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Abstract: Dental Pulp Stem Cells (DPSCs) are non-embryonic, 

mesenchymal stem cells that may have significant potential for 

therapeutic and regenerative biomedical applications. MicroRNAs are 

small non-coding RNA molecules that can act as transcriptional 

activators and repressors in many types of mesenchymal stem cells. To 

date, few studies have evaluated the expression or activity of microRNAs 

among dental pulp stem cells. Using eight previously isolated and 

characterized DPSC lines, RNA was extracted and examined using PCR 

to determine expression of several key miRNAs, including miR-16, miR-

27, miR-124, miR-135, miR-143 and miR-218. These data demonstrated 

that at least four of these microRNAs are active among some of these 

DPSC isolates, including miR-16, miR-27, miR-124 and miR-218. 

Although the transcriptional targets of these miRNAs are not yet known, 

it is evident that the differential expression of some of these miRNAs 

(miR-27, miR-124, miR-218) may correlate (or even contribute) to 

differentiation status of these isolates. More research will be needed to 

determine the precise function and targets of these microRNAs to 

determine their effects on DPSC differentiation, which may foster 

biotechnology applications for DPSC bioengineering applications. 
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Introduction 

Dental Pulp Stem Cells (DPSCs) are non-embryonic, 

mesenchymal stem cells that may have significant potential 

for therapeutic and regenerative biomedical applications 

(Hollands et al., 2018; Ledesma-Martínez et al., 2016; 

Kabir et al., 2014). Many of these research studies 

regarding these potential treatments have focused on dental 

and oral tissues (Hernández-Monjaraz et al., 2018; 

Aurrekoetxea et al., 2015; Duncan et al., 2016). However, 

other research has suggested that DPSC may be useful to 

biomedical engineering and tissue regeneration efforts 

for tissues outside of the oral cavity or head and neck 

tissues (Daltoé et al., 2014; Collart-Dutilleul et al., 2015;   

Mead et al., 2017; Victor and Reiter, 2017).  
Although much has been discovered regarding the 

regenerative potential of DPSC, many facets of DPSC 

isolation and differentiation have yet to be elucidated 

(Zainuri et al., 2018; Bakopoulou et al., 2017; Bakkar et al., 

2017). For example, some evidence may suggest the 

method of isolation may influence the stem cell 

properties and alter the differentiation potential of DPSC 

isolates (Hilkens et al., 2013; Karamzadeh et al., 2012; 

Rodríguez-Lozano et al., 2012). However, due to the 

recent discovery of DPSCs and their regenerative 

potential, much remains to be discovered regarding the 

mechanisms that may control differentiation, such as 

epigenetic regulation-which have been more extensively 

studied in other types of Mesenchymal Stem Cells 

(MSC) (Saidi et al., 2017; Ozkul and Galderisi, 2016; 

Deng et al., 2015).  

MicroRNAs are small non-coding RNA molecules 

that can act as transcriptional activators and repressors in 

many types of mesenchymal stem cells (Katsuda and 
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Ochiya, 2015; Utikal et al., 2015; Huang et al., 2016; 

Martin et al., 2016) Some microRNAs (miR), such as 

miR-21 and miR-16 appear to be significant biomarkers 

and modulators of MSC potential and differentiation 

(Sekar et al., 2015; Clark et al., 2014; Fakhry et al., 2013). 

To date, few studies have evaluated the expression or 

activity of microRNAs among dental pulp stem cells     

(Tu et al., 2018; Sun et al., 2017; Li et al., 2015). 

Based upon the paucity of evidence regarding 

miRNA expression among DPSC, the primary goal of 

this study was to evaluate expression of several key 

miRNAs, including miR-16, miR-27, miR-124, miR-

135, miR-143 and miR-218.  

