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Abstract: The influence of stress on the immune system of the common 

carp (Cyprinus carpio) was studied by measuring leukocytes levels using 

flow cytometry and mRNA immune components by real time qPCR. Acute 

and chronic oxidative stresses were generated by different regimes of 

exposure of carp to environmental air. In acute stress, induced by single air 

exposure, the pro-inflammatory cytokines (IL1β, IL6 and TNFα) and the 

down-regulatory ones (IL10 and TGFβ) showed significant simultaneous 

elevations (515, 147, 373, 300 and 198% respectively). Following chronic 

stress (multiple air exposures) however, a drastic decline of 80%, in 

macrophages/monocytes, B-cells likes and plasma-cells like, occurred in 

peripheral blood. No statistical changes in IL6 and TNFα, as well as in IgM 

and C3s mRNA levels could be shown during this experiment. CD4 mRNA 

decreased up to 6% in the 2nd week of chronic stress and elevated only to 

55% at the 3rd week Vs a temporal decline of up to 22% in CD8a mRNA at 

the 2nd week. The regulatory cytokines (IL10, FoxP3 and TGFβ) as well as 

the pro-inflammatory ones (IL1β and IL17) decreased significantly up to 

0.06, 0.2, 5, 6 and 4% respectively, at the second week before being 

restored to normal at the 3rd week. Moreover, a persistent decrease, up to 

null levels, in the cytokines IFNγ2b, IL12b and IL8 was also revealed. 

These downregulations were suggested as a result of the impaired Th1 

and/or cytotoxic cell function and, to a certain degree, the leukocytes 

mobilization. The above findings show that in contrast to the detrimental 

effects of chronic stress, in which cells and functions of acquired immunity 

were partially or completely impaired, the acute stress was found rather 

beneficial and in line with the known ephemeral “fight and flight” response. 
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Introduction 

Fish under intensive culture conditions are often 

exposed to a variety of acute and chronic stressors. These 

include: Elevated  rearing densities (Vazzana et al., 2002), 

suboptimal water quality, decreased dissolved oxygen 

and elevated carbon dioxide (CO2) levels (Franco et al., 

2009; Lefèvre et al., 2008), thermal fluctuations (Zarate 

and Bradley, 2003; Avtalion, 1969; 1981; Avtalion et al., 

1976; Varsamos et al., 2006), diet (Montero et al., 1999; 

Montero et al., 2001; Costas et al., 2011), presence of 

enemies and pathogens (Demers and Bayne, 1997; 

Sunyer and Tort, 1995;   Saeij et al., 2003), 

transportation and sorting, handling and confinement 

stresses (Costas et al., 2011; Harmon 2009; Maule and 

Schreck, 1991; Noga et al., 1999). Stressors have 

negative impacts on different physiological responses 

associated with growth, nutrition, reproduction and 

immune responses (Lefèvre et al., 2008; Zarate and 

Bradley, 2003; Øverli et al., 2006; WendelaarBonga, 

1997; Campbell et al., 1992; Poli et al., 2005; Pickering 

1992; Olsen et al., 2005; Hoskonen and Pirhonen, 

2006; Vargas-Chacoff et al., 2001). Understanding 

and monitoring the biological mechanisms underlying 

stress responses in fish may alleviate their negative 

effects through selective breeding and changes in 

management practices, resulting in improved animal 

welfare and production efficiency. This might also 
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provide further understanding of stress mechanisms 

involved in higher vertebrates. 
Stressors were reported to exaggerate adverse effects 

like sensitivity to illness, autoimmunity, shrinking of the 

thymus and spleen or other lymphatic organs, changes in 

the number and distribution of white blood cells, or 

appearance of bleeding or ulcers (Harper and Wolf, 

2009). Stress increases immunosuppressive pathways 

and increases proinflammatory cytokines (Tort et al., 

1996; Douxfils et al., 2011; Milla et al., 2010; Talbot et al., 

2009; Petrovsky, 2001). These stress effects impact both 

the innate and adaptive immune system (Øverli et al., 

2006; Mommsen et al., 1999), mainly following 

considerable decrease in lymphocyte numbers  

(Engelsma et al., 2003), plasma IgM concentration 

(Nagae et al., 1994), a selective suppression in 

phagocytosis and complement activities in head kidney 

and blood. As a consequence, an increase in 

susceptibility to infection occurs in teleost fish 

(Pickering, 1984; Law et al., 2001; Small and Bilodeau, 

2005; Mauri et al., 2011). 

