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ABSTRACT 

The concern about safety of consumption of Green Tea (GT) supplements has become a scope of many 
studies. We and others have described earlier the effect of the administration of GT and its polyphenols on 
liver in a mouse model. In this study we aimed to investigate the effect of GT on HepG2 cells. HepG2 cells 
were treated with different concentrations of GT with and without presensitization with Lipopolysaccharide 
(LPS). The viability of cells did not change at low and moderate concentrations of GT, while at very high 
concentration; GT caused the viability of the cells to decrease. A decrease in the viability of presensitized 
cells was observed after exposure to moderate and high doses of GT. Also, OX.LDL, CXCL16, TNF α, 
TGF ß, RAR and RXR were found to be over-expressed in these cells, while this over-expression was not 
observed in the cells upon treatment with GT without LPS or upon treatment with LPS alone. These results 
indicate that GT even at high doses does not cause oxidative stress. However, under inflammatory stress 
conditions it may cause oxidative stress which in turn may lead to liver toxicity. 
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1. INTRODUCTION 

Green Tea (GT) contains polyphenols that are known 
to be strong antioxidants in vitro (Qin et al., 2013) and in 

vivo (Darvesh and Bishayee, 2013; Tsai et al., 2013; 
Zhong et al., 2012; Narotzki et al., 2013). 
Administration of GT polyphenol, epigallocatechin-3-
gallate (EGCG), to old rats has been shown to reduced 
oxidative stress as the EGCG-treated animals had 
decreased levels of lipid peroxidation and protein 
carbonylation, as well as increased levels of antioxidants 
and antioxidant enzymes in the liver, skeletal muscle and 
brain

 
(Senthil et al., 2008; Srividhya et al., 2008). 

However, no effects were observed in young rats, 
suggesting that the antioxidant effects of GT polyphenols 
are only apparent in the presence of excessive oxidative 

stress. In a human study supplementation of the diets of 
healthy volunteers with tea catechins (500 mg day

−1
) for 4 

weeks resulted in an 18% decrease in plasma oxidized low-
density lipoprotein compared to the control (Inami et al., 
2007). Similarly, supplementation of the diets of patients on 
hemodialysis with green tea catechins (455 mg day

−1
) for 3 

months decreased plasma hydrogen peroxide, C-reactive 
protein and several pro-inflammatory cytokines compared 
to the controls

 
(Hsu et al., 2007). In the human and 

experimental animal studies, the antioxidant activity of tea 
polyphenols has been shown to decrease oxidative 
DNA damage (Hakim et al., 2003; Frei and Higdon, 
2003; Wang et al., 2003; Arimoto-Kobayashi et al., 
2003). Conversely, tea catechins also become oxidized 
to generate ROS, which are readily observed in cell 
culture medium and lead to cell death (Singh et al., 2013; 
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Yang et al., 1998). The production of ROS such as H2O2 
was shown earlier to cause cell death, not only for the 
cancer cells but also in the normal cells (Weisburg et al., 
2004). In addition, there are case reports indicative of an 
association of high consumption of GT supplements with 
liver toxicity (Rohde et al., 2011; Isbrucker et al., 2006; 
Bonkovsky, 2006). The influence of GT polyphenols on 
liver is markedly augmented in the presence of 
Lipopolysaccharide (LPS) as a fever inducer as we have 
shown earlier (Saleh et al., 2013). Similarly, treatment with 
EGCG, decreased bile flow by 23% with a 70% reduction 
of biliary glutathione excretion in rats and caused a two-fold 
increase in plasma bile acids compared to the controls 
(Hirsova et al., 2013). These effects are probably caused by 
a pro-oxidant mechanism (Lambert et al., 2007).  

In most of the studies cited above, experimental 
conditions were devoid of any contributing factor(s) that 
might play a role in GT toxicity.  In many of the case 
reports of GT associated liver toxicity; other contributing 
factors like infection, fever or other inflammatory 
conditions were not taken into account or never 
investigated. In order to gain insight on the use of GT in 
stressful conditions, we presensitized HepG2 cells with 
LPS and examined the effect of GT on these cells.  

