
 

 

 © 2018 Toru Ogura and Takemi Yanagimoto. This open access article is distributed under a Creative Commons Attribution 

(CC-BY) 3.0 license. 

 Current Research in Biostatistics 

 

 

 

Original Research Paper 

Improvement of Bayesian Credible Interval for a Small 

Binomial Proportion Using Logit Transformation 
 

1Toru Ogura and 2Takemi Yanagimoto 

 
1Clinical Research Support Center, Mie University Hospital, Tsu City, Mie, 514-8507, Japan 
2Institute of Statistical Mathematics, Tachikawa City, Tokyo, 190-8562, Japan 

 
Article history 

Received: 23-10-2018 

Revised: 30-10-2018 

Accepted: 19-11-2018 

 

Corresponding Author: 

Toru Ogura 

Clinical Research Support 

Center, Mie University Hospital, 

Tsu City, Mie, 514-8507, Japan 
 

Email: t-ogura@clin.medic.mie-u.ac.jp 

Abstract: A novel credible interval of the binomial proportion is proposed 

by improving the Highest Posterior Density (HPD) interval using the logit 

transformation. It is constructed in two steps: first the HPD interval for the 

logit transformation of the binomial proportion is driven and then the 

corresponding credible interval of the binomial proportion is calculated by 

the inverse logit transformation of that interval. Two characteristics of the 

proposed credible interval are: (i) the lower limit is over 0% when the zero 

events are obtained and (ii) the error probability is not large for any 

population binomial proportion. The characteristic in (i) corresponds to the 

claims in the Rule of Three, which means that even if zero events are 

obtained from n trials, the events might occur three times in other n trials. 

The characteristic in (ii) is important for medical research. This is because 

the error probabilities of all groups do not increase even if there is a high 

population binomial proportion among some groups. The proposed 

credible interval is compared with the existing confidence and credible 

intervals. We verified using numerical and practical examples to confirm 

the potential usefulness of the proposed credible interval. 

 

Keywords: Clopper-Pearson Confidence Interval, Error Probability, 

Highest Posterior Density Interval, Zero Events 

 

Introduction  

Since the confidence or credible interval of the 

binomial proportion p is routinely used in medical 

research, further detailed studies are important under 

various practical settings. We are interested in a case in 

which the binomial proportion is expected to be a small. 

As a result, the number of events x may be 0 in n trials. 

In this case, the events might occur three times in other n 

trials by the Rule of Three (Hanley and Lippman-Hand, 

1983). Even if the result of the zero events is obtained, 

the estimated point of p is not 0%.This is very useful in 

medical research (Jovanovic and Levy, 1997). The upper 

limit of confidence and credible intervals specialized for 

zero events have been studied by various researchers and 

include the credible interval using the non-informative 

priors (Tuyl et al., 2008) and the credible interval using 

the informative priors (Winkler et al., 2002). The lower 

limit of the confidence or credible interval for zero 

events is 0%, which means that it allows zero risk, but 

this is not suitable for medical research (Liu et al., 

2015). Note that the plug-in predictor ˆ( | )f y p  

degenerates at 0 when p̂ = 0. It is our understanding that 

the event is predicted to occur with a low binomial 

proportion, even when zero events are obtained. 
The lower limits of most existing confidence 

intervals for zero events are 0% (Newcombe, 2012), 

such as the Clopper-Pearson confidence interval 

(Clopper and Pearson, 1934). The Clopper-Pearson 

confidence interval is often used to estimate the interval 

of the binomial proportion. It actually preserves the 

significance level regardless of the population binomial 

proportion. However, it is also known to be needlessly 

wide (Thulin, 2014a). Edwards et al. (1963) proposed a 

credible interval in which the interval is not too wide. 