The effect of stress depends on the duration and 

intensity of the stressor. Mild and/or acute stressors 

enhance immune responses while, severe or long-term 

stressors can be immunosuppressive (Demers and 

Bayne, 1997; Sunyer and Tort, 1995; Harris and Bird, 

2000; Raberg et al., 1998). In handling acute stress, an 

increase in C3, lysozymes (Demers and Bayne, 1997; 

Sunyer and Tort, 1995) and leukocytes (Maule and 

Schreck, 1991) were reported in head kidney. In chronic 

stress however, there is a decrease in C3 and lysozyme 

levels (Sunyer and Tort, 1995) as well as in immune cell 

numbers and functions (Verburg-Van Kemenade et al., 

2009). It was assumed that this dual response depends on 

the intensity and duration of the stressor and that these 

processes are controlled by different hormonal and 

neuronal paths (Tort, 2011; Nardocci et al., 2014). 

The stress mechanism has been mostly studied in 

higher vertebrates and much less in fish. In mammals, 

immune and inflammatory responses are followed by the 

activation of the stress hormones that systemically 

inhibit the T-helper-1(Th1) pro-inflammatory responses 

but potentiate a Th2 shift which is followed by down-

regulation of some cytokines involved in cellular 

immunity (TNF-α, IFN-γ, IL-2, IL-12) as well as 

production of cytokines belonging to other Th-cell 

subsets (IL-4, IL-10, IL-13, TGF-β) (Elenkov and 

Chrousos, 1999). Furthermore, it has been shown that 

stress induces changes in cell numbers and in their traffic 

patterns. Substantial differences in the leukocyte 

distribution in different body compartments have been 

observed in carp (Wojtaszek et al., 2002). 

It was stated by these authors that such a situation 

may lead to ineffective immune protection due to 

decreased leukocyte recruitment at the affected sites. The 

activation of leukocytes is related to the activation of 

the sympathetic nervous system and to the release of 

catecholamines (Tort, 2011; Dhabhar, 2002). Blood 

cells, including both erythrocytes and leukocytes, are 

mobilized as part of the acute stress response. The 

changes in blood leukocyte numbers are characterized 

by a significant reduction in the numbers and 

percentages of lymphocytes and monocytes and by an 

increase in the numbers and percentages of 

neutrophils (Dhabhar, 2002). 

Several studies in fish, support stress mechanism as 

reported in mammals (Wojtaszek  et al., 2002; 

Dhabhar, 2002; Cortés et al., 2013), while the 

participating immune cells and humoral processes are 

still vague. Therefore, in the present work we describe 

the influence of air exposure acute and chronic stresses 

(Melamed et al., 1999; Dror et al., 2006) on different 

immune components of spleen, blood, kidney and head 

kidney in the common carp. Hence, we studied the 

participation of most of the known components in the 

fish immune system in acute and chronic stresses by 

examining changes in the levels of: (1) Immune cell 

groups of small and large lymphocytes, 

Polymorphonuclear (PMN) cells and 

monocytes/macrophages during stress treatments; (2) 

CD4 and CD8a cells which represent the majority of 

cells involved in immune processes (Todaa et al., 2011; 

Annunziato and Romagnani, 2009; Wan and Flavell, 

2009); (3) IgM and the complement C3s (a fish variant 

of mammal C3) which are considered as significant 

agents of the innate immunity (Nakao et al., 2000; 

Brattgjerd and Evensen, 1996; Kaattari and Irwin, 1985); 

(4) The pro-inflammatory cytokines IL1b, IL6 and TNFa 

(Secombes and Fletcher, 1992); (5) the inflammatory 

cytokines related to Th1 cells (IFNγ2b and IL12b) and 

Th17 cells (IL17) (Du et al., 2014; Zou et al., 2005; 

Wang et al., 2014); (6) IL10, TGFβ and FoxP3 (Wei et al., 

2013; Wang et al., 2010; Kohli et al., 2003) regulatory 

cells cytokines; (7) The chemoattractant CXCL8 that 

acts similarly to the mammalian IL8 in mobilizing 

macrophages/neutrophils/leukocytes to the target area 

(Van der Aa et al., 2012). 

