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Abstract: Problem statement: In order to reveal the missing genetic component of Rheumatoid Arthritis 
(RA) susceptibility, we carried out a genome-wide high-order epistatic interaction study for RA. 
Approach: A powerful Bayesian strategy was applied to analyze the data of Genome-Wide 
Association Studies (GWAS) from the Welcome Trust Case Control Consortium (WTCCC), where 
319 high-order interactions were found across the whole genome and many of which were validated by 
the GWAS data from the North American Rheumatoid Arthritis Consortium (NARAC). Results: This 
is the first study intensively searching for high-order epistatic interactions genome-widely for RA. 
Conclusion: Our results suggest that high-order interactions might explain a big proportion of missing 
genetic component of RA. In the meanwhile, synapse, calcium ion binding and membrane part likely 
have interactive associations with RA. This finding implies that not only autoimmune system but also 
nervous system can play an important role in RA.  
 
Key words: Welcome Trust Case Control Consortium (WTCCC), North American Rheumatoid 

Arthritis Consortium (NARAC), the results suggest, autoimmune system, genetic 
component 

 
INTRODUCTION 

 
 Rheumatoid Arthritis (RA) is the most common 
chronic inflammatory autoimmune disease that leads to 
progressive joint destruction with the prevalence up to 
1% in adult populations (Gabriel, 2001; Hu et al., 
2011). Twin studies estimated that genetic factors 
contribute to 60% of the susceptibility of RA 
(MacGregor et al., 2000). Multiple loci associated with 
RA susceptibility have been identified by genome-wide 
linkage and association studies (Cornelis et al., 1998; 
WTCCC, 2007; Plenge et al., 2007; Stahl et al., 2010). 
However, current findings only account for a small 
portion of the genetic component to the RA 
susceptibility (Stahl et al., 2010; Raychaudhuri et al., 
2008; Imboden, 2009), while the most recent GWAS 
findings are ethnicity-specific (Terao et al., 2011; 
Freudenberg et al., 2011; Julia et al., 2008). In order to 
find the missing heritability of RA, it is critical to study 

epistatic interactions in which genetic variations may 
show weak marginal penetrance, but may interact with 
each other in complex ways (Manolio et al., 2009; Wu 
and Zhao, 2009). The complicated interacting structures 
likely exist in the pathogenesis of RA due to the 
sophisticated regulatory mechanisms encoded in the 
human genome.  
 This study provides the first genome-wide high-
order interaction analysis for RA using Bayesian 
epistasis association mapping (BEAM and BEAM2) 
methods (Zhang and Liu, 2007; Zhang et al., 2011). 
Specifically, BEAM uses Markov chain Monte Carlo 
(MCMC) to ‘interrogate’ each marker conditional on 
the current status of other markers iteratively and has 
been proved to provide a higher statistical power than 
many commonly used interaction-mapping methods in 
GWAS (Culverhouse et al., 2004; Cook et al., 2004; 
Ritchie et al., 2001; Nelson et al., 2001). Furthermore, 
to capture the block-wise structure of human genome, 
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Zhang et al. (2011) extended BEAM model to BEAM2, 
the latter incorporates LD blocks into the original 
Bayesian partition model. BEAM2 is able to 
simultaneously infer haplotype-blocks and select SNPs 
within blocks that are associated with the disease, either 
individually or through epistatic interactions with other 
SNPs across the genome. BEAM2 has shown great 
success in studying type-1 diabetes (Zhang et al., 
2011). We applied BEAM and BEAM2 to the RA data 
from WTCCC (2007) and found fruitful interesting 
interacting structures for RA, many of which were 
validated by NARAC data (Plenge et al., 2007). In 
particular, our results show that not only autoimmune 
system but also nerve system plays an important role in 
genetic mechanisms of RA. 
 

MATERIALS AND METHODS 
 
Analysis strategy: Figure 1 shows a flow chart for our 
analysis strategy. We first applied BEAM2 (Zhang et 
al., 2011) to analyze the WTCCC RA data on each 
chromosome. BEAM2 is a sophisticated method that 
takes care of LD block structure while searching for 
epistasis. In the second step, we took the advantage of 
BEAM (Zhang and Liu, 2007) as a more efficient tool to 
search for genome-wide high-order interactions. In 
particualr, we pooled all BEAM2-selected candidate 
SNPs with posterior assocition probabilities > 0.5 from 
22 autosomal chromosomes and ran the Bayesian 
variable partition model to search for high-order 
interactions across all the 22 chromosomes. Finally, 
these identified high-order interactions were validated 
by NARAC data (Plenge et al., 2007). 
 