The error probability of the existing credible interval was 

determined to be on average. The credible interval is not 

uniquely defined and two methods have been well 

established (Gelman et al., 2014). One is the Highest 

Posterior Density (HPD) interval which chooses the 

shortest possible interval enclosing 100(1-)% of the 

probability density function. The other is the equal-tailed 

credible interval. Both the outsides of the probability 

density function, in the upper and lower limits of the 

equal-tailed credible interval, are /2. The beta prior 

density Be(a, b) with the positive parameters a and b is 
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used as the prior density. Since the hyperparameter is 

primarily set to a  1, the credible interval for this paper 

is discussed under this condition. The lower limit of the 

HPD interval is 0% for zero events because the posterior 

distribution is monotone decreasing from 0% (Bernardo, 

2005). On the other hand, the lower limit of the equal-

tailed credible interval is over 0% for zero events. The 

error or coverage probability is used as evaluation 

criterion of the confidence or credible interval (Schilling 

and Doi, 2014; Jin et al., 2017). The error probability is 

1 minus the coverage probability. Numerical examples 

show that the error probability of both credible intervals 

might be locally high when the population binomial 

proportion is high. 

We propose a novel credible interval base on the 

HPD interval to dissolve those problems. Using the logit 

transformation of the binomial proportion, the posterior 

distribution changes from a monotone decreasing 

distribution to a unimodal distribution. We calculate the 

HPD interval for the logit transformation of the 

binomial proportion. By the inverse logit 

transformation of the interval, the novel credible 

interval for the binomial proportion is obtained. The 

lower limit of the proposed credible interval is over 0% 

even when zero events are obtained. 

In Section 2, we introduce the interval estimations of 

the binomial proportion. We propose a novel credible 

interval using the logit transformation in Subsection 2.1. 

The Clopper-Pearson confidence interval can be shown by 

Bayesian framework in Subsection 2.2. Section 3 compares 

the error probability of several confidence and credible 

intervals. In Section 4, we verify the appropriateness of the 

proposed credible interval using two practical examples. 

Conclusions are presented in Section 5. 

Interval Estimation of the Binomial Proportion 

We introduce two existing credible intervals (the 

HPD and the equal-tailed credible intervals) of the binomial 

proportion and propose improving the HPD interval using 

the logit transformation. The Clopper-Pearson confidence 

interval is explained as a credible interval. 

Credible Interval 

The conditional probability function for x, given p, is:  

 

   | 1 0,, 1, ,
n xx

n
f x p p p x n

x

 
   
 

 (1) 

 

where n is sample size. The beta distribution is often 

used as the prior distribution. Let a prior distribution for 

p be the beta distribution Be(a, b) with the positive 

parameters a and b and let its probability density be(p; a, 

b) The posterior distribution is proportional to the 

product of prior distribution and likelihood as follows: 

 
 

 
  

11 1
π | ; ,

,

n x bx ap p
p x be p x a n x b

B x a n x b

    
    

  
 (2) 

 

where B(,) denotes the beta function. The 100(1-)% 

equal-tailed credible interval (Gelman et al., 2014) is 

expressed as  ,l up p  , where 
lp and 

up  are defined by: 
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The 100(1-)% two-sided credible interval of the HPD 

interval (Box and Tiao, 1965) is defined as follows: 
 

  P |π | 1p p x d     (5) 

 
where d is chosen as the minimum value satisfying (5). 

When the posterior distribution is a unimodal 

distribution, the two intersections of (p|x) and are the 

HPD interval  * *,l up p . When x = 0, the intersection of 

(p|x) and d is one place. Then, the HPD interval 

becomes the same as the 100(1-)% upper credible 

interval  *0, up . If the event is predicted to occur with a 

small binomial proportion, the lower limit of 0 is not 

appropriate. We improve the HPD interval where the 

lower limit is over 0% for zero events. The logit 

transformation of p is shown as follows:  = log{p/(1-p)} 

Then, the posterior density for  is expressed as: 
 

 
 

  

  

exp1
π |

, 1 exp
n a b

x a
x

B x a n x b





 




   
 (6) 

 
This posterior density is a unimodal distribution even 

when x = 0. It is defined in the range from - to . The 

100(1-)% two-sided credible interval of  is expressed as: 
 

  'P |π | 1x d      (7) 

 
where d’ is chosen as the minimum value satisfying (7). 

The interval estimation of  is written as (l, u). The 

interval estimation of p is obtained by the inverse logit 

transformation: 
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To distinguish the HPD interval in this paper, the 

interval estimation using the logit transformation is 

called the proposed HPD and the interval estimation of 

the existing method is called the existing HPD interval. 