2. MATERIALS AND METHODS 

2.1. Cells and Media 

HepG2 cells (ATCC, Manassas, VA. USA) were 

routinely grown using a DMEM medium containing 

glucose 4.5 g L
−1

, Sodium pyruvate 110 mg L
−1

, FBS 

10% and Amikacin 1%. Medium was changed every 3 

days and sub cultured weekly. Cells were incubated at 

37°C and CO2 5% in humidified incubator. 

2.2. Treatments 

HepG2 Cells were cultured at the density of 1×10
4
. One 

group of cultured cells was treated with Green Tea (GT) (in 

1% DMSO) at concentrations of 100 µg mL
−1

, 200 µg mL
−1

 

and 500 µg mL
−1

. Another group of cultured cells was 

treated with 1% DMSO and served as a vehicle control. 

Lipopolysaccharide (LPS) at a concentration of 10 nM (in 

PBS) was used for presensitization of one group of cultured 

HepG2 cells for 2 h before the treatment with GT. It was 

then washed out after the 2 h.  

2.3. Cell Viability, Acridin Orange Assay: 

Procedure: Cells were cultured in 8 chambers Nunc 
slides (Thermo Fisher Scientific Inc. Waltham, MA. USA) 
for 24 h then were presensitized with LPS 2 h, followed by 
treatment with GT for 24 h then washed using PBS pH 7.2.  

The cells were then fixed using 4% Paraformaldehyde 
(PFA) in PBS pH 7.2 for 15 min at room temperature. Cells 
were washed once with PBS for 5 min, bathed in methanol 
for 5 min washed again with PBS pH 7.2 and then 
incubated with 1 mg mL

−1
 RNAse solution for 30 min at 

room temperature to remove condensed and denatured 
DNA according to manufacturer’s instructions 
(Immunochemistry Technologies LLC, Bloomington, 
MN. USA). After washing with PBS, the cells in each 
chamber were then exposed to 100 µL of 0.1N HCl for 1 
min and washed with PBS. A volume of a 100 µL staining 
solution (composed of: 90 mL of citric acid 0.1 M + 10 
mL Na2 HPO4 0.2 M+1 mL of AO 6 µg mL

−1
) was added 

to each chamber. Cells were finally washed with PBS, the 
slides were air dried and cover slips were placed with 
fluoromount (aqueous mounting medium, Sigma-Aldrich, 
St. Louis, MO. USA). Slides were examined and imaged 
under Nikon fluorescent microscope (Model: Nikon 
eclipse 90i with a DS-U3 imaging system, Nikon 
Metrology, Inc., USA) for assessment of live and dead 
cells, using green and red channels. 

2.4. ICC and IF 

After appropriate treatments HepG2 cells in 8 chambers 
Nunc slides (Thermo Fisher Scientific Inc. Waltham, MA. 
USA), were fixed by adding 20 µL of 4% 
paraformaldehyde (PFA) in PBS pH 7.2 for 15 min. Cells 
were washed once with PBS for 5 min, followed by 
addition of  20 µL of the blocking solution (composed of 
1% BSA, 10% horse serum and 1% Triton X100 in PBS) to 
each chamber for 15 min. After washing once with PBS for 
5 min, cells were incubated for 15 min at 37C with 10 
µL/chamber of appropriate primary antibodies (Rabbit anti 
OX.LDL, CXCL16, RAR, RXR, TNF α and TGF ß) 
(Abcam Cambridge, MA, USA). Cells were then washed 
once with PBS for 5 min and treated with 10 µL/chamber of 
secondary antibody (TexRed) for 15 min at 37°C. Cells 
were washed once with PBS for 5 min at room temperature. 
For nuclear staining, a 20 µL of DAPI was added to each 
chamber and the slide was incubated for 5 min at 37°C. 
Slides were then washed once with PBS, air dried, were 
mounted with cover slip. Cells were examined and imaged 
using Nikon fluorescence microscope (Model: Nikon 
eclipse 90i with a DS-U3 imaging system, Nikon 
Metrology, Inc. USA) under blue and red channels.  