Data description: The RA data set from the WTCCC 
(2007) contains 1999 RA patients, 1504 controls from 
the 1958 Birth Cohort (58C) and 1500 additional 
controls from National Blood Service (NBS). We 
removed all SNPs from the sample if they have 
genotype scores less than 0.9 in more than 20 
individuals within each group of RA, 58C, or NBS. In 
addition, we removed all non-polymorphic SNPs, SNPs 
violating Hardy-Weinberg Equilibrium at a Bonferroni 
adjusted 0.05 level and SNPs with bad clustering 
quality according to the WTCCC summary report 
(WTCCC, 2007). After SNP filtration the dataset 
contains 301,653 high quality SNPs. 
 From the 90 unique SNPs involved in the 319 
interactions identified above, we retrieved 18 SNPs 
from the RA GWAS data from NARAC (Plenge et al., 
2007) that have good genotype data quality: Hardy-
Weinberg Equilibrium P-values > 0.001, minor allele 
frequencies > 0.01 and the SNP- and subject-missing rates 

< 10%. The final data contain 2,002 subjects (862 cases 
and 1,140 controls). The missing genotypes were 
eliminated at each test on site. 
 

RESULTS  
 
Search for chromosome-wise high-order 
interactions: Using BEAM2 to analyze each 
autosomal chromosome individually, we obtained the 
chromosome-wise posterior probabilities of SNPs 
associated with RA, which are shown in Fig. 2. It is 
clear that MHC region on Chromosome 6 strongly 
associates with RA: there are 72 SNPs located in 
MHC region with posterior probabilities > 0.5. At the 
same time, we also identified many associated SNPs 
outside MHC region: 85 SNPs across autosomal 
chromosomes except chr16 and chr21. Table 1 shows 
that our results are highly consistent with the original 
paper (WTCCC, 2007) on detecting single SNP effects. 
 
Detection of inter-chromosomal high-order 
interactions: We applied BEAM on all the SNPs that 
have posterior probabilities of association greater than 
0.5 (by BEAM2) to search for inter-chromosomal high-
order interactions among these SNPs. After 2000 runs 
of BEAM to explore as many local modes as possible, 
we obtained 319 interactions. The supplementary files 
completetableX.txt and SNPinfoX.txt provide the 
diplotype P-values (Fisher’s exact test) and the 
annotations of the involved SNPs, respectively. 
Table 2 summarizes some representatives of the 
significant interactions that have P-values less than 
4.03e-11 (at family-wise significant level 0.05 after 
Bonferroni adjustment for about 1.24e9 possible 
diplotypes of these 319 interactions) and have 
diplotype frequencies larger than 0.05 in either 
controls or cases for stable results. The rows were 
sorted by decreasing genetic disease relative risk 
(DRR). Table 3 lists the SNP annotations for these 
selected interactions in Table 2.  
 
Table 1 Comparison with Previous WTCCC Analysis (WTCCC, 2007) 

Strongest loci 
------------------------------------------------------------------------------------------------ 
Previously  Posterior  
replicated loci SNP or region probability 
RA rs6679677 0.9992 
RA MHC Many >0.5 
Moderate loci   
RA rs6684865 0.4602 
RA rs11162922 0.333 
RA rs3816587 0.8894 
RA rs6920220 0.7692 
RA rs11761231 0.9468 
RA rs2104286 0.36 
RA rs9550642 0.7124 
RA rs2837960 does not pass 
  quality filter 
RA rs743777 0.8724 
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Table 2: Significant interactions obtained from the WTCCC data. The columns are: Inter: interaction index; Diplo.: diplotype, where number 0, 1 
or 2 represents the copy number of Allele 2 (in Table 3) at the corresponding SNP; Contr.1: diplotype frequency in 58C controls; 
Contr.2: diplotype frequency in NBS controls. Case: diplotype frequency in cases; P-value.12: Fisher’s exact test P-values between two 
control groups; P-value: Fisher’s exact test P-values between pooled controls and cases; DRR: disease relative risk 