Methods 

Study Approval 

The review and approval for this project was 

facilitated by the Office for the Protection of Research 

Subjects (OPRS) and Institutional Review Board (IRB) 

OPRS#763012-1 “Retrospective analysis of Dental Pulp 

Stem Cells (DPSC) from the University of Nevada Las 

Vegas (UNLV) School of Dental Medicine (SDM) 

pediatric and adult clinical population”. The original 

isolation and collection of the DPSC samples was 

approved by the IRB and OPRS under protocol 

OPRS#0907-3148 “Isolation of Non-Embryonic Stem 

Cells from Dental Pulp”. 

In brief, adult patients that were scheduled for an 

extraction in the clinic prior to Orthodontic treatment 

(mainly for spacing issues) were asked to provide Informed 

Consent in order to participate. Any patients having teeth 

extracted due to other reasons, which included injury 

(fracture) or compromised dental pulp, pulp infection or 

disease, were excluded from participation. 

DPSC Isolation 

The original isolation of the dental pulp from the pulp 

chamber following extraction involved cross sectioning 

of the extracted tooth (pre-molar or third molar) at the 

Cemento-Enamel Junction (CEJ), following by 

extraction of the dental pulp with an endodontic broach, 

that was subsequently placed into a sterile 

microcentrifuge tube containing Phosphate Buffered 

Saline (PBS) for transfer to the biomedical laboratory 

(Alleman et al., 2013; Hung et al., 2013).  

In brief, each DPSC isolate was allowed to grow for 

ten passages using the direct outgrowth method and the 

rate of growth or Doubling Time (DT) was evaluated and 

assessed as the interval between 1:4 pass aging and 

achieving confluence. The analysis of DPSC isolate 

growth allowed for the identification of three distinct 

rates of DPSC growth, rapid Doubling Times (rDT) 

less than three days, slow Doubling Times (sDT) of 

greater than one week (8-10 days) and a smaller subset 

with intermediate Doubling Times (iDT) (Young and 

Kingsley, 2015; Tomlin et al., 2016). Each DPSC 

isolate was then cryopreserved at -80C for future 

analysis and experimentation. 

RNA Isolation 

For the current project, DPSC isolates were removed 

from storage and RNA was extracted from an aliquot of 

each DPSC isolate using 1.0×10
7
 cells using the total 

RNA isolation reagent (TRIR) from Molecular Research 

Center, Inc. (Cincinnati, OH) using the protocol 

recommended by the manufacturer. The quantification of 

RNA concentration and purity was then assessed using 

spectrophotometric analysis of each sample at 260 and 

280 nm. The ratio of A260:A280 measurements provide 

a measurement of RNA purity (acceptable range between 

1.7-2.0) and a general estimate of quantity. 

All isolates with sufficient quality (A260:A280 > 

1.7) and quantity (> 1 n/guL) were processed and 

screened for microRNA biomarker expression as 

previously described (Petersen and Kingsley, 2016; 

Brennan et al., 2018). Mesenchymal Stem Cell (MSC) 

biomarkers used in this screening included several 

previously validatedmiR-27, miR-124, miR-135, miR-

143 and miR-218, as well as the internal validation 

control, miR-16, as follows: 
 
miR-16 forward: 5’-TAGCAGCACGTAAATATTGGCG-3’; (22 
nt) Tm: 60.8°C miR-16 reverse: 5’-TGCGTGTCGTGGAGTC-3’; 
(16 nt) Tm: 59.3°C Optimal Tm (PCR): 54.3°C 

 

miR-27 forward: 5’-ATATGAGAAAAGAGCTTCCCTGTG-3’; 
(24 nt) Tm: 61.2°C miR-27 reverse: 5’-
CAAGGCCAGAGGAGGTGAG’3’; (19 nt) Tm: 64.5°C 
Optimal Tm (PCR): 56.2°C 
 
miR-124- forward: 5’-ATGAATTCTCGCCAGCTTTTTCTT-3’; 
(24 nt) Tm: 59.4°C miR-124 reverse: 5’-
ATGAATTCATTTGCATCTGCACAAACCC-3’; (28 nt) 
Tm:63.2°C 
Optimal Tm (PCR): 54.4°C 
 
