Journal of Computer Science 1 {2}: 157-163, 2005
[SSN 1549-3636
© Science Publicaticns, 2005

The Design and Implementation of Parallel Digital Library
Management System

“*Yang Yan, '’Li Jianzhong and “Kan Zhongliang
'School of Computer Science and Technology, Harbin Institute of Technology
Harbin 150001, People’s Republic of China
?School of Computer Science and Technology, Heilongjiang University
Harbin 150080, People’s Republic of China

Abstract: As the number of documents in digital library grows, it becomes increasingly difficult to
store, manage the large amount of documents and finding requested relevant documents by users.
Parallel Digital Library management System (PDLS) is used for this purpose. PDLS is a general tocl
for building and managing digital libraries of all kinds of documents to meet user needs. It implements
system management and query processing in parallel. The functions of PDLS include data collection,

format standardization,

information extraction,

automatic classification, data loading, data

maintenance, query processing, external data entering, perscnalized recommendation ete. This study
introduces the design and implementation of PDLS.

Key words: Scftware Design and Implementation, Digital Library, Document, Parallel

INTRODUCTION

The amount of documents in digital library usually
grows rapidly overtime. How to store, manage and
search these documents within the digital library is an
challenging problem. Documents in digital library are
stored as semi-structured data, while in the tradifional
relational database it is stored as structured data.
Relational database management system cannot manage
semi-structured data efficiently and cannot satisfy the
requirement of content-based text retrieval.

A lot of research works have been done about semi-
structured data, such as data modeling, query language
for text retrieval [1-3], index methods and text refrieval
algorithms [4-6] and similarity search algorithms [7].
These research results have been used a lot in digital
library systems. SSREADER Digital Library, the
National Digital Library and WanFang Database are
popular digital libraries in China. All the digital
libraries classify the documents into several classes and
support querving inside a given class. Metadata search
and full-text search through a single keyword or
expressions are both supported in these digital libraries.
Other examples of digital libraries are Greenstone
digital library [8-10], UC Berkeley Digital library,
Tufts Digital library, ACM digital library, NCSTRL
etc. Similar functions are supported in these digital
libraries, such as metadata searching, full-text
searching, documents classification and browsing.
Greenstone digital library has a suite of software that
provides management tecls for creating and
maintaining a digital library. Tufts Digital library is for
the integration of cellections that exist or may be

157

developed in the future [11]. There is a system named
Lore developed by Stanford. It is a database
management system for managing semi-structured data
[12]. The NCSTRL at Cornell University is a
distributed technical report library developed by the
ARPA-sponsored Computer Science Technical Report
Preject [13]. The NCSTRL cellection is distributed
among a set of interoperating servers operated by
participating institutions. All of the digital libraries
described above do not support the following functions:
structure and content-based queries, autemaftic entries
of external documents and parallel document
processing,

The PDLS system described in this study has the
following features. {1) Generalization. [t is essentially a
general decument database management system. [t can
be used to build digital libraries for user needs and
provides a suite of tools to maintain it. {2) Parallelism.
PDLS uses a lot of processors to execute queries and
manage documents, which improves both storage
capacity and query efficiency. (3} Structure and
content-based refrieval. Users can query inside a
document for an element, e.g. a chapter of a book,
which not only allows users to propose for a more
accurate query, but also reduce the informaticn
transmission worklead in networks. (4} Personalization.
PDLS can querv according to user's interest and
recommend documents relevant to user. {3} Automatic
external data entering. PDLS can combine with other
search engines in finding and adding references
automatically. {6} Multi-format supperting. DL collects
a lot of document resources including books, journal
papers, proceedings etc. and supports document

J. Computer Sei., 1 (2): 157-163, 2005

information retrieval for a lot of document formats. (7)
DLSQL query. PDLS defines a query language like
standard SQL, named DLSQL. By using DLSQL, users
can program and do all the operations in PDLS. (8)
Automatic document classification. [t creates a
classifier according to the sample documents loaded by
the system manager and automatically classifies
documents.