Inter Diplo. Contr.1 Contr.2 Cases P-value.12 P-value DRR 
303 002022002022020 0.04 0.04 0.16 0.92 1.96E-50 2.02 
121 02222002022020 0.04 0.04 0.16 0.92 3.73E-50 2.02 
11 00202220002022020 0.04 0.04 0.16 0.92 7.16E-50 2.01 
182 0020222002022020 0.04 0.04 0.16 0.92 7.16E-50 2.01 
228 2220020 0.08 0.06 0.20 0.03 5.71E-39 1.76 
153 22002000 0.09 0.07 0.20 0.09 2.14E-37 1.73 
1 1002 0.06 0.07 0.12 0.46 2.34E-12 1.45 
290 1022 0.05 0.06 0.11 0.39 2.52E-11 1.45 
113 1000 0.06 0.07 0.12 0.42 7.80E-12 1.44 
75 1000 0.07 0.08 0.14 0.58 1.32E-12 1.44 
109 100200 0.06 0.06 0.12 0.50 3.22E-11 1.44 
114 1000 0.07 0.07 0.13 0.52 2.39E-11 1.42 
109 000200 0.61 0.63 0.52 0.43 1.07E-11 0.79 
176 220002022 0.41 0.42 0.32 0.48 8.34E-12 0.78 
113 0000 0.62 0.63 0.52 0.50 2.86E-13 0.78 
1 0002 0.65 0.67 0.56 0.26 1.15E-13 0.77 
77 000000 0.66 0.67 0.55 0.76 7.76E-15 0.76 
75 0000 0.72 0.73 0.62 0.71 3.23E-15 0.75 
29 0011 0.39 0.36 0.27 0.19 4.64E-14 0.75 
41 202202 0.27 0.28 0.19 0.74 7.69E-12 0.74 
174 22000202022 0.26 0.25 0.17 0.93 1.20E-11 0.74 
114 0000 0.71 0.71 0.59 0.78 1.28E-18 0.73 
290 0022 0.59 0.58 0.44 0.97 6.52E-25 0.70 
274 20011 0.15 0.16 0.09 0.76 7.89E-12 0.67 
60 00112000 0.14 0.14 0.08 0.96 1.54E-12 0.64 
155 20001102 0.14 0.14 0.07 0.83 2.10E-13 0.62 
180 2002000 0.14 0.15 0.07 0.61 1.58E-15 0.60 
285 2220020 0.16 0.16 0.08 1.00 1.18E-19 0.57 
16 0020020 0.17 0.17 0.08 0.77 2.69E-20 0.57 
302 2002002 0.16 0.16 0.07 0.96 8.10E-20 0.56 
35 002220020 0.15 0.15 0.07 0.88 1.02E-18 0.56 
233 002002002 0.14 0.15 0.06 0.64 1.64E-19 0.54 

 
Table 3: SNP annotations for the representative high-order interactions listed in Table 2 

 

Interaction SNPs Allele1 Allele2 Chromosome  Location 
228 rs10490886 C T chr3                  62684434 
 rs17067111 A G chr3                  62697011 
 rs3134926 C G chr6                  32308125 
 rs6936204 A G chr6                 32325070 
 rs12524063 A T chr6                  32405288 
 rs4959093 C T chr6                  32421075 
  rs6907322 A G chr6                 32432923 
290 rs6679677 A C chr1                 114015850 
 rs3811019 C G chr1                 114183625 
 rs4713376 A C chr6                 30881293 
  rs12195469 A T chr6                 30897587 
302 rs2736172 C T chr6                 31698877 
 rs707974 C T chr6                 31737478 
 rs2075800 A G chr6                 31885925 
 rs2072633 A G chr6                 32027557 
 rs17421624 C T chr6                 32174155 
 rs2292365 A T chr9                 91112710 
  rs10991868 A G chr9                 91129311 
233 rs4312689 G T chr3                 45503637 
 rs2128361 C T chr3                 45508228 
 rs2736172 C T chr6                 31698877 
 rs707974 C T chr6                31737478 
 rs2075800 A G chr6                31885925 
 rs2072633 A G chr6                32027557 
 rs17421624 C T chr6                32174155 
 rs2292365 A T chr9                91112710 
  rs10991868 A G chr9                91129311 
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Table 4: Representative interactions validated using NARAC data. The columns are: Inter: interaction index; Diplo.: diplotype, where number 0, 
1 or 2 represents the copy number of Allele 2 (in Table 5); Contr.: diplotype frequency in controls; Case: diplotype frequency in cases; 
P-value: Fisher’s exact test P-values; DRR: disease relative risk; Contr.1: diplotype frequency in 58C controls; Contr.2: diplotype 
frequency in NBS controls. 