3. RESULTS 

3.1. OX.LDL 

The results in Fig. 1 show that Green Tea (GT) 

alone did not significantly increase OX.LDL in 

HepG2 cells even at the high concentration of 500 µg 
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mL
−1 

compared to control. Presensitization of HepG2 

cells with 10 nM of Lipopolysaccaride (LPS) caused 

GT (200 and 500 µg mL
−1

) to increase OX.LDL 

expression by 25 and 35 folds, respectively compared 

to control. However, no such effect was observed with 

GT at 100 µg mL
−1 

in presensitized cells. 

 

 
 
Fig. 1. (A, B): Expression of OX.LDL in HepG2 cells after treatment with different concentrations of GT with or without 

presensitization with LPS. Blue (DAPI) = Nucleus, Red (TexRed) = OX.LDL. 100X magnification power 

 

 

 
Fig. 2. (A, B): Expression of CXCL16 in HepG2 cells after treatment with different concentrations of GT with or without  

presensitization with LPS. Blue (DAPI) = Nucleus, Red (TexRed) = CXCL16. 100X magnification power 
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3.2. CXCL16 

The results in Fig. 2 show that GT alone did not 
significantly increase CXCL16 in HepG2 cells even at 
the high concentration of 500 µg mL

−1
compared to 

control. Presensitization of HepG2 cells caused GT 
(200 and 500 µg mL

−1
) to increase CXCL16 

expression by 5 and 6 folds, respectively compared to 

control. However, no such effect was observed with 
GT at 100 µg mL

−1 
in presensitized cells. 

3.3. RAR 

 The results in Fig. 3 show that even high concentration 

of 500 µg mL
−1

of GT alone did not significantly increase 

the expression of RAR compared to control. 
 

 
 
Fig. 3. (A, B): Expression of RAR in HepG2 cells after treatment with different concentrations of GT with or without 

presensitization with LPS. Blue (DAPI) = Nucleus, Red (TexRed) = RAR. 100X magnification power 
 

 
 
Fig. 4. (A, B): Expression of RARα in HepG2 cells after treatment with different concentrations of GT with or without 

presensitization with LPS. Blue (DAPI) = Nucleus, Red (TexRed) = RXRα. 100X magnification power 
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Presensitization of HepG2 cells caused GT (100, 200 and 

500 µg mL
−1

) to increase RAR expression by 25, 40 and 

60 folds, respectively compared to control. 

3.4. RXRα 

The results in Fig. 4 show that even high concentration 

of 500 µg mL
−1 

of GT alone did not significantly increase 

the expression of RXRα compared to control. 

Presensitization of HepG2 cells caused GT (100, 200 and 

500 µg mL
−1

) to increase RXRα expression by 11, 14 and 

16 folds, respectively compared to control.  

3.5. TNF α 

The results in Fig. 5 show that even high concentration 

of 500 µg mL
−1 

of GT alone did not significantly increase 

the expression of TNF α compared to control. 
 

 
 
Fig. 5. (A, B): Expression of TNF α in HepG2 cells after treatment with different concentrations of GT with or without 

presensitization with LPS. Blue (DAPI) = Nucleus, Red (TexRed) = TNF α. 100X magnification power 
 

 
 
Fig. 6. (A, B): Expression of TGF ß1 in HepG2 cells after treatment with different concentrations of GT with or without 

presensitization with LPS. Blue (DAPI) = Nucleus, Red (TexRed) = TNF α. 100X magnification power 
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Fig. 7. (A, B): Determination of the viability of HepG2 cells using Acridin Orange stain, after treatment with different 

concentrations of GT and/or LPS. Green = Viable, Yellow- Red = Dead. 100X magnification power 

 

Presensitization of HepG2 cells caused GT (100, 200 and 

500 µg mL
−1

) to increase TNF α expression by 90, 100 and 

200 folds, respectively compared to control.  