Two familiar choices of (a, b) are (0.5, 0.5) and (1, 1), 
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which are referred to as Jeffreys' and the uniform prior 

densities, respectively (Bolstad, 2016). The choice of p is 

important and a familiar non-informative prior density is 

usually desired. We also include a case of a < b, say (a, 

b) = (0.5, 1.5) which is called the reverse J-shaped prior 

density. When there is a belief that p is likely to a small 

binomial proportion, as observed in various medical 

applications, this type of a prior density may be suitable. 

Thus, it was worthwhile to add the reverse J-shaped prior 

density in this study. 

Clopper-Pearson Confidence Interval 

The 100(1-)% two-sided credible interval of ( lp , 

up ) is obtained by setting both the tail probabilities as 

/2. Given x, the lower lp  and upper up  limits satisfy: 
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For ease of our comparison study, we use the well-

known equation between the cumulative binomial 

probability and incomplete beta function (Thulin, 

2014b): 
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The (9) and (10) are rewritten as: 
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Note that (12) and (13) are obtained by substituting (a, 

b) = (0, 1) to (3) and to (4), respectively. These facts 

indicate the use of different probability densities at the 

lower and upper limits. In addition, these two prior 

densities are improper, extremal and unrealistic. Recall 

that both the distributions of Be(1, 0) and Be(0, 1) are 

assumed to be the limiting distributions of Be(1-c, c) and 

Be(c, 1-c) at c = 0. It is our understanding that the 

distributions Be(1-c, c) and Be(c, 1-c) for a very small c = 0 

are extremal and are unrealistic for practical applications. 

Performance of the Proposed HPD Interval 

The error probability of the confidence or credible 

interval is defined as follows: 

      
0

Err 1 P |
n

l u

i

p p i p p i p

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where pl(i) and pu(i) are the lower and upper limits given 

i, respectively. The error probability is often used as 

evaluation criteria for confidence or credible interval. 

Copas (1992) advocated for level preservation and 

criticized the potentially large error probability of the 

credible interval proposed by Brenner and Quan (1990). 

He presented the error probability of the 99% equal-

tailed credible interval under the uniform prior density in 

the case of sample size n = 8. Schilling and Doi (2014) 

compared the coverage probabilities of some confidence 

intervals to search for optimal confidence interval in the 

cases of n = 8, 12, 20, 50. The softwares we used are 

Mathematica version 11.0 (Wolfram Research, Inc., 

2017) for interval estimation and R version 3.3.1 (Team, 

2017) for graph. We compare the proposed HPD interval 

with the Clopper-Pearson confidence and the two 

credible intervals; the existing HPD and the equal-tailed 

credible intervals. Figure 1 gives their error probabilities 

of the 95% Clopper-Pearson confidence interval and 

three credible intervals under the three prior densities; 

Jeffreys', the uniform and the reverse J-shaped prior 

densities. Since these error probabilities, except for the 

case of the reverse J-shaped prior density, are symmetric 

about p = 0.5 as functions of p, we will focus our 

attention on the range of 0  p  0.5. 

We evaluate the proposed HPD interval using the 

error probability. The error probability of the 95% 

Clopper-Pearson confidence and three credible intervals 

(the proposed HPD, the existing HPD and the equal-tailed 

credible intervals) under the three prior densities (Jeffreys', 

the uniform and the reverse J-shaped prior densities) are 

shown in Figure 1. The error probabilities of the confidence 

and credible intervals except for the reverse J-shaped prior 

density, exhibit linear symmetry at p = 0.5 and we focus our 

attention on the range of 0  p  0.5.  