Materials and Methods 

Animals 

Common carp (150±30 gr.) were obtained from a 

local fish farm (Mishmar Hasharon, Israel). The fish 

were acclimatized to laboratory conditions for at least 

one month before experiments. Fish were maintained in 

containers (105×105×80 cm) with air bobbling and 

recirculating fresh water at 24±2°C, in a 12 h. light/12 

h. Dark cycle and fed a commercial diet once a day. 

Two weeks before the experiment, the fish were kept 

into net cages (75×28×48 cm), 2 fish in each one. The 
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cages were maintained in water tanks (350×300×100 

cm), equipped with a biological filter and continuous 

flow of water and air. 

Acute Stress 

A group of 8 fish was exposed for 10 min. to the air 

and then immersed for 30 min. in water, after three 

cycles of exposure/immersion, the fish were left for 24 h 

in the water (Melamed et al., 1999; Dror et al., 2006) 

and then anaesthetized by immersion in 0.01% 

benzocaine/water. Their spleens were collected into 

liquid Nitrogen for RNA extraction. In order to minimize 

handling stress, all stress treatments were done into the 

net cages i.e., the net with the fish was exposed to the air 

and immersed into the water. 

Chronic Stress 

The fish were similarly treated as in the acute stress 

group, but the exposures to the air and immersions, as 

above, were repeated three times a week for three weeks. 

Twenty four hours following the last air exposure, 

performed at the 9th, 16th and 23th days, groups of 8 

fish each were anaesthetized by immersion in a 0.01% 

benzocaine solution and their spleens were collected into 

liquid Nitrogen for RNA extraction. 

Gene Expression Quantification 

Total RNA was extracted from each spleen using 1ml 

TRI reagent according to the manufacturer's instructions 

(Geneall Biotechnology, Seoul, Korea). RNA 

quantification was carried out using a NanoDrop ND-

2000c spectrophotometer (Thermo Scientific). Total 

RNA quality was monitored by running samples on a 

1.3% agarose gel. Adequate samples were used for 

complementary DNA (cDNA) synthesis which was 

carried out with the FastQuant RT Kit (with gDNase) 

(Tiangen, Beijing, China) and served as a negative 

control for quantitative PCR (qPCR). Part of the cDNA 

was used for a standard curve in each qPCR experiment 

and the rest of the material was diluted to 100 ng µL
−1

. 

qPCR amplification was carried out in 20 µL reaction 

volume containing 5 µL of diluted cDNA (500 ng) used 

as a template for qPCR cytokine quantification, 10 µL 

FastFire qPCR PreMix (Syber Green) (Tiangen, 

Beijing, China) and 5 µL primer, resulting in a final 

concentration of 0.1 µM. 

All immune component samples were run in triplicate 

while standards (standard curve of each cytokine and of 

the RNA negative control following gDNase) in 

duplicate in the CFX96 (Bio Rad) following the 

manufacturer's conditions, as follows: Initial 

denaturation for 1 min, 95°C, followed by 40 cycles of 5 

sec denaturation at 95°C and 15 sec for 

annealing/extension at 59°C to 62°C (Table 1). The 

melting curve in each experiment was used to examine 

qPCR and primer quality. Results of qPCR experiment 

were accepted if: (1) There was no contamination of 

dimmers or other material; (2) the efficiency of the 

qPCR reaction was 90 to 109%, (3) the R line of the 

reaction was 0.98 to 1. 

PCR Qualification 

Amplification was performed in a 20 µL of a reaction 

volume containing 10 µL GoTaq Green Master Mix 

(Promega, Madison, WI, USA), 5 µL primer (in a final 

concentration of 0.1 µM) and 5 µL diluted cDNA (500 

ng). This solution was used as a template to synthesize 

immune components in each stress treatment. Samples 

were run in the UNO II (Biometric) as follows: Initial 

denaturation for 5 min at 95°C, followed by 30 cycles 

of 30 sec denaturation in 95°C, 30 sec annealing at 

60°C and 30 sec. extension at 72°C, ending with 72°C 

for 10 min. Samples were loaded on an 1.3% agarose 

gel and visualized by a MiniLumi Imaging System 

(DNR Bio Imaging Systems). 