3.6. TGF ß1 

The results in Fig. 6 show that even high 

concentration of 500 of GT alone did not significantly 

increase the expression of TGF ß1 compared to control. 

Presensitization of HepG2 cells caused GT (100, 200 and 

500 µg mL
−1

) to increase TGF ß1 expression by 6, 9 and 

15 folds, respectively compared to control. 

3.7. Live to Dead Cells Ratio 

Treatment of HepG2 cells with a low concentration 

of 100 µg mL
−1

of GT and moderate concentration of 200 

of GT did not show any significant decrese in the live to 

dead cells ratio compared to control. A high 

concentration of 500 µg mL
−1

 of GT significantly 

decreased the live to dead cells ratio compared to 

control. This ratio was further decreased in the cells that 

were presensitized with 10 nM of LPS (Fig. 7).  

4. DISCUSSION 

In a previous in vivo study, we subtoxic dose of LPS 

augmented liver toxicity of EGCG (Saleh et al., 2013). 

In the current study, several parameters, associated with 

oxidative stress and inflammation, were assessed to 

clarify the pattern of toxicity of GT on liver cells under 

the influence of LPS. Oxidized Low Density Lipoprotein 

(OX.LDL) initiates intracellular oxidative stress by 

means of its lipid peroxidation products leading to the 

activation of the tumor suppressor gene p53 resulting in 

cell cycle arrest, necrosis or apoptosis (Maziere et al., 

2000). Also, CXCL16 has been reported to be expressed 

in a variety of inflammatory diseases (Oh et al., 2009). 

Besides, it acts as a scavenger receptor for OX.LDL 

(Gutwein et al., 2009). In the current study, GT alone 

showed no effect on the expression of OX.LDL or 

CXCL16 even at the high concentration of 500 µg mL
−1

. 

Similarly, Presensitization of HepG2 cells with LPS 

alone did not overly express OX.LDL or CXCL16. 

While exposure of LPS-presensitized cells to GT at 

moderate and high concentrations (200 and 500 µg 

mL
−1

) significantly increased the expression of OX.LDL 

and CXCL16; the low concentration of GT (100 µg 

mL
−1

), however, did not show this effect and may have 

exerted its antioxidant effect at this concentration. These 

results clearly suggest that GT alone is not implicated in 

causing oxidative stress. However, under inflammatory 

conditions it can cause oxidative stress. These results 

demonstrate that the effect is not solely related to LPS, 

but it gives a hint about the possibility that LPS may 

cause GT to exhibit a pro-oxidant effect.  
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Vitamin A derivative Retinoic Acid (RA) is an 
important regulator of mammalian adiposity and lipid 
metabolism, primarily acting at the gene expression level 
through nuclear receptors of the RA Receptor (RAR) and 
Retinoid X Receptor (RXR) subfamilies (Amengual et al., 
2012). RAR and RXR are nuclear receptors expressed in 
almost every cellular type and tissue (Mahajna et al., 1997; 
Lehmann et al., 1992; Kliewer et al., 1992). Three isoforms 
of RXR have been found in human, named RXRα, β and γ, 
being the α-isoform the most abundant in the liver 
(Mangelsdorf et al., 1992; Heyman et al., 1992). These 
nuclear receptors are important regulators of cell 
proliferation and differentiation (Abdel-Bakky et al., 
2011). Unique among the other nuclear receptors, 
RXRα plays a major role in regulating bile acid, 
cholesterol, fatty acid, steroid and xenobiotic metabolism 
and homeostasis (Abdel-Bakky et al., 2011). Hepatic 
Stellate Cells (HSC) have the ability to store retinoids in 
normal conditions. In liver injury, HSCs have been 
shown to release retinoic acid in the form of lipid 
droplets, thus up regulation of retinoid receptors (RAR 
and RXR) occurs (Minato et al., 1983). HepG2 cells tend 
to behave as HSCs in their ability to store retinoids in 
normal conditions (Lenich and Ross, 1987) and may 
release them upon cell injury. In the current study, GT 
showed no effect on the expression of RAR and RXRα 
even at the high concentration of 500 µg mL