           NARAC        WTCCC         
  ------------------------------------------------------------ --------------------------------------------------------------------------- 
Inter Diplo. Contr. Cases P-value DRR Contr.1 Contr.2 Cases P-value DRR 
26 200 0.07 0.120 1.32E-05 1.41 0.10 0.09 0.15 4.58E-09 1.33 
31 200 0.14 0.010 2.78E-32 0.09 0.15 0.16 0.06 5.69E-29 0.46 
 010 0.10 0.240 1.66E-16 1.64 0.10 0.08 0.18 1.18E-20 1.52 
 000 0.02 0.100 4.87E-14 1.86 0.03 0.03 0.07 3.09E-09 1.51 
 210 0.05 0.002 3.97E-13 0.07 0.05 0.06 0.02 1.37E-11 0.44 
  020 0.09 0.160 9.75E-08 1.45 0.08 0.07 0.12 1.12E-08 1.36 
52 000 0.26 0.400 1.13E-11 1.43 0.27 0.27 0.36 1.78E-11 1.28 
  010 0.24 0.140 1.05E-08 0.66 0.22 0.24 0.17 2.74E-06 0.81 
96 102 0.09 0.030 1.26E-07 0.48 0.10 0.10 0.05 1.21E-12 0.57 
180 020 0.15 0.050 9.88E-15 0.42 0.16 0.17 0.09 6.41E-16 0.61 
 200 0.08 0.170 2.50E-09 1.51 0.07 0.08 0.13 4.02E-11 1.41 
  100 0.12 0.200 2.87E-06 1.35 0.13 0.11 0.16 8.78E-05 1.21 
236 2000 0.12 0.010 9.25E-29 0.09 0.14 0.14 0.05 2.91E-25 0.46 
 0110 0.04 0.150 1.88E-17 1.83 0.05 0.04 0.11 6.57E-17 1.60 
  0020 0.09 0.160 3.69E-07 1.43 0.08 0.07 0.12 1.12E-08 1.36 
246 1200 0.09 0.005 5.07E-20 0.09 0.09 0.08 0.03 3.83E-19 0.40 
  1011 0.02 0.080 1.60E-10 1.83 0.03 0.02 0.05 1.77E-05 1.40 
255 010 0.03 0.120 1.29E-16 1.88 0.05 0.04 0.09 6.98E-12 1.51 
297 0010 0.01 0.060 1.26E-08 1.82 0.03 0.02 0.06 3.10E-06 1.44 
303 000 0.09 0.340 2.86E-44 2.10 0.11 0.09 0.27 1.61E-52 1.81 
307 000 0.26 0.400 1.13E-11 1.43 0.27 0.27 0.36 1.78E-11 1.28 
  010 0.24 0.140 1.05E-08 0.66 0.22 0.24 0.17 2.74E-06 0.81 
 
Table 5:  SNP annotations for the representative interactions listed in Table 4 
Interaction SNPs Allele1 Allele2 Chromosome Location 
26 rs4538338 A C chr3 141436333 
 rs6907322 A G chr6 32432923 
 rs3135363 C T chr6 32497626 
52 rs6907322 A G chr6 32432923 
 rs3135363 C T chr6 32497626 
 rs634435 A G chr9 3997714 
180 rs2075800 A G chr6 31885925 
 rs2072633 A G chr6 32027557 
 rs634435 A G chr9 3997714 
236 rs6457617 C T chr6 32771829 
 rs3916765 A G chr6 32793528 
 rs9461799 C T chr6 32797507 
 rs634435 A G chr9 3997714 
303 rs6907322 A G chr6 32432923 
 rs3135363 C T chr6 32497626 
 rs6457617 C T chr6 32771829 

The full versions of Table 2 and 3 are given in 
supplementary files bestEpistasesFromWTCCC.txt and 
bestEpistasesFromWTCCC-SNPs.txt, respectively. From 
Table 2 and 3, we can see that most inter-chromosomal 
high-order interactions are among chr1, chr3, chr6 and 
chr9. A lot of them are more than 4-way interactions with 
very high Disease Relative Risk (DRR). Many protective 
diplotypes with DRR < 0.8 can also be found in Table 2. 
Diplotype frequencies in two control populations, 58C and 
NBS, are highly consistent, suggesting that these 
frequency estimations are stable.  
 
Validation of interactions using NARAC data: Using 
NARAC data (Plenge et al., 2007) we sought to 
validate the high-order interactions identified by the 