Tuyl et al. (2008) compared the credible intervals 

under the some prior densities in the case of n = 8 and x 

= 0. In Table 1, we add the proposed HPD interval and 

the case of x = 1 in the sample size n = 8. The error 

probability of the Clopper-Pearson confidence interval is 

much smaller than 5%. In fact, the maximum error 

probability is 0.0309 at p = 0.4734. Depending on the 

research purpose, it is conceivable to study with the 

mean error probability rather than the maximum error 

probability. Comparing the existing HPD interval with 

the Clopper-Pearson confidence interval, both the 

lower limits are 0% in the case of x = 0. When x = 1, 

both the lower limits are close values. To narrow the 

extremely wide Clopper-Pearson confidence interval, 

the upper limit of the existing HPD interval is smaller 

than the Clopper-Pearson confidence interval. 
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Table 1: Comparison of the Clopper-Pearson confidence interval and three credible intervals under the three prior densities. The 

sample size and the event is 0 and 1. When the estimated value is exactly 0, it is expressed as 0.0 

n x Clopper-Pearson   Proposed HPD  Existing HPD Equal-tailed 

  95% limit (%) Prior 95% limit (%)  95% limit (%) 95% limit (%) 

8 0 0.0  36.942  Jeffreys' 0.018  36.075  0.0  20.751  0.006  26.222  

    Uniform 0.444  39.552  0.0  28.313  0.281  33.627  

    Reverse J-shaped 0.016  33.063  0.0  18.737  0.005  23.761  

8 1 0.316  52.651  Jeffreys' 1.773  49.534  0.056  39.704  1.384  45.372  

    Uniform 3.309  51.263  0.863  43.344  2.814  48.250  

    Reverse J-shaped 1.584  45.605  0.044  36.096  1.226  41.447  
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Fig. 1: The error probability of the 95% Clopper-Pearson confidence interval and three credible intervals under the three prior 

densities. The dotted line connects discontinuity points. The sample size is 8 
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Fig. 2: The error probability of the 95% Clopper-Pearson confidence interval and three credible intervals under the three prior 

densities. The dotted line connects discontinuity points. The sample size is 20 
 

Since the upper limit is small, the error probability is 

often over 0.1, in the range of p > 0.2. The lower limit of 

the equal-tailed credible interval is larger and the upper 

limit of the equal-tailed credible interval is smaller than 

the Clopper-Pearson confidence interval. Thus, the 

interval is narrowed from both the upper and lower sides. 

Although the error probabilities of the equal-tailed 

credible interval under Jeffreys' and the reverse J-shaped 

prior densities are occasionally over 0.1, in the range of 

p > 0.2, they are less than the existing HPD interval. 

However, the error probability of the equal-tailed 

credible is large when near p = 0. Comparing the 

proposed HPD interval with the Clopper-Pearson 

confidence interval, both the upper limits are close 

values. Therefore, the error probabilities of the proposed 

HPD are less than 0.1, in the range of p > 0.2, however, the 

lower limit of the proposed HPD interval is larger than the 

Clopper-Pearson confidence interval. Although it is 

occasionally over 0.1, in the range of near p = 0, there is no 

problem if p > 0 is expected. The upper and lower limits of 

the three credible intervals are characterized. 

When the sample size n is 20, the error probability of 

the 95% Clopper-Pearson confidence and three credible 

intervals under the three prior densities are presented in 

Fig. 2. The error probabilities of the existing HPD and 

equal-tailed credible intervals are over 0.1 for the 



Toru Ogura and Takemi Yanagimoto / Current Research in Biostatistics 2018, Volume 8: 1.8 

DOI: 10.3844/amjbsp.2018.1.8 

 

6 

proportion of about p = 0.1. In contrast, the error 

probabilities of the proposed HPD are less than 0.1, 

except for near p = 0. Even if the sample size increases, 

the error probabilities of the existing HPD and equal-

tailed credible intervals are occasionally large. On the 

other hand, the error probability of the proposed HPD is 

a narrow range, except for near p = 0. From the figures 

of the error probability in the sample sizes n = 8, 20, the 

proposed HPD interval under Jeffreys' prior density is 

the most stable near  for the Clopper-Pearson 

confidence and three credible intervals under the three 

prior densities. So, far as our experiences, the result 

exhibits approximately the same characteristic, 

regardless of the sample size. 

Applications 

Two practical datasets are analyzed to illustrate the 

potential usefulness of the proposed HPD interval. 