Architecture of PDLS: To meet the need of
parallelization, we design the parallel and extendable
architecture as shown in Fig.1, which is made up of
three hierarchies: Client, Mediator and Server.

Client: There are two kinds of users, end user and
system manager. Any user cennected te the Web can
access the web pages of PDLS through URL. These
users are called end users. End users submit queries
through the query interface and wait Zfor the
corresponding query results from the system. System
manager accesses the system in local area network.
Only the system manager authorizes system creation
and maintenance. No matter the query operation
submitted by the end users or maintenance operation
submitted by the system manager, the Client accepts the
operation, transmits it to DLSQL({which is the query
language of PDLS), sends it to the Mediator and
accepts the query results returned from the Server and
displays them to the user.

Mediator: Mediator is in the middle layer of the PDLS
architecture. It is the Web Server of the digital library.
The Mediator accepts requests from Clients, analysis
the requests, divides each request into sub-commands,
creates the query execution plan, determines which
Servers to execute these sub-commands, sends the
commands to corresponding Servers and provides the
results o Client. Mediator coordinates all the Servers to
work together to execute any operation from the Client.
Server: Servers are composed of two kinds of
processors, namely Query Processor and Data
Collector. Each Query Processor is a node of a parallel
computer. On one hand, it stores data in the digital
library including the original documents, the index file
and the metadata extracted. On the other hand, it
executes queries on the stored data and returns the
query results to end user or manager. Data Collector is
simply named as a Collector. Collectors are perscnal
computers cn which the documents that need to be
added in the digital library are stored. Collectors run on
Windows operating system and are controlled by the
Mediator. They collect documents, extract relevant
information, create classifier, classify documents and
load all the data into correspending Query Processors.
Functions of PDLS: PDLS is a general system, which
enables a person who has a lot of documents to use it to
create a digital library. The system manager builds the
digital library and defines the format, the metadata

158

schema, and the classification schema of their
documents. According to these definitions the manager
builds the digital library and provides document
retrieval service on it. People who query the digital
library are end users. From this point of view, the
functions of PDLS are composed of two parts,
maintenance and query.

Maintenance: There are two interfaces for a manager
to maintain the digital library: graphical interface and
DLSQL interface. DLSQL is a language defined for
operations in PDLS. All the operaticns either can be
done in graphical interface or by DLSQL. The
maintenance operation includes metadata definition,
classification schema creation, information extraction,
classifier creation, automatic document classification,
data loading, metadata modification, document addition
and deletion, Query Processor load Dbalance
coordination, classification schema maintenance, etc.

Among them, metadata definition, classification
schema creation and maintenance show the
generalization of PDLS.

Metadata Definition: Metadata are data that describe
the attributes of documents. PDLS allows managers (o
define their own metadata according to the kind of
documents they own. PDLS defines a whole set of
metadata, which includes all the metadata described in
DublinCore and extends DublinCore to integrate other
different applications. Through the manager interface,
managers can select metadata that can describe their
documents from the whele set of metadata. PDLS
creates corresponding metadata schema in Query
Processors and Data Collectors. The metadata
extraction operation extracts only the metadata that
the manager selected and the user queries these
metadata.

Classification Schema Creation: A document usually
belongs to a given class. All the classes of documents
consfitute the classification schema in a digital library.
The classification schema is a tree structure. The root of
the tree represents all documents in the system and the
leaf nodes are the classes that have no subclasses, called
the Smallest Class. Each nede in the tree corresponds to
a class in the classification schema and represents the
documents set belenging to the class. The parent-child
relation between nodes is an inclusion relation between
classes. Each document belongs to a leaf node of the
tree. Classification schema creation operation
determines how many classes the documents in the
system should be divided into and how many subclasses
are included in a given class. An interactive interface is
provided to managers, through which the managers can
create the classification schema, which is stored by the
Mediator. A user can specify the class in which the
query should be executed. Browsing is dependant on
the classification schema.