WTCCC data. From the 90 unique SNPs involved in 
the 319 interactions, we retrieved 18 SNPs from 
NARAC data. For each supplementary table 
completetableX.txt obtained from the WTCCC data, 
whenever at least two NARAC SNPs are available for 
this interaction, we generated a supplementary table 
NARAC-completetableX.txt to list the diplotype 
frequencies and the P-values in the similar format. The 
supplementary file bestEpistasesFromWTCCC-
NARAC.txt summarizes the significant NARAC-
validated high-order interactions involving at least three 
SNPs. These interactions have P-values < 2.94e-5 for a 
family-wise significance level of 0.05 after the 
Bonferroni adjustment based on 1701 possible 
diplotypes of these interactions.  
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Table 6: Best GO terms for associated RA genes. 
     P-Value (Correct- 
Best GOs Accession Genes(chr) Count (24) Total (33972) Method: Benjamini) 
GO:0045202 Synapse (exact: synaptic junction) CADPS (chr3) 4 254 0.0115 
  CLSTN2(chr3)  
  ERC2(chr3)  
  PCDH15(chr10)    
GO:0005509 Calcium ion binding LRP1B(chr2) 6 1458 0.0705 
 (related: calcium ion storage activity) CADPS(chr3) 
  CLSTN2(chr3) 
  CACNB2(chr10)  
  PCDH15(chr10) 
  NELL1(chr11)   
GO:0044425 membrane part KCNH7(chr2) 13 7726 0.0705 
  LRP1B(chr2) 
  CLSTN2(chr3) 
  CADPS (chr3) 
  ERC2(chr3)  
  NDST4(chr4) 
  LHFPL3(chr7)  
  CSMD3(chr8) 
  PTPRD(chr9) 
  CACNB2(chr10)   
  PCDH15(chr10) 
  SORCS3(chr10)  
  GRM5(chr11)   

 

 
 
Fig. 1: The flow chart of our Bayesian analysis strategy 
 
At the same time, these interactions also have 
moderately small P-values < 1e-4 for WTCCC data, as 
well as stable diplotype frequencies > 0.05 in either 
cases or controls for both NARAC and WTCCC data. 
The SNP annotations corresponding to these 
interactions are given in the supplementary file 
bestEpistasesFromWTCCC-NARAC-SNP.txt. Table 4 
shows the selected high-order NARAC-SNP 
interactions that have DRR > 2 or are located on more 
than one chromosome (i.e., inter-chromosomal 
interactions). Table 5 shows the SNP annotations for 
selected interactions in Table 4. The validated inter-
chromosomal interactions are on chromosomes 6 and 9 
and chromosomes 6 and 3. 
 
Synapse, calcium ion binding and membrane part 
associated with RA: MHC region on chromosome 6 

is well-known for RA (Kozyryev and Zhang, 2012; 
Zhang et al., 2012). But very few other loci were 
detected without accounting for epistasis interaction. 
In our study, 31 associated SNPs were detected in 24 
genes with posterior probabilities of association 
larger than 0.5 across 12 chromosomes (excluding 
chromosome 6) in WTCCC data. In order to test 
overrepresentation of biological pathways in these 
RA-associated genes, we use GOstat (Beissbarth and 
Speed, 2004) (http://gostat.wehi.edu.au/) to search 
enriched GO terms in these 24 RA-associated genes. 
Table 6 shows the top three GO terms:  Synapse, 
calcium ion binding and membrane part (with 
Benjamini-corrected false discovery rates 0.0115, 
0.0705 and 0.0705 respectively), the correspondingly 
associated genes and their chromosomes. 
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Fig. 2: Chromosome-wise posterior probabilities of SNPs associated with RA on each chromosome. Dot indicates the 

marginal posterior probability of association per SNP, circle indicates the total posterior probability of 
association per SNP (i.e., the marginal plus the joint association probabilities). We connected the dot and circle 
for each SNP for better illustration. X-axis indicates the chromosomal position (Mb), y-axis shows the posterior 
probability 

 
DISCUSSION 

 
 Rheumatoid arthritis is an inflammatory disease, 
primarily of the joints, with autoimmune features and a 
complex genetic component. To our limited knowledge 
this is the first time that synapse, calcium ion binding 
and membrane part are reported to be interactively 
associated with RA in whole-genome association 
studies. Rheumatoid arthritis is characterized by a 
chronic inflammation of the synovial joints (Feldmann 
et al., 1996) and factors like Fibroblast-Like 
Synoviocyte (FLS) and T cells are actively involved in 
joint deconstruction and synapse is the contact point of 
these factors (Tran et al., 2007). Also it is well-known 

that calcium ions and membrane are important parts in 
synaptic neurotransmission and peripheral and central 
nervous system is very important for joint protection 
(O'Connor and Vilensky, 2003). It is already known 
that neurogenic factors play very important roles in the 
etiopathogenesis of osteoarthritis (O'Connor and 
Vilensky, 2003). Our results suggest that synaptic 
neurotransmission could be as important for RA. 
 

CONCLUSION 
 
 Our results suggest that high-order interactions 
might explain a big proportion of missing genetic 
component of RA. In the meanwhile, synapse, calcium 
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ion binding and membrane part likely have interactive 
associations with RA. This finding implies that not only 
autoimmune system but also nerve system could play 
an important role in RA. 
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