

From Table 15 it is clear that none of the neural
network model can identify the entire test set for all the
experiments properly. Only the BOACLW could learn
three of the experiments properly. Experiment 2 is not
taken into consideration as it has less number of rules
and one of them is of implicit type. For Experiment 1
{in the case of BOACLW)} with litle problem of
identifying the deny option, the network has learnt
better than the ACL rules.

. Comp. Sci., 1{2): 259-269, 2005

Table 10: Test Data for Experiment 1

Conditions
Packet type Source IP address Source TCP/UDP port Destination IP address Destination TCP/UDP port ~ ACK bit Action
P 11.12.13.14 15 21.22.3344 119 1 Deny
TCP 11.12.13.14 15 202.185.25.100 33 0 Permit
TCP 11.12.13.14 15 21.22.100.160 100 1 Permit
Table 11: Test Data for Experiment 2
Source IP address Destination IP address Acticn
10.1.3.4 10.10.10.7 Permit
10.1.25 10.1.1.7 Permit
10.1.2.1 10.1.1.7 Deny
Table 12: Test Data for Experiment 3
Conditions
Packet type Source IP address Source TCP/UDP port Destination IP address Destination TCP/UDP port ACK bit Acion
TCP 10.10.10.10 14 10.1.1.2 www it Permit
TCP 10.10.10.10 14 10.1.1.2 www 1 Permit
P 10.1.2,100 100 10.1,3.100 100 it Deny
Table 13: Test Data for Experiment 4
Conditions
Packet type Source IP address Source TCP/UDP port Destination IP address Destination TCP/UDP port ACK bit Action
TCP 10.1.1.2 80 10.10.10.10 100 1 Permit
IP 10.1.3.25 100 10.1.2.25 100 0 Deny
IP 10.1.1.28 100 10.1.3.2 100 1 Deny
Table 14: Test Data for Experiment 5
Conditions
Packet type Source IP address Source TCP/UDP port Destination IP address Services ACK bit Acion
TCP 202.185.128.100 100 202,185.131.100 ftp 0 Permit
TCP 202.185.128.50 30 202,185.130.5 telnet 1 Permit
TCP 202,185.128.4 30 202,185.130.5 http 0 Permit
Table 15: Security Comparison Among Neural Network Packet Filtering Systems
Idle value ACL ACLW BACL BACLW OACL CACLW BOACL BOACLW

Ex1 TestDatal 0 0.8823 0.3403 04189 0.8356 1.0077 1.0000 0.5381 0.7244

Test Data 2 1 0.9942 £.9984 1.1913 0.9628 01107 0.8021 1.0986 1.1419

Test Data 3 1 (.8823 1.9925 0.7438 0.5051 1.0077 0.8000 1.1508 1.1945
Ex 2 Test Data 1 1 -0.0427 -0.0215 0.0577 0.0817 0.4743 0.5788 1.6736e-005 0.1026

Test Data 2 1 -0.0536 -0.0274 -0.0299 0.0088 4.9951=-004 0.0467 1.8616e-005 0.0018

Test Data 3 0 -0.0522 -4.8718e-004 00292 0.0061 3.4158e-005 0.0039 196752005 -54934e-004
Ex3 Test Data 1 1 10012 0.2060 1.1292 0.4495 1.0007 1.0128 04626 0.8048

Test Data 2 1 10012 0.1965 1.2884 0.379%4 1.0007 1.0128 04626 0.8048

Test Data 3 0 1.3233 -0.0071 0.0434 -0.0632 02597 0.0031 -0.0119 0.3286
Ex4 TestDatal 1 0.2538 0.0925 04244 07866 0.9913 0.9870 -0.0412 1.1817

Test Data 2 0 0.2700 -0.0037 0.3800 0.0533 0.9913 0.6910 0.0328 -0.3673

Test Data 3 0 1.0119 -0.0057 -0.1730 -0.2159 -0.2101 1.1868 0.0044 -0.2688
Ex5 TestData 1 1 0.3251 2.6991 1.1904 0.4980 08116 1.0363 0.9806 0.7618