Genome Sequencing Data 

We begin with the data for rare variant discovery by 
deep whole-genome sequencing of 1070 Japanese 
individuals (Nagasaki et al., 2015). The data revealed a 
False Discovery Rate (FDR) for the high-confidence 
single-nucleotide variants (SNVs), deletions (validated 
deletions with less than or equal to 30 bases) and 
insertion (validated insertions with less than or equal to 
30 bases) groups, together with the 95% confidence 
interval of FDR, which are summarized in Table 2. No 
explanation of the calculation method in the confidence 
interval was given. We add the 95% Clopper-Pearson 
exact confidence and three credible intervals (the 
proposed HPD, the existing HPD and the equal-tailed 
credible intervals) under the three prior densities 
(Jeffreys', the uniform and the reverse J-shaped prior 
densities).From the comparison of Nagasaki's confidence 
interval and three credible intervals, they calculated the 
existing HPD interval for the SNVs and deletion groups 

(x = 0) and the equal-tailed credible interval for the 
insertion group. They calculated the existing HPD 
interval for the SNVs and deletion groups and the equal-
tailed credible interval for the insertion group (x > 0). 

It was not decided how to calculate the confidence 

intervals before clinical trials and may show the most 

convenient confidence intervals for researchers among 

several confidence intervals. The results of the statistical 

analysis and their interpretation should be reported from a 

fair and scientific point of view. More seriously, their 

lower limit is 0 when x = 0. This result is discouraging 

since a small binomial proportion of possible error is 

strongly anticipated in these types of the genome 

sequencing study. 

HIV Antibodies Data 

Turnbull et al. (1992) tested saliva samples collected 

from 402 subjects for the presence of HIV antibodies. 

Positive results for HIV antibodies were obtained in 19 

samples and negative results in 366 samples, 17 samples 

were too small to test. The 95% Wald confidence 

intervals of the HIV antibody positive samples were 

calculated for four groups consisting of injectors, non-

injectors, homosexual/bisexual men and others. 

Newcombe (2012) pointed out some drawbacks of the 

Wald method. In particular, when the number of positive x 

was small, the lower limit of the Wald confidence interval 

was a negative value. Both the lower and upper limits of 

the Wald confidence interval were 0% when x = 0. They 

are summarizing as follows: “Failure to find any positives 

in a small series does not imply that there never would be 

any” Newcombe (2012) examined the addition of the 95% 

Clopper-Pearson confidence interval. Furthermore, we add 

the 95% three credible intervals (the proposed HPD, the 

existing HPD and the equal-tailed credible intervals) 

under the three prior densities (Jeffreys', the uniform and 

the reverse J-shaped prior densities) in Table 3. 

 

Table 2: Total rare variant discoveries by deep whole-genome sequencing (Nagasaki et al., 2015). The interval estimations are 

calculated by five methods: Nagasaki's confidence, Clopper-Pearson exact confidence and three credible intervals. When 

the estimated value is exactly 0, it is expressed as 0.0 

FDR Nagasaki  Clopper-Pearson  Proposed HPD Existing HPD Equal-tailed 

(%) 95% limit (%) 95% limit (%) Prior 95% limit (%) 95% limit (%) 95% limit (%) 

SNVs (n = 174, x = 0) 

0.0  0.0  1.0962  0.0  2.0977  Jeffreys' 0.0009  2.2118  0.0  1.0962  0.0003  1.4312  

     Uniform 0.0241  2.6787  0.0  1.6973  0.0145  2.0859  

     Reverse J-shaped 0.0009  2.1993  0.0  1.0900  0.0003  1.4231  

Deletion (n = 32, x = 0) 

0.0  0.0  5.7815  0.0  10.888  Jeffreys' 0.0048  11.251  0.0  5.7815  0.0015  7.4928  

     Uniform 0.1263  13.263  0.0  8.6781  0.0767  10.576  

     Reverse J-shaped 0.0047  10.936  0.0  5.6126  0.0015  7.2759  

Insertion (n = 22, x = 1) 

4.5455  0.4949  19.344  0.1150 22.844  Jeffreys' 0.6632  22.258  0.0104  16.455  0.4949  19.344  

