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Abstract: Problem statement: This study analyzed stress-strain of abdominal aortic wall in 3D 
geometry simulation. Abdominal aorta is a portion of the aorta vessel in the abdomen which many 
cardiovascular diseases often occur. Approach: Abdominal aortic wall was considered as 1 layers-3 
dimensional cylindrical geometry and homogeneous, incompressible and anisotropic material. 
Deformation of aortic wall was elastic deformation. Numerical method was used in our simulation. 
The abdominal aorta was under luminal loading of pressure in physiological pressure range of mice. 
Experimental parameters from previous study were used as initial configuration of present study. To 
verify present simulation, the simulation results were compared with the experimental data from 
previous study. Results: From the simulation, the wall thickness decreased, whereas the diameter, 
lumen cross-sectional area increased with internal pressures. The magnitude of radial stress, 
longitudinal stress and circumferential stress increased with increasing internal pressure and values 
were largest at the inside surface. The radial stress was obviously compressive and varied from a value 
equal to the negative of the internal pressure at the inside to zero at the outside. Conclusion: Stress-
strain analysis of abdominal aortic wall in a case of 3D geometry simulation can be simulated using 
numerical model. This model had been verified with experimental data from previous study. Good 
agreement was obtained. Mathematical model which considering aortic wall by using finite element 
method could be beneficially used as addition data for medical diagnosis. 
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INTRODUCTION 

 
 In blood circulation system, the aorta acts as both 
conduit and an elastic chamber. The elastic of aorta 
serves to convert the heart’s pulsatile flow to steady 
flow in peripheral vessels. The structural component of 
vessel wall are altered various conditions such as aging, 
diabetes and hypertension. That will be a risk factor for 
arteriosclerosis due to the mechanical properties 
abnormality through various mechanisms. One of the 
implications of the structural changes is the change in 
mechanical properties of the blood vessel. Increased 
stiffness of large arteries represents an early risk factor 
for cardiovascular diseases. Therefore, the assessment 
of aortic mechanical properties is particularly important 
in understanding the mechanisms of cardiovascular 
diseases. The major goal of present study is to analyze 
stress-strain of abdominal aortic wall in a case of three-
dimensional geometry simulation. Such that stiffness 
can be accordingly determined. 

MATERIALS AND METHODS 
 
Mathematical model of abdominal aortic wall: 
Abdominal aorta geometry in present study was 
considered three-dimensional thick-walled cylindrical 
vessel. The abdominal aorta was under statics internal 
pressure which is from flowing blood pressure acted on 
inside wall of abdominal aorta. In macroscopic study of 
aorta, abdominal aorta can be assumed as 
homogeneous, isotropic and incompressible material. 
Internal pressure acted on inside wall cause of inflation 
of abdominal aorta. Experimental parameters from 
study of Guo and Kassab (2003) Humphrey and 
Delange (2004); Silver et al. (2003) and Zhao et al. 
(2002) were used as initial configuration of present 
study. As abdominal aorta had no internal pressure, 
outside diameter of 0.2945 mm, wall thickness of 
44.467 micron, elastic modulus of 70 kPa, poisons 
ratio of 0.49 were considered. Internal pressures as in 
mice physiological pressure range of 30, 60, 90, 120 
and 150 mmHg were studied. 
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Theoretical equations: Considering inflation of three-
dimensional geometry abdominal aorta as in Fig. 1, 
plan strain had been suitably used. Plane strain is 
defined to be a state of strain in which the strain normal 
to the radial-longitudinal (r-z) plane and the shear stains 
γrθ and γθz were assumed to be zero. Assumptions of 
plane strain are realistic for long vessel (in the z 
direction) with constant cross-sectional area subjected 
to internal pressure that act only in the radial direction 
and do not vary in the longitudinal direction. In 
axisymmatric, the radial displacements developed 
circumferential strains that induced stresses σr, σθ, σz 
and γrz, where r, θ and z indicated the radial, 
circumferential and longitudinal directions, 
respectively. Components of stress related to a 
cylindrical coordinate system were shown in Fig. 2, 
using the standard notation σ(face)(direction). Triangular 
torus elements were used to idealize the axisymatric 
system because they can be used to simulate complex 
surfaces.  
 Because of symmetry about the longitudinal axis, 
the stresses were independent of the θ coordinate (no 
torsion was considered). Therefore, all derivatives with 
respected to θ vanished and the displacement 
component, v (tangent to the θ direction), the shear 
strains, γrθ and γθz and the shear stresses, τ rθ and τθz 
were all zero. 
 Strain-displacement relations in cylindrical 
coordinate system (Boresi and Chong, 1961; Bergel, 
1961; Carroll, 1998; Darly, 2007) were: 
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 The isotropic stress-strain relationship, obtained by 
simplifying the general stress-strain relationships was: 
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Numerical method: The finite element method is 
numerical procedure which can model the behavior of 
structure of vessel. Analytical solutions generally 
require the solution of ordinary or partial differential 
equations, which, because of the complication 
geometry, loading and material properties, are not 
usually obtainable. Hence, we need to rely on numerical 
methods, such as finite element method, for acceptable 
solutions. Derivation of the strain triangular element 
stiffness matrix and equations followed these steps. 

