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Abstract: Problem statement: Tooth loss can induce dramatical remodeling of alveolar bone 
because of mechanical loading impairment and strategies to help maintain adequate bone levels 
for subsequent therapies are sorely needed. Recent discoveries have shown that osteocytes, 
matrix-embedded cells in bone, respond to mechanical stimulation by modulating the expression 
of the Sost gene, which encodes for the protein sclerostin. This protein can oppose the WNT 
canonical pathway, a signaling cascade which regulates osteoblastic differentiation and bone 
homeostasis and thus orchestrate bone turn-over according to the skeleton’s mechanical needs. 
Conclusion: Experimental attempts at Sclerostin inhibition have provided interesting data on a 
novel approach to decrease bone resorption and promote bone formation, with important 
implications for the orthopedic and dental field. 
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INTRODUCTION 

 
 Bone is remodeled by teams of bone forming cells, 
the osteoblasts and bone resorbing cells, the osteoclasts, 
which cooperate within Bone Multicellular Units 
(BMU). These structures remodel and renovate the 
skeleton by gradually replacing old bone with new 
tissue (Martin and Seeman, 2008; Matsuo and Irie, 
2008; Parfitt, 2002). As new matrix is deposited 
osteoblasts can die by apoptosis or terminally 
differentiate into lining cells, which form a layer that 
covers the whole bone surface. Some cells however can 
become progressively encased within the matrix they 
contributed to build and be left behind as the BMU 
progresses, while maintaining their intercellular junctions 
with the neighboring cells on the surface. As they become 
trapped within a lacuna in bone these osteoblasts 
differentiate to a stage known as osteocyte (Franz-
Odendaal et al., 2006; Hirao et al., 2007; Paic et al., 
2009). This complex network of cells provides bone 
with the capability to renovate itself and to respond to 
outer stimuli, both metabolic and mechanical. The 
importance of mechanical loading for bone 
maintenance is now accepted as one of the cornerstones 
of bone biology (Duyck et al., 2001; Isidor, 2006; 
Kitamura et al., 2004; Mellal et al., 2004; Wiskott and 
Belser, 1999). It is known that absence of gravity or 
prolonged inactivity decrease bone strength and Bone 
Mineral Density (BMD) in limbs (Bikle and Halloran, 

1999; Bikle et al., 2003; Guadalupe-Grau et al., 2009; 
Hamilton et al., 2010) and alveolar bone too is heavily 
affected by loss of mechanical stimulation. Tooth loss 
and thus absence of masticatory loads, induces dramatic 
remodeling processes that quickly lead to ridge 
resorption (Amler, 1969; Cardaropoli et al., 2003; 
Iizuka et al., 1992; Ulm et al., 2009). This can pose 
significant problems to prosthetics and surgical 
rehabilitation. Some authors have also shown a relation 
between the design and shape of endosseous implants, 
common bone-retained devices used to support dental 
prosthesis and the preservation of the alveolar ridge, 
presumably because of alteration in masticatory force 
loading (Bratu et al., 2009; Eraslan and Inan, 2010; 
Kong et al., 2008; Orsini et al., 2009; 2012; Velde et al., 
2009; Vandeweghe et al., 2010; Wang et al., 2009).  
 Bone is therefore capable to perceive mechanical 
forces and respond appropriately to the force vectors that 
are applied to it, in order to better adapt to the needs and 
the activity of the organism. Several hypothesis have 
been formulated to explain this behavior, such as 
modifications in piezoelectric charges along bone 
surfaces upon application of mechanical forces 
(Fernandez et al., 2012; Fu et al., 2011). More recently 
however, a growing amount of evidence points at the 
possibility that the osteocytes buried in mineralized 
matrix can act as mechanosensors (Britz et al., 2009; 
Souza et al., 2005; Forwood and Turner, 1995; 
Isaksson et al., 2009).  



Current Research in Dentistry 3 (1): 18-26, 2012 
 

19 

The osteocytes: Osteocytes and their cellular projections 
that are contained in bone canaliculi form a wide 
network in bone, somewhat comparable to the nervous 
tissue organization. Recent evidence has shown that 
osteocytes are required for bone maintenance. Osteocyte 
specific ablation increased bone fragility, intracortical 
porosity and trabecular bone loss (Tatsumi et al., 2007). 
Conditional expression of the 11β-HSD2 gene in mouse 
osteoblasts and osteocytes protected them from 
glucocorticoid-induced apoptosis (O’Brien et al., 2004). 
Glucocorticoids induced similar bone loss in both wild-
type and OG2-11β-HSD2 transgenic mice but vertebral 
compression strength was preserved in transgenic mice, 
where cell apoptosis had been prevented. A possible 
explanation was that osteocyte loss reduced bone 
vascularization and canalicular fluid through impaired 
expression of Vascular Endothelial Growth Factor 
(VEGF) (Wang et al., 2007), thus reducing bone 
hydraulic stiffening (Weinstein, 2010). Aguirre et al. 
(2006) showed that mechanical unloading induced 
osteocyte apoptosis, a phenomenon which promoted 
osteoclast recruitment (Aguirre et al., 2006) and more 
recently the expression of Receptor Activator for 
Nuclear Factor kB Ligand (RANKL), a molecule that 
supports osteoclast formation and viability, by 
osteocytes has been demonstrated to be required for 
bone remodeling, in contrast to the long-standing 
idea that osteoblasts are the main source of RANKL 
(Xiong et al., 2011). Moreover osteocytes appear to be 
able to act at a distance through a secreted glycoprotein, 
Sclerostin (Weidauer et al., 2009), which is encoded for 
by the Sost gene (Turner et al., 2009; Winkler et al., 
2003).  
 