Test Data 2 1 0.9801 1.9310 1.2490 1.3880 1.0013 0.8803 1.0240 0.9234

Test Data 3 1 1.0024 0.9749 08188 0.3861 1.0013 1.0253 1.0066 0.9975
Table 16: Input for the Neural Network System
CPU use PKTS PAGE SWAP INTR DISK CNTXT LOAD COLLS ERROR Status Target Value
20 539 6 0 564 26 724 157 0 0 OK 1.0121
23 543 0 0 666 18 728 157 0 0 OK 1.0075
27 708 18 0 663 61 1052 155 0 0 OK 0.9931
29 807 0 0 335 0 1869 53 4] 0 OK 1.0187
39 1005 0 0 836 11 1301 159 4] 0 OK 0.9947
39 1262 0 0 1011 180 3497 163 0 0 OK 0.9955
40 1019 4 0 951 25 1762 156 0 0 OK 0.9984
42 1475 0 0 892 17 1338 154 0 0 OK 0.9984
39 626 3 0 836 196 1241 162 0 0 OK 0.9930

266

. Comp. Sci., 1{2): 259-269, 2005

Performance is 7.79964e-005, Goal is 0.0001
10'

10° |
107
1077

107

Training-blue goal-black

10"

10°

5 10

15 Epochs

15

Performance is 0.0079215,Goal is 0.01
101 L L 1 L L 1 L L L

100 -

10—1 -

10"

Training-blue goal-black

107

0 0204 0608 1 12 14 1.6 1.8 2
2 Epochs

Fig. 2: Training Stages for the Maximum Error of
(.0001 and 0.01

2501

—= Series 2

11 13
Hours

15 17 19 21 23

Fig. 3: The Network Usage Graph in Hourly Basis

Niels [8] feels that access control list can extend the
traditional access medel te provide finer-grained
centrols but can not prevent untrusted applications from
causing damage. As the neural network system that
uses access contrel list alene is not complete, we
include a next level of security check using the local
data cbtained from the network and also the hourly
analysis of the network usage. The primary level of
neural network training were done based on access
control rules. Analysis shows that there are not
sufficient enough fo take care of the security of the
network. In order to improve the security, we did
consider developing a second level of security check.

267

Prrformance is 658.168, Goal is 0.0001

10'
=2
-
g 107"
2
‘? =
E” 10
10—! -
10" T T T T T T T
0 10 20 30 40 50 60 70
77 Epochs

Fig. 4: The Training Process of Neural Network

Performance is 9.7922R8e-005, Goal is 0.0001
101 L I L I

Training-blue goal-black
5

=
I

10°

100 150 200

251 Epochs
Fig. 5: The Training Process for Binary Data

0 50 250

This security check using neural networks was done
using the local data obtained frem the network along
with the hourly analysis of the network usage.

Local Data Oriented Neural Network Analysis:
Matching of the past data with the recent data is
difficult and a cumbersome task if the past data is huge.
False alarms can result from invalid assumptions about
the distribution of the audit data made by the statistical
algorithms [9]. Missing some data can end up in a
dilemma for discriminating between an intruder and a
normal user. So, the rule-based approach was used to
fill the gaps present in the statistical algorithms.
Writing such a rule-based system is a knowledge-
engineering problem and the resulting “expert system”
will be no better than the knowledge and the reasoning
principles it incorporates. Maintaining a large rule-base
is highly complex.

The inputs provided for this neural network were in
binary form. Various data sets were collected and
converted into binary and were used to train both the
networks. The number of input nodes was 69. These

. Comp. Sci., 1{2): 259-269, 2005

Table 17: Input Data During Testing Stage Along with its Group

CPU use PKTS PAGE SWAP INTR DISK CNTXT LOAD COLLS ERROR Status Value
10 300 3 0 511 17 612 153 0 0 Abnermal 0.7555
23 622 9 4] 671 40 1043 160 0 0 Ambiguous 1.1388
33 962 0 4] 1012 35 1967 161 0 0 OK 1.0976
50 714 2 0 947 60 1276 160 0 0 Abnermal 0.6451
70 564 1 0 863 45 1112 161 0 0 Ambiguous 1.1638
10 962 3 4] 511 60 1967 253 0 0 Abnormal 0.7925
23 714 9 4] 1012 45 1276 160 0 0 OK 1.0874
33 300 0 0 671 35 1967 254 0 0 OK 1.0743
50 622 2 0 947 40 612 160 1 1 CK 0.9335
70 564 1 0 863 35 1043 241 0 0 Ambiguous 1.1541
Table 18: Number of Hits on Hourly Basis After the network was trained, some normal as well as
Hour Hits abnormal user data were provided to the system as
00 21.68 shown in Table 17. The system could recognize some
01 16.85 of the inputs clearly, but at the same time the cases
0z 9.27 whose value [target value and the measured value] have
03 855 a difference of more than 0.1 are considered to be
04 6.64 decided based on the regularity of operation of the
03 7.00 network. If the network has some fluctuations normally,
06 358 then the values with more than 0.1 are considered as
07 13.00 .