Primer Design 

Primers were designed by the NCBI tool and 

purchased from Integrated DNA Technologies, Leuven, 

Belgium (IDT). Each primer was analyzed by an IDT 

Oligo Analyzer. Running conditions of each primer were 

analyzed and only those which showed negligible 

dimmer, high PCR efficiency (90-109%) and R≥0.98. 

were used (Table 1). 

Data Analysis 

All experiments were analyzed by the CFX96 
(Bio-Rad) software. Ratio production of immune 
components between stress conditions to control was 
expressed as fold changes. Cq was normalized to gene 
reference 40S rRNA and analyzed according to the 
Pfaffl and Livak method (Pfaffl, 2001; Livak and 
Schmittgen, 2008) by correcting the efficiency of each 
primer at stress relative to control. 

Cell Separation 

About 1 mL blood was removed from the caudal vein 

of each fish by a heparinized syringe and diluted in 9 mL 

Dulbecco's Modified Eagle Medium (DMEM) solution 

(Biological Industries, Israel). The spleens, kidneys and 

head kidneys of six fish from each treatment were 

removed following anesthesia from the groups of 

control, unstressed, acutely stressed and chronically 

stressed fish after one, two and three weeks. Organs were 

minced through a net with a 10 mL syringe piston into 

DMEM solution. Leukocytes were separated on Ficoll-

Paque
TM

 plus (GE Healthcare). After three washes, cells 

were used for Flow Cytometry (FACS) and for May-

Grunwald/Gimsa/right staining and identification. 



Mazal Shimon-Hophy and Ramy R. Avtalion / American Journal of Immunology 2017, 13 (2): 131.143 

DOI: 10.3844/ajisp.2017.131.143 

 

134 

Table 1. Primers for immune components and their annealing/extension temperature in the PCR and RT-qPCR reaction 

  Product 

Cytokine  Lenth AET*  Reverse Forward 

IL1β AB010701.1 98 62 TGGCAACTCATGGATTGTGGA GATTTGTCAGAAGCATTCGAGAC 

IL6 AY102632.1 96 60 AGCTGGCTGCAAGTTTCGT AGCTAAATTCAGAATGATCCTCGCT 

IL8 AB470924.1 137 60 TTGGCTCTTGAGGTTCCTCTTTT TTATTCCTGCTGGACCAATTTGC 

IL10 AB110780.1 94 60 ACCTTTTTCCTTCATCTTTTCATACGA GGATATGCGGAAATGTAGGAATTAC 

IL12b AJ628699. 102 60 GCAGCGATACCTCAAAGCTG AAGCTGTCCTTCAGTTGGCA 

IL17A/F2 HM231140.1 82 60 GGC AGT GAG TTCAGT CTC GTA CGC AGG TCATCTTTGAAGCCCA 

INFγ2b JX181980.1 120 62 TGTGCCAGTTTTTCTTTTGTAGC AGACATAAAGGAACCTGAGCAGAA 

TNFα AJ311801.2 111 60 TGTAGCTGCCGTAGGACTCAG ACAGCCAGGTGTCTTTCCAC 

C3s AB016213.1 94 60 CTGACTGCCCACCACTTCTA CAAACCTGGAATGCCCTTCG 

IgM AB004105.1 101 62 CAGCAAGCCAAGACACAAACA CGTATTAGCACCCCCAGAGC 

FoxP3 AB741577.1 71 59 TGACTTCCCCACACTGTTACCAT TACAGGCTATGCAGCTACACC 

TGFb AF136947.1 120 60 CACAGTTATCCGCCATCTTC CACGCTTTATTCCCAACCA 

CD4 DQ400124.1 111 60 CAGGGATGGACAGAGAAGAT GCACACTAGGACATCAACATAG 

CD8a EU251078.1 96 59 GTTGCTGGATCAGGTTCTC GACAGACAGTGGTTTCTACAC 

40S AB012087 83 60 TCCTTCAACAGCGAGAACCC TGGCGGACATACAGAACGAGAG 

AET*, annealing/extension temperature 

 