miR-135 forward: 5’-CGATATGGCTTTTTATTCCTA -3’; (21 
nt) Tm: 54.8°C 
miR-135 reverse: 5’-GAGCAGGGTCCGAGGT -3’; (16 nt) Tm: 
61.8°C 
Optimal Tm (PCR): 49.8°C 
miR-143 forward: 5’-AGTGCGTGTCGTGGAGTC-3’; (18 nt) 
Tm: 59.6°C 
miR-143 reverse: 5’-GCCTGAGATGAAGCACTGT-3’; (19 nt) 
Tm:70.7°C 
Optimal Tm (PCR): 54.6°C 
 
miR-218 forward: 5’-TCG GGC TTG TGC TTG ATC T-3’; (19 
nt) Tm: 67°C 
miR-218 reverse: 5’-GTG CAG GGT CCG AGT G-3’’ (16 nt) 
66°C 
Optimal Tm (PCR): 61°C 
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Results 

To screen for the expression of specific non-coding 

RNA, total RNA was isolated from each DPSC and 

quantified to determine any differences in total RNA 

expression among the DPSC isolates (Table 1). These 

data revealed that total RNA obtained from DPSC 

isolates with rapid, slow and intermediate doubling times 

(rDT, iDT, sDT) were similar, p = 0.9646. More 

specifically, the average total RNA isolated from each 

type of DPSC isolate was not significantly different – 

although two isolates (dpsc-5653 rDT, dpsc-11418 sDT) 

had total RNA extraction values that were slightly lower 

than the majority of DPSC isolates. 

Following the successful isolation of RNA from all 

DPSC isolates with sufficient concentration for 

analysis, an assessment of the RNA quality was 

performed to determine the suitability of this RNA for 

subsequent PCR screening (Table 2). These data 

revealed the RNA purity (measured by the ratio of 

absorbance readings at 260 and 280 nm) was 

sufficient for PCR screening and analysis 

(A260:A280>1.65), with no significant differences 

observed between rDT, iDT and sDT averages, p = 

0.4849. Only one DPSC isolate (dpsc-3882 rDT) was 

found to be slightly below the commonly accepted 

average purity standard (A260:A280 = 1.54). 
Following the characterization of RNA obtained 

from each DPSC isolate, RT-PCR was utilized to 
screen the RNA for expression of non-coding 
microRNA (Fig. 1). These data revealed that all DPSC 
isolates expressed miR-16 (positive control), as 
expected. Screening for the additional microRNAs 
revealed differential expression of miR-27, miR-124 
and miR-218. More specifically, miR-27 expression 
was observed among the rDT but not the iDT or 
SDTDPSC isolates. In contrast, miR-124 expression 
was observed only among the sDT but not the rDT or 
iDT DPSC isolates. However, miR-218 was expressed 
among all the sDT and one of the rDT DPSC isolates 
but not among the iDT isolates. No expression of 
miR-135 or miR-143 was observed among any DPSC 
isolate screened.  

 

 

 

Fig. 1: Expression of miRNA among DPSC isolates. Screening for miRNA among eight DPSC isolates revealed expression of miR-
16 (positive control) among all DPSC isolates and differential expression of miR-27, miR-124 and miR-218. No expression 
was observed for miR-135 or miR-143 (data not shown) 
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Table 1: RNA isolation and concentration from DPSC isolates 

DPSC isolate RNA quantification Statistical analysis 

rDT 912.8 ng/uL +/- 22.5 χ2 = 0.072 
iDT 929.8 ng/uL +/- 5.9 d.f. = 2 
sDT 913.5 ng/uL +/- 36.1 p=0.9646 
dpsc-3882 (rDT) 921.1 ng/uL 
dpsc-5653 (rDT) 887.3 ng/uL 
dpsc-7089 (rDT) 930.1 ng/uL 
dpsc-8124 (iDT) 925.6 ng/uL 
dpsc-17322 (iDT) 933.9 ng/uL 
dpsc-11418 (sDT) 879.4 ng/uL 
dpsc-11750 (sDT) 910.0 ng/uL 
dpsc-11836 (sDT) 951.2 ng/uL 
 Range: 879.4-951.2 ng/uL 
 Average: 917.3 ng/uL 

 
Table 2: RNA purity from DPSC isolates. 