08 6187 normal data. [f the network usage is almost stable, then
a9 15833 the difference of 0.1 or more is considered as abnormal.
10 197.07 The ftraining of the Back Propagation based Neural
11 21874 Network was smooth. For a maximum error of 0.0001,
12 202.90 it took only 15 epochs. This smoeoth training is visible
13 13100 from Figure 2. It is alse clear from those Fig. 2 that te
14 151.69 have a smooth and normal training step instead of a
15 174.05 step-wise training, we should increase the maximum
16 14941 error. The system takes more epechs to reach the
17 89.37 maximum error rate of 0.0001 than 0.01.

13 gé; The variation in the input is due to the fact that the
p 2646 usage of the system resources varies from person to
21 33 51 person and also varies according to the timing of the
. 35.05 data collection. The major problem is that if a subnet is
23 2335 used by many people who are of different style of jobs,

input nodes represent the usage of CPU [7 bits],
Number of packets that were used for transmission
[11 bits], number of pages accessed [5 bits], Number of
pages swapped [1 bit], Number of interrupts created
[11 bits], disk usage [8 bits], context switching that
occurred [16 bits], total load [8 bits], number of
collisions [1 bit], number of error cccurred [1 bit]. The
training rate was fixed at 0.1. The number of epochs
for each training stage was fixed at 500 and the
following were inferred.

A Back Propagation Neural Network with 69 binary
input neurons, two hidden neurons and one oufput
neuron was frained. The number of binary input
neurons depends on the input data we use to train the
network. We used the concept of training the neural
network system with the help of user data and
identification of misuses of the resources, with the
deflection in the usage of the system. Table 16 shows
the part of the input used for training the neural network
system, whose output is trained for the normal user,
indicating that the system is given a data set that
represents a proper user. Table 16 also shows the values
that were attained during the testing stage, when the
trained data was given as input. It is clear from this
table that we have trained the system only for a normal
user. So, any deviation from this type of data is
considered to be abnormal.

268

then the variations will be high. These variations will
cause some problems for the network to get trained. To
avoid this problem, we try to get neural networks
trained for each individual user separately. As the
trained neural network can test the data faster, it does
not take much time if we need to test the data of few
members in a single subnet at a specified time. For a
single user, if the variations are high, we frain the
system with the respective time group of data
acquisition. As per the columns that are having zerc
data, the indication is that the usage is not heavy and so
there is ne collision, error and swapping.

Hourly Hits Oriented Neural Network Analysis: The
office is used to have peak working time at around 10
to 12 noon. In order to visualize the usage of the server
at various hours, we need (o look at how many fimes a
server has been accessed on a day basis. The usage of
the server varies based on the timing of the day and the
day of the week.

With the Table 18 that we obtained from our university
network, we can notice that the accessing of the system
varies on the day in different levels. The usage of the
system is higher during office hours and low during the
night hours of the day. Lunch time contributes to little
degradation in the usage of the system and the number
of hits reduces at that point of time. The pattern of this
access is shown in Fig. 3.

. Comp. Sci., 1{2): 259-269, 2005

We have designed the neural network system to learn
the pattern of the network access and then indicate
whether there is any possible abnormal activity. We did
implement a Backpropagation based neural network
system with two inputs and one ocutput. The inputs
represent the hour of the day and the number of hits and
the output represents the number of hits that is expected
in the following hour. A neural network system with
above information was implemented with decimal data,
but the system cannot be trained. The neural network
system stops because the difference in the cutput
observed between the current and previous state is
much less and not the required change needed te move
towards the totally trained state. Being decimal in
nature, the difference in the number of inputs between
various hours is not much. But when converted into
binary there are a number of bits which vary and the
difference is present in more than one input.