Sclerostin and the inhibition of WNT signaling: 
Sclerostin, transported through bone canaliculi  
(Poole et al., 2005) blocks membrane co-receptors 
LRP4, 5 and 6 (Holdsworth et al., 2012), inhibiting an 
intracellular signaling cascade known as WNT 
canonical pathway (Li et al., 2005; Veverka et al., 
2009). Several authors have demonstrated that the 
canonical WNT pathway is required in various events 
of embryo development (Huelsken et al., 2000; Martin 
and Kimelman, 2009) and in the control of Embryonic 
Stem cell (ES) proliferation and differentiation  
(Miki et al., 2011; Nusse, 2008; Sokol, 2011). The 
canonical or WNT/β-catenin pathway is activated upon 
binding of secreted WNT glycoproteins to membrane 
receptors Frizzled (Fzd) and a member of the low 
density lipoprotein receptor related protein family, 
LRP4/5 or 6 (Hartmann, 2006; Mikels and Nusse, 
2006). This interaction recruits Disheveled (Dvl) 
(Gordon and Nusse, 2006), which rescues β-catenin, a 

protein of the Armadillo family. Although β-catenin is a 
normal constituent of cell-to-cell junctions. it can form 
a cytoplasmic complex with two kinases, Glycogen 
Synthase Kinase 3 (GSK3) and Casein Kinase 1a (CKI) 
and two scaffold proteins, Axin and Adenomatous 
Polyposis Coli (APC) (Angers and Moon, 2009). This 
molecular complex targets β-catenin for proteosomal 
degradation through selective phosphorylation (Clevers, 
2006; Verheyen and Gottardi, 2010). Activation of Dvl 
recruits Axin to the cell membrane, disrupting the 
destruction complex and thus releasing β-catenin, 
which translocates to the nucleus. Once inside the 
nucleus, β-catenin can interact with a member of the T 
Cell Factor/Lymphoid enhancer factor (TCF/Lef1) 
transcription factor family (Mosimann et al., 2009) and 
initiate its transcription program. Beside its role in ES 
cell physiology, the WNT β-catenin-mediated signaling 
plays a relevant role in bone and cartilage metabolism 
(Krishnan et al., 2006; Williams and Insogna, 2009). 
Conditional ablation of β-catenin from osteochondral 
progenitors delayed fracture healing in mice (Huang et al., 
2009) and blocking β-catenin and TCF binding in 
osteoblasts through conditional expression of ICAT 
modulator impaired skeletal growth (Chen et al., 2008). 
Consistently, conditional deletion of β-catenin in 
murine preosteoblasts disrupted osteoblast 
differentiation (Rodda and McMahon, 2006). 
Alterations in bone mass have been observed after 
LRP5 deletion in rodents or as a consequence of 
mutations of this gene in humans (Boyden et al., 2002; 
Gong et al., 2001; Babij et al., 2003; Holmen et al., 
2004; Kokubu et al., 2004; Kato et al., 2002;  
Sawakami et al., 2006; Joeng et al., 2011). β-catenin 
can also act on mature bone and by controlling thee 
expression of Osteoprotegerin (OPG) (Glass et al., 
2005), the decoy receptor of RANKL.  
 Sost deletion increased bone mass and bone 
formation rate in mice (Li et al., 2008), while Sost 
overexpression induced a low bone mass phenotype 
(Kramer et al., 2010). Binding of sclerostin to LRP5 is 
altered in LRP5 mutations with high bone mass 
phenotype  (Balemans et al., 2008) and specific 
polymorphisms of Sost promoter are associated with 
osteoporosis (Huang et al., 2009). It has been shown 
that sclerostin levels correlate positively with age   
(Amrein et al., 2012; Modder et al., 2011) and higher 
serum levels of sclerostin have been proven to be 
associated with a higher rate of hip fractures in older 
women (Arasu et al., 2012). Circulating levels of 
sclerostin have been demonstrated to correlate with spine 
and hip BMD in postmenopausal women (Garnero et al., 
2012) and to be increased in long term immobilized 
patients (Gaudio et al., 2010; Spatz et al., 2012), in 
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Thalassemia-associated Osteoporosis patients 
(Voskaridou et al., 2012), in Paget’s disease and prostate 
cancer with bone metastasis (Yavropoulou et al., 2012), in 
type 2 Diabetes (Garcia-Martin et al., 2012; Gennari et al., 
2012) and with short-term Spinal Cord Injury (SCI), 
although sclerostin levels decreased in long-term SCI, 
reflecting the profound changes that the skeleton 
undergoes in these patients (Battaglino et al., 2012;   
Morse et al., 2012). Sost is a PTH target (Bellido et al., 
2005; Keller and Kneissel, 2005; Leupin et al., 2007) and 
the expression of a constitutively active PTH receptor 
(Schipani et al., 1995) in osteocytes was able to suppress 
Sost expression in bone and have a dramatic effect on 
bone mass (O’Brien et al., 2008). 
 What makes Sost of great importance for the 
response of bone to loading is that this gene is also 
controlled by mechanical stimulation. Rodent studies 
showed that even short mechanical stimulations of 
long bones in mice are able to reduce the expression 
of Sost and increase bone formation at the same time 
(Moustafa et al., 2009; Robling et al., 2008). 
Conversely, it has been proposed that the negative 
effects of mechanical unloading on BMD and bone 
strength are mediated by an antagonistic effect of 
Sclerostin on WNT/β-catenin signaling (Lin et al., 
2009). Consistently with this idea, the ablation of the 
WNT receptor LRP5 abolished the osteogenic response 
of ulnae to mechanical loading (Sawakami et al., 2006) 
and constitutively expression of Sost in osteocytes 
prevented load anabolic effects on bone (Tu et al., 2012).  
 