J. Computer Sei., 1 (2): 157-163, 2005

End user interface

Structure and content-base query |

Query Processor

|Metudata loading | | Word frequency load.ingl

b

. 4

IDacnment classiﬂc&ﬁon|

Server

extraction

L
Metadata and word frequency

Data Collector

PDF P8 TXT DOC HTML

Fig. 1:

Information Extraction: PDLS supports several
document formats, including PDF, PS, DOC, HTML,
TXT, etc. Information extraction operation analyzes
different formats of documents, specifies the structure
of a document, extracts metadata and words, and counts
the frequency of each word. Metadata of a document
includes title, author, keywords, publisher, publishing
time, etc. Structure information of a document includes
table of content, chapter, section, abstract, introduction,
figure, table, references etc. The Collectors do
information extraction. The extracted informaticn is
stored in the Collector and will be loaded into the
Query Processors during the data loading process [14].
Data Loading: When building a digital library, huge
amount of documents need to be added in. Data leading
transmits these documents along with the metadata and
other information produced by information extraction
process from Collectors to corresponding Query
Processors. The Mediator controls data loading process.
It analyzes the amount of the documents in each class,
determines how to distribute these data to Query
Processors and stores them in each processor. The data
stored in Query Processor is the data for a user query
[15].

Classifier Creation: A document often belongs to a
class in the classification schema. Determining which
class each document belengs to manually is a boring
operation. To create a classifier, a set of documents in

159

Architecture of PDLS

each class is selected. Specialists manuvally specify the
class of each sample decument. The system extracts
features of the sample decuments in each class and
stores them in Collectors as a classifier. Classifier can
be used to classify documents automatically when
documents are being entered inte the digital library.
Automatic Decuments Classifying: When a document
is added to the digital library, a manager can specifly the
class of the document. If the manager does not specify
the class, the classifier does it automatically. After
extraction of metadata and word frequency in
information extraction process, the classifier classifies
the document according to the extracted infermation
automatically [16].

Document Addition and Deletion: During the running
stage, system manager can add or delete documents
when needed. After the digital library is created, there
are always new /old documents that need fo be
enrclled/deleted into/from the digital library. Document
addition is different from data loading. Data loading is
done at the initialization stage. Data loading needs to
determine how to distribute the large amount of
documents and store them in the Query Processors.
Document addition is done at the running stage and can
be added at any time. The amount of doecuments added
each time is smaller. Document additicn distributes data
according to the distribution schema determined by data
loading process. This operation need not redistribute
data.

J. Computer Sei., 1 (2): 157-163, 2005

Metadata Modification: The extracted metadata is not
accurate. The system provides twe methods to modify
the metadata then. The first one provided by the
interactive interface during data leading and document
addition process. When a decument is added, the
extracted metadata is displayed in the interactive
interface. If it is wrong, the manager can modify them.
Ancther methed is done after the addition or leading
process, whereby the manager queries for the
decuments whose metadata need to be medified and
modifies them in batches.

Classification Schema Maintenance: Classification
schema is created in the initialization stage. In the
running stage, the amount of documents in the system
increases successively, which may lead to some new
classes in the system or the leaf node in the
classification schema further divided into some
subclasses. This might need to add scme new class into
the original classification schema. As the time pass,
some classes of older decuments can be deleted.
Classification schema maintenance includes class
addition, class deletiocn, and class name modification.
On modifving the classification schema, the classifier
should be medified and the data may be redistributed or
leaded dependently.

Query Processor Load Balance Adjustment: When
loading data, the data distribution schema is determined
according to the classification schema and the amount
of the decuments belenging to a given class. One of the
targets of data leading is the load balance problem
amoeng the Query Processors. The amount of documents
in each class and the user hot spots changes a lot.
Hence, the data sheould be redistributed to keep load
balance of the Query Processors. Load balance
adjustment model monitors the response time of each
Query Processor pericdically and redistributes the data
appropriately [17].