 
 
Fig. 1: Thick-walled cylindrical vessel subjected to 

internal pressure 
 

 
 
Fig. 2: Components of stress relative to a cylindrical 

coordinate system 
 

 
 
Fig. 3: Triangular element showing degree of freedom 
 
Select element type: Triangular elements as in Fig. 3 
were employed because boundaries of irregularly 
shaped bodies can be closely approximated in this way 
and because the expressions related to the triangular 
element were comparatively simple. 
 Each node had two degrees of freedom, radial and 
longitudinal displacement. ui and wi represent the node i 
displacement components in the radial and longitudinal 
direction, respectively. Triangular elements of 
abdominal aorta and discretized cylinder slice were 
shown in Fig. 4 and 5. 
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Fig. 4: Triangular elements of abdominal aorta 
 

 
 
Fig. 5: Discretized cylinder slice 
 
Select displacement functions: A linear displacement 
functions were taken to be: 
 

1 2 3

4 5 6

u(r,z) a a r a z
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= + +

 (3) 

 
 Equation 3 was then used to find finite element 
matrix. Expressing a set of Eq. 3 in abbreviated matrix 
form, that was: 
 
{ } [N]{d}ψ = a (4) 
 
Where: 
{ ψ} = The displacement function 
[N] = The shape functions represented the shape of 

{ ψ}  
{d} = Displacement matrix 
 
 Nodal displacements can be calculated by Eq. 4. 
 
 Define the strain-displacement and stress-strain 
relationships: Equation 1 were used and then rewritten 
in finite element matrix form as: 
 
{ } [B]{d}ε =  (5) 

where, [B] is a function of the radial and longitudinal 
coordinates. Equation 2 was used and then rewritten in 
finite element matrix form as: 
 
{ σ} = [D][B]{d} (6) 
 
where, [D] is given by the first matrix on the right side 
of Eq. 2. Strains of elements obtained from Eq. 5 were 
used to calculate stresses of elements. 
 
Derive the element stiffness matrix and equations: 
Using principle of minimum potential energy, the 
equations can be generated for strain triangular element. 
The equation of system obtained by principle of 
minimum potential energy was: 
 

T

V

[B] [D][B]dV{d} {f}=∫∫∫  (7) 

 
 It can be seen that the stiffness matrix was: 
 

T

v

[k] [B] [D][B]dV= ∫∫∫  (8) 

 
or 
 

T

A

k 2 B D B rdrdz= π            ∫∫  (9) 

 
 Method which was used to evaluate Eq. 9 was from 
[B] evaluation by a centroidal point of element. 
 Surface force from internal pressure can be found 
by: 
 

T
s

S

{f} [N ] {T}dS= ∫∫  (10) 

 
Assemble the element equations: The element 
equations assembly was in order to obtain the global 
equations and introduce boundary conditions. 
 
Solve for the nodal displacements: Nodal 
displacements were used in Eq. 5 to calculate strains of 
elements.  
 
Solve for the elements forces (stresses): Strains of 
elements obtained by using Eq. 5 were used to calculate 
stresses of elements. 
 