The localization of osteocytes can affect their 
production of sclerostin: Osteocytes that are closer to 
the surface and thus probably undergo a more intense 
mechanical stimulation, tend to be more negative to 
sclerostin expression than deeper osteocytes and 
osteocytes in proximity of an area of bone formation 
are more often Sclerostin negative (Poole et al., 2005), 
suggesting that sclerostin distribution could contribute 
to temporal and spatial regulation of bone remodeling.  
 
Inhibition of sclerostin and periodontal therapy: 
Future perspectives: On account of the dramatic effects 
of Sost regulation in animal experimental models, Sost 
has been proposed as a novel and potent therapeutic 
target for bone loss (Deal, 2009; Baron and Rawadi, 
2007; Hoeppner et al., 2009; Rawadi and Roman-
Roman, 2005; Shahnazari et al., 2008). The effect of 
anti-sclerostin antibodies has been investigated in 
different experimental settings and it has been 
convincingly shown that inhibition of sclerostin increases 
bone mass, bone architectural parameters and bone 
strength in intact (Li et al., 2010; Tian et al., 2010; 

Veverka et al., 2009) and ovariectomized rats (Li et al., 
2009; 2011). Similar results were observed in mouse 
models of colitis-induced- (Eddleston et al., 2009) and 
glucorticoid-induced bone loss (Marenzana et al., 2011). 
These promising results indicate that there could be 
novel potential applications for the use of this and similar 
compounds for the treatment of alveolar bone defects. 
Interestingly, it has been shown that anti-sclerostin 
antibody prevented unload-induced bone loss in a rat 
model of hindlimb immobilization (Tian et al., 2011), 
which suggests that sclerostin is indeed a potential 
therapeutic target to oppose alveolar bone loss after tooth 
extraction, a very common clinical situation, which often 
requires surgery to allow for prosthetic rehabilitation.  
 A strategy that is being currently developed to 
target sclerostin in human is the creation of human 
anti-Sclerostin antibody Amgen, Thousand Oaks, CA; 
USA and sclerostin small molecule inhibitors 

Osteogenex, Kansas City, KS; USA. Common 
therapeutic approaches in dentistry mostly rely on the 
use of grafts or biomaterials to act as scaffolds to 
promote the regeneration of endosseous defects    
(Esposito et al., 2009; Nkenke and Stelzle, 2009;    
Sculean et al., 2008) with little of no use of growth factors, 
which have been tested and proposed over the years 
(Chang et al., 2009; Cortellini et al., 2008; Giannobile and 
Somerman, 2003; Kaigler et al., 2006; Lynch et al., 2006; 
Nevins et al., 2003; Trombelli and Farina, 2008; 
Wennstrom and Lindhe, 2002; Wikesjo et al., 2009). 
Sclerostin inhibition however seems to act directly on the 
the mechanisms that underlie tooth-loss induced alveolar 
remodelind and the data that is being gathered on the 
effects of Sclerostin inhibition in axial bone strongly 
suggest that this approach should be further investigated in 
the dental field where it could provide interesting, if not 
decisive results.  
 

 CONCLUSION 
 
 Sclerostin is a novel protein produced by 
osteocytes which has profound effects on bone 
remodeling by controlling bone formation and bone 
resorption and is responsible for coupling hormonal 
stimuli and mechanical stimulation to bone turnover. As 
such it is becoming clear that this protein is a useful 
target for future bone anabolic therapies and possible 
applications in the dental field can be envisaged to 
promote the regeneration of alveolar bone.  
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