External Documents Entering: One feature of PDLS
is that references of a document can be found
automatically. This involves two cases. When the
reference is in the digital library, PDLS can find it and
link the reference with the document automatically.
When a user clicks on a hyperlink reference, the
document corresponding to the reference can be opened
automatically. When the reference is not in the digital
library, PDLS can search Zfor the document
correspending to the reference automatically through
search engines and add it to the system if found.
Personalized Service: PDLS provides personalized
service. User actions such as clicking, browsing and
downloading are all recorded in the query logs, which
are analyzed to capture the personalized information in
user profiles. According to the user profile,
persenalized search returns documents that the user is
really interested in and personalized recommendation
recommends relevant documents also [18,19].

Query: Query interface is a Web page, which can be
accessed through the Internet. Any user, ne matter
where he is, can access the main page of the digital
library and submit requests. For different users, the

160

system provides several different query inferfaces,
including browsing interface, simple query interface,
complex query interface, structure and content-based
interface, and DLSQL query interface. Among them,
content and structure-based query and DLSQL query
are special features of PDLS. Each query is sent to
several Query Processors that store data relevant to the
query and executed in parallel.

Browsing: Browsing is based on the classification
schema. By browsing, users can click from the root
node through a series of subclass nedes to a leaf nede
of the classification schema and finally find some
relevant documents.

Simple Query: The characteristic of simple query
interface is its ease of wuse. Users can submita
query just by filling in some keywords. The

keywords are then send to some Query Processors
that stores the documents in the classes the user
selected.

Complex Query: Complex query allows users to input
multiple query conditions using a combination of AND,
OR and NOT. The attributes involved in the complex
query are all metadata of documents, such as fitle,
author and keywords. Simple query and complex query
are both queries on metadata.

Structure and Content-based Query: Through the
structure and content-based interface, users can submit
a query about a part of a decument. For example, in one
scenario, a user might not finish reading a book at one
time, while in another situation, he/she might want a
specific chapter in a book having many chapters. A
special part of a document, such as chapter, section,
etc., 1s called an element of a document. If a document
can be divided inte several elements, then the system
can only return the elements the user is interested in.
Thus the amount of transmissicn is reduced and users
can conveniently find a special element in reading.
DLSQL Query: To support programming, the system
proposes a query language called DLSQL, which is like
SQL. Through DLSQL interface, users can implement
all the queries and the maintenance operations. DLSQL
can be embedded in C to support programming.
Implementation of Key Techniques: Time and space
cost are the most important parameters to evaluate a
system, which are mainly determined by the storage
structure of all the data and the query processing
methods.

Storage Structure: Each Query Processor stores data
in some given classes, which is shown in Fig. 2.
Queries and maintenance operations are all based on
these data [20].

Source file database is the set of books, papers and
other documents, the format of which is PDFE, PS,
DOC, HTML etc. All the other data in digital library
are extracted from the source files.

The HTML data contains seme of the metadata and
elements of source files, including title, authors, table
of contents, abstract and references. The HTML data of
a document is extracted during information extraction
process and is stored in a HTML file, which is a short
view of the document.

J. Computer Sei., 1 (2): 157-163, 2005

Each smallest class has a metadata table, a structure
information table, a reference information table and a
figure and table information table, as shown in the
index and structured data in Fig. 2. Metadata includes
title, author, keywords, publisher, etc. and are stored in
the relational table. To reduce the response time of
metadata query, several indices are built on it. The
index includes author index, title index, keyword index,
publishing time index and others if needed. Author
index stores each author and the identifier of each
document he published. Key word/iitle index stores
each word in key word/title and the identifier

Fig. 2: Datain Digital Library

of the document correspending to it. The author index,
keywords index and the title index are implemented in
an inverted index. The other indices can be
implemented easily in a relational table. Structure
information stored in relational table includes the
document identifier, the identifier of element in the
document, the title of the element, the hyperlink of the
element, the maximal frequency, the beginning and the
end page number of the element. The structure
information is used to support structure and centent-
based query. The reference information stores
referencing and referenced information among
documents. This information is used to rank query
results and support automatic reference linking. The
figure and table information stores the title of a figure
or a table in a document, and support figure-based and
table-based query.