     Uniform 1.3105  24.328  0.2322  19.137  1.0710  21.949  

     Reverse J-shaped 0.6348  21.410  0.0098  15.792  0.4732  18.578  
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Table 3: Prevalence of HIV antibodies in selected groups of ex-prisoners (Turnbull et al., 1992). The interval estimations are 

calculated by five methods: The Wald method, Clopper-Pearson confidence and three credible intervals. When the 

estimated value is exactly 0%, it is expressed as 0.0% 

Rate Wald  Clopper-Pearson  Proposed HPD Existing HPD Equal-tailed 

(%) 95% limit (%) 95% limit (%) Prior 95% limit (%) 95% limit (%) 95% limit (%) 

Injectors (n = 148, x = 15) 

10.135  5.273  14.997  5.784  16.165  Jeffreys' 6.163  16.005  5.745  15.365  6.045  15.764  

     Uniform 6.382  16.296  5.967  15.667  6.264  16.060  

     Reverse J-shaped 6.121  15.901  5.706  15.264  6.003  15.662  

Non-injecting women (n = 29, x = 1) 

3.448  -3.193  10.089  0.087  17.764  Jeffreys' 0.505  17.422  0.007  12.715  0.375  15.008  

     Uniform 1.006  19.231  0.169  14.944  0.818  17.217  

     Reverse J-shaped 0.488  16.898  0.007  12.314  0.362  14.542  

Homosexual / bisexual men (n = 20, x = 0) 

 0.0 0.0 0.0 0.0 16.843 Jeffreys' 0.008  17.173  0.0  9.048  0.002  11.664  

     Uniform 0.197  19.892  0.0  13.295  0.120  16.110  

     Reverse J-shaped 0.007  16.452  0.0  8.641  0.002  11.147  

Other (n = 188, x = 3) 

1.596  -0.196  3.387  0.330  4.592  Jeffreys' 0.507  4.538  0.269  3.778  0.451  4.197  

     Uniform 0.640  4.893  0.385  4.156  0.580  4.568  

     Reverse J-shaped 0.504  4.515  0.267  3.758  0.449  4.175  

 

If it is considered appropriate that the lower limit is 

over 0%, the proposed HPD and the equal-tailed credible 

intervals are the optimal method. When calculating the 

credible intervals for some groups, the same calculation 

method is used. Although the population binomial 

proportion usually differs in the group, it is desirable that 

the appropriate credible interval is obtained for any 

population binomial proportion. Because the point 

estimate in the injectors group is 10.1%, if the existing 

HPD or the equal-tailed credible intervals are used, the 

error probability might be large. In the proposed HPD 

interval, the error probability is stable with small 

fluctuations in any population proportion, except for near 

p = 0. Since this example is discussed under p > 0, there 

is no concern that the error probability of the proposed 

HPD interval will become too large. 

Conclusion 

We discussed the confidence or credible interval 

when the binomial proportion is expected to be a small, 

especially when zero events were obtained. The 

estimated point of p was considered to be over 0% for 

zero events by the Rule of Three. Furthermore, the lower 

limit was considered to be over 0% in medical research. 

Two calculation methods of the credible interval were 

well known the existing HPD and the equal-tailed 

credible intervals. Although the existing HPD interval 

was narrower than the equal-tailed credible interval, the 

lower limit was 0% for zero events. On the other hand, 

the equal-tailed credible interval was over 0% for zero 

events. The error probabilities of the existing HPD and 

the equal-tailed credible intervals might become large 

when the binomial proportion exceeds a certain 

population binomial proportion. To eliminate those 

problems, we proposed the novel credible interval by 

improving the HPD interval using the logit 

transformation. The lower limit of the proposed HPD 

interval was over 0% for zero events. In the numerical 

example, the error probability of the proposed HPD 

interval was closer to  than the existing HPD and the 

equal-tailed credible intervals, except for near p = 0. We 

demonstrated that the proposed HPD interval worked 

even if the zero events were obtained or the population 

binomial proportion was high. In medical research, the 

statistical analysis plan must be fixed before the start of 

clinical trials. Since the proposed HPD interval performs 

satisfactorily for any outcome, the researcher can fix the 

statistical analysis plan using the proposed HPD interval 

even if a small binomial proportion is expected. 
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