−1
. Also, 

pre-sensitization of cells with LPS did not exhibit RAR 
or RXR over expression. However, exposure of LPS-pre-
sensitized significantly increased the expression of RAR 
and RXR even at a low concentration of 100 µg mL

−1
of 

GT. These results add credence to those of OX.LDL and 
CXCL16 in confirming the safety of GT alone and the 
possibility of GT to exhibit a pro-oxidant activity in the 
presence of a predisposing factor such as LPS and thus 
could result in hepatocellular injury. 

Tumor Necrosis Factor alpha (TNF α) is used 
clinically as a biomarker for hepatic cell fibrosis 
(Bahcecioglu et al., 2004) and nonalcoholic fatty liver 
disease (Ma et al., 2013). It also increases in the stages 
of angiogenesis following inflammatory liver cirrhosis 
(Hammam et al., 2013). Similarly, transforming growth 
factor beta1 (TGF β1) is a multifunctional cytokine of a 
great pathophysiologic impact on various types of liver 
diseases (Gressner et al., 2002). It is more relevant in 
cases of liver fibrosis, regeneration, metastasis of 
hepatocellular carcinoma and the development of 
autoimmune liver diseases (Kanzler et al., 1999). The 
current study showed that treatment with GT alone did not 
cause a shift in the expression of TNF α or TGF β even at a 
high concentration of 500 µg mL

−1
. However, exposure of 

LPS-presensitized cells to GT significantly increased the 
expression of TNF α as well as TGF β even at a low 

concentration of 100 µg mL
−1

. These results further validate 
that under normal conditions, GT by itself has no toxic 
effect on liver cells even at high concentrations. But with 
presensitization of liver cells with LPS, treatment with GT 
may show toxic effects.  

The data of HepG2 cell viability in the current 

study confirms almost all the previously discussed 

results. It shows that GT does not shift the live to dead 

cells ratio compared to control except at the high 

concentration of 500 µg mL
−1

. The later result 

although does not support the other results, but it 

cannot be very indicative because of the very high 

concentration of 500 µg mL
−1

compared to human 

doses. The more reliable indicative concentrations are 

the low and moderate doses of 100 and 200 µg mL
−1

, 

respectively. The treatment of the presensitized cells 

with GT at a low concentration of 100 µg mL
−1

did not 

show any shift in the live to dead cells ratio, the issue 

that confirms the ability of GT to act as an antioxidant 

at low concentrations. Presensitization of HepG2 cells 

with LPS caused moderate dose of 200 µg mL
−1

of GT 

to show a significant decrease of the live to dead cells 

ratio compared to control, the issue that confirms the 

role of LPS as a predisposing factor in shifting the 

antioxidant effect of GT to a pro-oxidant one. 

5. CONCLUSION 

It is concluded from the current study that GT does 

not show toxicity towards liver cells even at high 

concentrations. However, predisposing conditions such 

as inflammatory stress can change this scenario. The 

relatively safe dose of GT under such circumstances can 

cause liver cell toxicity. In other words, the antioxidant 

effect of GT can change into pro-oxidant effect under 

such predisposing conditions. It is important here to 

recommend that the pre-clinical safety assessment of 

new products including the natural supplements should 

be carried out in healthy and health compromised 

conditions. It will be of interest to study the individual 

components of GT extract in vitro and in vivo. 

Extrapolation of in vitro data for in vivo studies is 

difficult. However, the current study does provide a 

platform for future in vivo studies. 
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