To support content-based query, word and word
frequency should be extracted and stored at a
reasonable structure. Each class in a processor has a
vocabulary, which stores all the words in this class.
Each word in the vocabulary corresponds to three
inverted lists, which sfores the element identifier, the
position and frequency of the word, which appears in
the element.

One inverted list, called big bucket, is used to store the
element identifiers the word appears in and the
frequency. The sequence of the data stored in an
inverted list is a problem concern. In the big bucket, the
identifiers of the elements sort the inverted list, which is

161

convenient for multi-word query. For single word
query, the second inverted list is built which stores the
first N elements corresponding to the index word,
which is sorted by the weight of the elements. This
inverted list is called rank bucket. Different positicn a
word appears in a decument means different weight of
the word. Obvicusly, a word in the title is more
important than a word in the absfract, which is more
impertant than a word in the body of a document. For
this purpese, the third inverted list, called small bucket,
is used to store the special position the word appears,
such as title, keywords, etc. Each word in the
vocabulary corresponds to three links. One points to the
big bucket, one to the rank bucket and one to the small
bucket.

The structure of the inverted index is shown in Fig. 3.
Sequential bucket is a backup of the word and
frequency information. When a document is added to
the digital library, its words and frequency are stored in
the sequential bucket sorted by the document identifier.
That is, the information in sequential bucket need not
be sorted. Sequential bucket is used to maintain data in
the system and to rebuild the inverted index when
needed.

Vocabulary Inverted lists
term, || nid, fre, weight, | nid, fre, weight, |- nid, fre, weight,
[p weight, nid, fre, | weight, nid, fre, |- weight, nid, fre,
"""" -bTitleiﬂaglkeywordiﬂagl authuriﬂaq abstmctiﬂagl
term,
Lyl nid, fre, weight, |nid, fre, weight, |- nid, fre, weight,
gl weight, nid, fre, | weight, nid, fre, |...... weight, nid, fre,

Title_ﬂaglkeyword_ﬂagl author_ﬂagl absimct_ﬂagl

Fig. 3: Structure of Inverted Index

Query Processing: Query is the main function of a
digital library. To execute query, the Client, the
Mediator and the Query Processors should work
together coordinated by the Mediator. Client receives
the query request, transmits the request te DLSQL and
sends it to the Mediator. Mediator fetches a query
request from the request queue of all Clients and creates
a process Tor the request. The process checks the syntax
of the request, divides it into sub-requests, creates the
query plan, optimizes the query plan, determines witch
processors to execute the request and sends the sub-
requests to these processors. Each Query Processor that
received the sub-requests creates a corresponding
process to execute the sub-requests. According to the
request, the process determines how to execute the sub-
requests and executes them. The results produced in
each processor are merged to form the final results and
returned to the user.

Each query is executed in parallel. The optimized query
plan produced by the Mediator is the query plans cn

J. Computer Sei., 1 (2): 157-163, 2005

some correspending Query Processors. Query in each
Query Processor may be a single word query or a multi-
word query, may involve metadata or just a content-
based query. The query optimization rules and the
query execution methods in Query Processors are
described below.