DPSC isolate RNA purity (A260:A280) Statistical analysis 

rDT 1.67 χ2 = 1.447 
iDT 1.77 d.f. = 2 
sDT 1.84 p = 0.4849 
dpsc-3882 (rDT) 1.54 
dpsc-5653 (rDT) 1.77 
dpsc-7089 (rDT) 1.72 
dpsc-8124 (iDT) 1.65 
dpsc-17322 (iDT) 1.89 
dpsc-11418 (sDT) 1.91 
dpsc-11750 (sDT) 1.83 
dpsc-11836 (sDT) 1.79 
 Range: 1.54-1.91 
 Average: 1.76 

 

Discussion 

Based upon the paucity of evidence regarding 

miRNA expression among DPSC, the primary goal of 

this study was to evaluate expression of several key 

miRNAs, including miR-16, miR-27, miR-124, miR-135, 

miR-143 and miR-218. The results of this pilot study have 

revealed that RNA could be successfully isolated and 

screened for microRNA expression among all the DPSC 

isolates. Furthermore, although the expression of the 

positive control microRNA (miR-16) was observed 

among all DPSC isolates, differential or lack of expression 

was observed among each of the remaining microRNAs 

(Yu et al., 2013; Eguchi et al., 2013). 

These results are significant as the evidence for 

microRNA expression among DPSC isolates is in the 

very early stages of exploration and few studies to date 

have evaluated this phenomenon (Tu et al., 2018;     

Sun et al., 2017; Li et al., 2015). This study screened for 

miR-143 and miR-135 expression, which was 

demonstrated to function in the pathway for myogenic 

differentiation of DPSC (Li et al., 2015), although 

virtually no information is currently available about the 

normal function and expression of these microRNA 

among non-differentiated DPSC.  

The results of this study greatly expand the range of 

microRNA expression profiles among DPSC to include 

several key regulators of MSC activity, such as miR-218 

which is known to regulate proliferation and stem cell 

activity through the TOB1 (transducer of ERBB2, 1) 

pathway (Gao et al., 2016). In addition, the role of miR-

124 which may function to modulate the Wnt/beta-

catening pathway and MSC chemotaxis – although no 

study has yet confirmed the expression of miR-218 in 

DPSC (Yue et al., 2016; Laine et al., 2012). Finally, this 

study may be the first evidence of the expression of miR-

27 among DPSC, which has been identified as a critical 

microRNA modulating the tolerogenic response of 

adipose-derived MSCs (Chen et al., 2013).  

Despite the significance of these findings, some 

limitations must also be discussed. For example, this 

study represents a small number of individual DPSC 

isolates and may therefore not be representative of all 

DPSC isolates (Alleman et al., 2013; Hung et al., 2013). 

In addition, the differential expression of microRNAs in 

this study may be functionally related to other factors 

that have not yet been identified – although significant 

amounts of information and characterization regarding 

these DPSC has already been identified (Young and 

Kingsley, 2015; Tomlin et al., 2016). Finally, financial 
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and other temporal constraints limited the number of 

microRNAs that could be screened which may suggest 

additional microRNAs that mediate the expression of 

those newly identified from this study (miR-27, miR-

124, miR-218) may be high priorities for future studies 

of these DPSC isolates. 

Conclusion 

Although the transcriptional targets of these 

miRNAs are not yet known, it is evident that the 

differential expression of some of these miRNAs 

(miR-27, miR-124, miR-218) may correlate (or even 

contribute) to differentiation status of these isolates. More 

research will be needed to determine the precise function 

and targets of these microRNAs to determine their effects 

on DPSC differentiation, which may foster biotechnology 

applications for DPSC bioengineering applications. 
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