FACS 

Cells were incubated in PBS solution containing 

monoclonal mouse anti carp IgG (produced in our 

lab), 0.1% sodium azide and 2% Bovine Serum 

Albumin (BSA) (Sigma) for 30 min at 4°C, were 

washed twice and incubated in PBS with FITC-goat 

anti mouse IgG (Sigma) for 30 min at 4°C, were 

washed twice and kept in a PBS solution containing 

0.1% sodium azide, 2% BSA and 0.6% 

paraformaldehyde, at 4°C. Cell analysis was 

performed on a flow cytometer, FACSCalibur (Becton 

Dickinson) equipped with a 488 nm cooled argon-ion 

laser. Green fluorescence was collected through a 

520-530 nm bandpass filter. About 30,000 cells within 

the gated region were identified. Results were 

analyzed by the FlowJo software (FlowJo, LLC, 

Ashland, Or, USA). 

Cell Staining 

Slides were stained as follows: (1) Fixed for 3 min 

in methanol and dried by air; (2) Immersed for 20 min 

in diluted May-Grunwald solution (Sigma) (1:1 in 

methanol), then were washed for 1 min in phosphate 

buffer pH 6.3, 0.01 M (PB) and dried by air; (3) 

Immersed for 30 min in diluted Giemsa stain (Sigma) 

1:3 in PB and then were washed for 6 min in PB and 

dried by air; (4) Immersed in Wright stain (Sigma) 

200 mg/40 mL methanol for 20 min and then washed 

for 15 min in PB. Cells were observed and counted by 

axioimager.Z1 microscope (Zeiss). 

Follow-up of Blood Leukocyte Profile in Stressed 

Fish 

We used a group of 4 fish to follow changes in their 

individual peripheral blood leukocyte profiles 

throughout the stress treatments. Therefore, blood 

control samples (1 mL each) were taken from the caudal 

vein of each fish, with heparinized syringe, before stress 

treatments. Two weeks later, the fish were treated for 

acute stress, as detailed above and 24 h later, blood 

samples were taken, as above, from each fish. Two 

weeks later, the fish were treated for chronic stress 

during 3 weeks, as detailed above and blood samples 

were taken at the end of each week. Leukocytes from 

each blood sample were then separated on a Ficoll 

gradient and used for FACS evaluation and for cell 

staining as detailed above. 

FACS-Determination of Cell Groups 

Blood samples of 3 fish were taken as above and 

leukocytes were separated on Ficoll gradient. 

Leukocytes sorted by FACS ARIA III (BD 

Bioscience) to 4 main FACS gated groups (Fig. 1). 

Cell sample of each leukocytes group was transferred 

to slides by cytocentrifugation (Elliot-Shandon, 

Recyclab), stained as above for microscopy and FACS 

identification of each gated group. 

Identification of Macrophages/Neutrophils 

Leukocytes were incubated in a solution of 200 µL 

PBS containing 2% Hepes, 0.2% BSA, 10
7
 FITC- 

Staphylococcus albus and 50 µL carp inactivated serum, 

for 1 h at 28°C. The reaction was stopped by adding cold 

PBS. Fluorescence of phagocytosing cells in the 

analyzed gates in flow cytometry was examined by 

FACSCalibur (Becton Dickinson) and ImageStream 

(Merck Millipore). 

Statistical Analysis 

The acute stress results were tested for significance 

by F and T tests and those of chronic stress were 

analyzed by a one way ANOVA followed by Bonferroni 

and Tamhane Post Hoc Tests. 
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Results 