Query Optimization Rules

* Queries on structured data are executed first and
the optimization is done by relational database;

* Different conditions about one word is combined
into one query condition;

* A query that involves multiple conditions are
cenverted into Disjunctive Normal Form;

* Save the query results of sub-requests to reuse
them in a query;

* If a query invelves enly ene word, the results of the
query are sorted by weight of elements;

* If a query involves multiple words, the results of
each sub-request are sorted by element identifier;

* The attributes that a user wants to see and the

sorted attributes are reserved in the query result.
Query Processing Algorithm
[nput: a user query request
Output: query results

* The query request is converted into DLSQL;

* DLSQL is checked for syntax and semantic errors;

* Divides DLSQL into coptimized sequential sub-
requests in different Query Processors;

* Hach Query Processor executes query on itself in
parallel:

* If there are sub-queries on metadata or other
structured data

Executes them by RDBMS;

* If the sub-query involves only one word and
the position of the word is not pointed out in
the query

Executes the query in the rank bucket;

* If the sub-query involves only one word and
the position of the word is pointed out
Executes the query in the small bucket;

Otherwise executes the query in big bucket;

* Produces results list sorted by weight of
elements;

* Results are sent to merge processor;

* The results from each Query Processor are merged;
* Return results to user.

RESULTS AND DISCUSSION
PDLS is implemented on Linux and Windows

operating systems. The Mediator and Query Processors
are Linux and the Coellectors are Windows. The
programming languages used are standard C, VC, Pre C
and Oracle.

Disk space and query response time are two key factors
of PDLS. In PDLS, metadata, structure informaticn,
reference information, figure and table information are

stored and managed by Oracle database system.
Vocabulary, inverted index, sequential bucket are all
managed by files system in the disk.

The number of different words in the set of documents
determines the original size of the disk space occupied
by inverted lists. A word occupies at least one block in
the inverted list even if it is not full. With the amount of
documents in the digital library increasing, each block
of each word in the inverted list will become full. The
number of different words increases when the number
of documents increases. But when the document
number reaches a given value, the number of different
words becomes stable. The disk space of the inverted
lists is about 30 percent of the size of the documents in
the digital library. The size of small buckets is about 10
percent of the size of the big buckets. In fact, small
buckets can answer a lot of user requests in digital
library. The disk space of the various kinds of data in
PDLS is shown in Table 1.

Table 1: Space Occupied by All the Data

Number of documents 1,342
Disk space of all the documents 1.33G
Number of different words in all the documents 115,230
Disk space of vocabulary 4.6 M
Disk space of big buckets 420 M
Disk space of small buckets 40 M
Disk space of sequential buckets 20M
Disk space of metadata 53K

Query respense fime is mainly determined by the time
of disk I/O and data transmission. A buffer is used to
store recently frequent accessed data. When the data
needed is in the buffer, the response time will be greafly
reduced. Increasing the size of the buffer or creating
index for the frequently used data can improve the hit
rate of the buffer. Hence the query response time is
reduced. The documents in the Query Processors are
distributed based con smallest class. The decuments in
the same smallest class are stored in one processor. The
number of documents in a smallest class is usually not
very large. When query is inside one smallest class,
data transmission time is omitted. In the following
experiments, there are 1342 documents in digital
library. The query response time of different query
words is shown in Table.2. The time is measured by
second.

Table 2: Query Response Time (sec}

The first query The redundant query

CPU Total CPU Total
Query words Time time time time
Parallel ¢.04 1.13 ¢.01 0.73
Database ¢.08 1.27 ¢.02 .81
silicon 0.05 0.8 (.02 .78
Parallel database .10 1.53 0.04 1.01
Algorithm design
analyze G.11 1.31 G.10 (.93

162

J. Computer Sei., 1 (2): 157-163, 2005

CONCLUSION

PDLS is a digital library management system. [t can be
used to build a decument digital library corresponding
to the features of the documents the manager owns.
It provides maintenance functions including data
collection, information extraction, documents
classification, data leading, storage, etc. [t also provides
efficient query on metadata, structure and content of
documents.

PDLS adopts parallel processing technique to solve the
problem of large storage space and low query response
time in digital library. A large amount of decuments are
distributed in various Query Processors. Increasing the
number of Query Processors causes the increase of
storage capacity. At the same time, each query is send
to several processors to execute in parallel, which
reduces the query response time.