RESULTS 
 
 Results were shown in Fig. 6-11. To verify present 
simulation, the simulation results were compared with 
the experimental data from Guo and Kasseb (2003). 
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Fig. 6: Effect of internal pressure on inside diameter, 

outside diameter and wall thickness 
 

 
 
Fig. 7: Effect of internal pressure on circumferential 

strain 
 

 
 
Fig. 8: Effect of internal pressure on lumen cross-

sectional area 

 
 
Fig. 9: Effect of internal pressure on radial stress, 

longitudinal stress and circumferential stress 
 

 
 
Fig. 10: Circumferential stress-strain relationship 
 

 
 
Fig. 11: Radial, longitudinal and circumferential stress 

distributions across wall thickness at mean 
pressure of 96.4 mmHg of mice 
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 Effect of internal pressure on inside diameter, 
outside diameter and wall thickness, effect of internal 
pressure on circumferential strain, effect of internal 
pressure on lumen cross-sectional area and effect of 
internal pressure on radial stress, longitudinal stress and 
circumferential stress were shown in Fig. 6-9, 
respectively. 
 Also, it can be seen circumferential stress-strain 
relationship in Fig. 10. Moreover, radial, longitudinal 
and circumferential stress distributions across wall 
thickness at mean pressure of 96.4 mmHg of mice was 
shown in Fig. 11. 

 
DISCUSSION 

 
 From the results, it was found that effect of 
internal pressure on inside diameter, outside diameter 
as Fig. 6 had the same trend to results of Guo and 
Kasseb (2003). Although present results had a little 
difference with results of Guo and Kasseb (2003) but 
these diameters had been the same order of magnitude. 
These show that this simulation was shown good 
agreement. From this result, it can be seen that, when 
internal pressure increased, both of inside diameter and 
outside diameter linearly increased. But, increasing of 
inside diameter with internal pressure was greater than 
increasing of outside diameter. This difference of 
increasing of inside diameter and outside diameter 
resulted in wall thickness (wall thickness was computed 
as the difference between the outside and inside radius 
of vessel at different pressure) reduction linearly with 
internal pressure as shown in Fig. 6. Again, in this trend 
of wall thickness reduction of present result, it was also 
seen in result of Guo and Kasseb (2003) too.  
 Moreover, the variation of the average 
circumferential strains with pressure was computed. As 
internal pressure resulting in increasing of both diameters, 
it also resulted in linearly increasing of circumferential 
strain of abdominal wall as shown in Fig. 7. 
 The variation of lumen cross-sectional area with 
pressure of abdominal aorta was found to be linear as 
shown in Fig. 8. Present result of effect of internal 
pressure on lumen cross-sectional area had the same 
trend to result of Guo and Kasseb (2003) but there had 
more difference because lumen cross-sectional area of 
abdominal aorta increased by square of internal 
diameter at that internal pressure.  
 Hence, it can be stated that the linearity between 
pressure and various metric parameters (diameter, wall 
thickness, lumen cross-sectional area) in a large range 
of pressure (30-150 mmHg) was remarkable. The wall 
thickness decreased, whereas the diameter, lumen 
cross-sectional area increased. 

 The compliance can be expressed in terms of cross-
section area. The result of the mouse cross-sectional 
area compliance was shown as slope of lumen cross-
sectional area and internal pressure in Fig. 8. 
 The variations of radial stress, longitudinal stress 
and circumferential stress of abdominal aorta with 
internal pressure are shown in Fig. 9. Similarly, the 
stresses varied linearly with pressure in the pressure 
range of 30-150 mmHg. In Fig. 9, it can be seen that the 
magnitude of radial stress, longitudinal stress and 
circumferential stress increased with increasing internal 
pressure. And, from Fig. 11, these values were largest 
at the inside surface. The radial stress was of course 
compressive and varies from a value equal to the 
negative of the internal pressure at the inside to zero at 
the outside. 
 Relationship of circumferential stress-strain of 
abdominal aorta was shown in Fig. 10. This Fig. 10 was 
shown that stress in circumferential direction linearly 
increased with strain in circumferential. Slope of this 
stress-strain was elasticity of abdominal aorta of 70 kPa 
which was a constant as assumed previously.  

 
CONCLUSION 

 
 Stress-strain analysis of abdominal aortic wall in a 
case of 3D geometry simulation had been simulated 
using numerical model. This model were verified with 
experimental data from Guo and Kassab (2003). Good 
agreement had been obtained. 
 The wall thickness decreased, whereas the 
diameter, lumen cross-sectional area increased with 
internal pressures. 
 The magnitude of radial stress, longitudinal stress 
and circumferential stress increased with increasing 
internal pressure and values were largest at the inside 
surface. The radial stress was of course compressive 
and varied from a value equal to the negative of the 
internal pressure at the inside to zero at the outside. 
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