From Figure 4, it is found that the neural network
cannct learn. We can also refer (o Fig. 4 and realize that
the error [which is the vertical axis] is very high. The
system stops with the condition that the decrease in the
error is very minimum as shown below.

TRAINCGB-srcheha, Epoch 0/500, MSE
10553.5/0.0001, Gradient 1200.93/1e-006
TRAINCGB-srcheha, Epoch 251500, MSE
20:25.6/0.0001, Gradient 108.738/1e-006
TRAINCGB-srcheha, Epoch 50/500, MSE
867.637/0.0001, Gradient 157.976/1e-006
TRAINCGB-srcheha, Epoch 751500, MSE
658.194/0.0001, Gradient 1.16254/1e-006
TRAINCGB-srcheha, Epcch 771500, MSE

658.168/0.0001, Gradient 2.40323/1e-0006
TRAINCGB, Minimum step size reached, performance
goal was not met.

We then converted the decimal values into binary
format and implement the back propagation network
with binary values. The number of inputs were 13 and
the number of outputs were 8. The hours of the day [(
to 23] need five binary bits and the number of hits
needs eight binary bits. As the output is the expected
number of hits in the next hour the number of bits
needed for output is also eight. This network was
trained as shown in Figure 5.

As shown in Fig. 5, the network can train well when we
used the binary data but the number of epechs needed
o train is a large value. But the training is smooth. In
order te speedup the training process, we can consider
deing the process in parallel over the network by using
PVM daemons. We can have more daemons running
during the peak hours to cater huge network utilization
during that specific time. Thus the process of doing
actions in parallel might help the neural network
oriented parallel filtering process to act faster.

CONCLUSION

In this study, we have implemented various input
representations for IP packet filtering. Different neural

269

network architectures based on back propagation
algorithm were tested and trained with eight input sets.
Those neural network architectures were analysed for
the performance of the ftraining process and the
correctness of their learning. Analysis indicates that
neural network could not learn all the experiments well
and the presence of implicit rules for denial/permission
plays a pivotal role in the training of the neural
network. In order to improve further cn the security
aspects, we designed neural network that could be
trained with local user data and the heurly hits on
servers. After the training, we are able to conclude that
the neural network learns better with binary input data
but at the same time this binary input data
increases the input nodes and thereby the
complexity of the network. Improving the security
aspects of the neural network with various sets of
data along with the binary form affected the
performance of the neural network system. We
conclude that usage of neural network for packet
filtering is questicnable because the inclusion of exftra
security features like local or hourly hits to take care of
the security lapse in neural network system causes
the performance gain to be affected. As future work, we
could implement Intrusion Detection System [IDS]
along with neural network system so that we can
still attain the efficiency of the neural network system
but get rid off the security lapse.

REFERENCES

Miei, T., M. Maruyama, T. Ogura and
N. Takahashi, 1997. Parallelization of IP-Packet
filter rules. Proceedings of Third Internaticnal
Conference on Algorithms and Architectures for
Parallel Processing, 91: 381-388.

Murthy, U., O. Bukhres, W. Winn and
E. Vanderdez, 1998. Firewalls for Security in
Wireless Networks. IEEE Proceedings of 31%
Hawaii International Conference on System
Sciences, 7: 672-680.

Gittleson, H., R. Sharp and B. Cheswick, 1998. Red-hot
firewalls. America's Network, 102: 48-52.

Blum, A., 1992, Neural Networks in C++, NY: Wiley.
Berry, M.JJ.A. and G. Linoff, 1997. Data Mining
Techniques. NY: John Wiley and Sons.

Lawrence, 5., C.L. Giles and A.C. Tsoi, 1997.
Lessons in neural network training: overfitting may
be harder than expected. Proceedings of the
fourteenth naticnal conference on artificial
intelligence, AAAI-97, AAAIL Press, Menlo Park,
California, pp: 40-545.
http://hsb.baylor.edu/ramsower/ais.ac.97/paper/kw
on.htm

Niels Provos, 2002, Improving Host Security with
System Call Policies. {CITI Technical Report
02-3). Center for Information Technology
Integration, University of Michigan.

Teresa, F.L., A. Tamaru, F. Gilham, R.
JTagannathan, P.G. Neumann and C. Jalali, 1990,
IDES: A progress report. Proceedings of the sixth
Annual Computer Security Applications
Conference, 90: 273-285.

ok