ACKNOWLEDGEMENT

The work supported by the National Grand
Fundamental Research 973 Program of China under
Grant No. 1999.32704.

RERERENCES

1. Gonzale Navarro and Ricardo Yates, 1997.
Proximal nodes: A medel to query document
databases by content and structure. ACM
Transactions on Information Systems, 15:
401-435.
Serge Abiteboul, 1997. Querying semi-structured
data. Proceedings of the 6" International
Conference on Database Theory.
3. Sihem AmerYahia, Chavdar Botev and Jayavel,
2004. TeXQuery: A fulltext search extension to
Xquery. Proceedings of the 13® Conference on
World Wide Web.
Brian, F., Ccoper, Neal Sample, Michael J.
Franklin, Gisli R. Hjaltasonl and Moshe
Shadmonl, 2001, A fast index for semistructured
data. Proceedings of the 27" VLDB Conference.
5. Dirk Bahle Hugh E. and Williams Justin Zobel,
2002. Efficient phrase querving with an auxiliary
index. Proceedings of the 25™ Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval.
Dongwook Shin, Hyuncheol Jang and Honglan Jin,
1998. BUS: An effective indexing and retrieval
scheme in structured decuments. Proceedings of
the third ACM Conference on Digital Libraries.
7. Christian Bohm, Bernhard Braunmuller, Hans-
Peter Kriegel and Matthias Schubert, 2000.

163

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20,

Efficient similarity search in digital libraries. IEEE
Advances in Digital Libraries {ADL}.

lan, H., Witten, Rodger J. McNab, Stefan I. Boddie
and David Bainbridge, 2000. Greenstone: A
comprehensive open-source digital library software
system. Proceedings of the 5% ACM Conference
on Digital Libraries.

David Bainbridge, John Thempsen and lan H.
Witten, 2003. Assembling and enriching digital
library collections. Proceedings of the 3¢
ACM/IEEE-CS Joint Conference on Digital
Libraries (JCDL).

lan, H., Witten, David Bainbridge and Stefan I.
Boeddie, 2001. Power to the people: End-user
building of digital library collections. Proceedings
of the 1% ACM/IEEE-CS Joint Conference on
Digital Libraries (JCDL).

Anoop Kumar, Ranjani Saigal, Robert Chavez and
Nikolai Schwertner, 2004. Architecting an
extensible Digital Repository. Proceedings of the
2004 Joint ACM/IEEE Conference on Digital
Libraries (JCDL).

JTason McHugh, Serge Abiteboul, Roy Goldman,
Dallan Quass and Jennifer Widom, 1997. Lore: A
database management system for semistructured
data. SIGMOD Record, 26: 54-66.

Naomi Dushay, James C. French and Carl Lagoze,
1999. A characterization study of NCSTRL
distributed searching. Technical Report: TR99-
1725, Cornell University Ithaca, NY, USA.

Li Guilin, Li Jianzhong and Yang Yan, 2003.
Informatien extraction from PDF using plug-in.
Comp. Appl., 23: 110-112.

Gu Xianrvi, Li Jianzhong and Yang Yan, 2002.
Parallel document data loading algerithm in digital
library. Comp. Sci., 29: 104-106.

Ren Meirui, Li Jianzhong and Yang Yan, 2002.
The implementation of an automated text
categorization system based on Naive Bayes
method. Comp. Seci., 29: 285-287.

Yang Yan and Li Jianzhong, 2003. Cluster-based
data allocation method of web servers in digital
library. Comp. Eng. Appl., 39: 38-41.

Yang van and Li Jianzhong, 2005. Interest-based
recommendation in digital library. J. Comp. Sci., 1:
40-46.

Yang van and Li Jianzhong, 2004, Topology-based
paper recommendation in digital library. I. Comp.
Res. Develop. {In press).

Yan Yang, Bacliang Liv and Zhaogong zhang,
2003. Partiticn based hierarchical index for text
retrieval. In proceedings of the 4™ International
Conference of Web-Age Information Management.