Cell sorting and staining of the different cell groups 

showed that: Cells of group A consisted mostly in 

small lymphocytes; of group B in medium and large 

lymphocytes; of group C in PMN cells and of group D 

in macrophages/monocytes (Fig. 1). Neutrophils and 

macrophages were identified by phagocytosis of 

marked Staphylococcus albus, flow cytometry and cell 

staining. B-cell like and plasma-cell like were identified 

by staining with FITC-bounded monoclonal mouse anti 

carp IgG and fluorescence examination using 

FACSCalibur and ImageStream. Leukocyte levels showed 

high variability between individuals which disguised 

stress influence (Fig. 2). Consequently, the influence of 

stress was also studied by following changes in peripheral 

blood leukocyte levels in 4 carp throughout different stress 

treatments (Table 2). In acute stress, only the follow up of 

peripheral blood leukocytes levels showed a significant 

decrease in small lymphocytes and B-like cells (~10%, 

~50% respectively) (p≤0.05) (Table 2). In chronic stress, 

by sampling 8 carps, leukocyte levels throughout stress 

treatments did not show significant changes in ANOVA 

test in the kidney and the head kidney except a decrease of 

15% of B-cell like at the 3
rd

 week of chronic stress in the 

kidney. On the other hand, in the spleen and the blood, 

macrophages/monocytes decreased significantly up to 

50% in the blood by one way ANOVA test and in the 

spleen by trend test. Moreover, B-cell-like and plasma- 

cell like decreased significantly, as evaluated by trend 

test, up to 50% in the blood (p≤0.05) (Fig 2). 

Moreover, trend test indicated that PMN cells levels 

rose slightly and permanently during weeks 1-3 of 

chronic stress (R = 0.998) in head kidney (Fig. 2). On 

the other hand, by following changes in leukocyte 

profiles of peripheral bloods of 4 individuals throughout 

stress treatments resulted in a drastic decline of 70-80% 

of macrophages (p≤0.05, in one way ANOVA) (table 2). 

In a similar way, B-like lymphocytes and plasma-like 

cell levels, decreased significantly by 80% in the blood 

(Table 2) at week 2 and 3 of chronic stress (p≤0.05, in 

one way ANOVA test). 

Results of immune components revealed that in 

acute stress, the level of the proinflammatory 

cytokines, IL1β, IL6 and TNFα, showed a significant 

increase of 515%, 147%, 373% Vs control, respectively 

(p≤0.05), as well as that of the down-regulatory ones, 

IL10 and TGFβ, that showed a significant increase by 

300 and 198%, respectively (Table 3 and Fig. 3, first 

and second wells). The level of the other components 

mRNAs: IL8, IgM, IFNγ2b, FoxP3, C3s and the cell 

markers CD4 and CD8α, showed no significant 

changes, except a slight insignificant decrease in C3s 

mRNA (Table 3 and Fig. 3, well 2). 

In chronic stress, cytokine mRNA levels of IL6, 

TNFα, C3s and IgM showed no significant changes 

compared to the control throughout the whole treatments 

(Fig. 4A and 4D) in spite of some fluctuations were seen 

especially in C3s levels (Fig. 3). IL1β, TGFβ and CD8a 

mRNA decreased respectively to 6%, 5% and 22% levels 

of control at the second week, after 7 regimes of stress. 

At the third week, however, after 10 regimes of stress, 

they returned to control levels (Fig. 4A, 4E and 4C), 

except IL1β which increased by 2.7 times above the 

control level (p≤0.05) at returning to homeostasis. 

IL12b, IFNγ2b mRNA decreased dramatically to zero 

levels throughout the whole chronic stress time and their 

levels did not recover even after three weeks of stress 

(Fig. 4B). IL8 and CD4 mRNA alike IL12b and IFNγ2b 

considerably decreased at the first week up to 1 and 6% 

and rose to 25%, 55% levels of the control, respectively, 

at the third week (Fig. 4A and 4C). IL10 and FoxP3 

mRNA decreased sharply (p≤0.05) in the second week to 

the level of 0.06 and 0.2% of the control, respectively. In 

the third week of chronic stress, after 10 regimes of air 

exposure, their mRNA amounts returned to control 

levels (Fig 4E). It is noteworthy that the evaluation of 

IL17mRNA was quantified by PCR instead of real time 

qPCR because of difficulties in selecting proper primers. 

IL17 mRNA decreased following acute stress to 4% and 

at the first week of chronic stress to almost zero levels. 

However, its levels rose from the second week, reaching 

control levels in the third week of chronic stress (Fig. 3). 

 
Table 2. Leukocyte percentages in common carp peripheral blood following stress treatments 

 Small Large Monocytes/   Plasma cell 

 lymphocyte lymphocyte Macrophage PMN cells B cells like like 

ctrl 70.07±3.03 14.98±1.77 1.05±0.09 3.35±0.89 8.50±1.69 4.86±2.52 

as 62.85±3.95* 13.36±2.13 1.01±0.32 8.84±2.49 4.28±0.95* 3.76±0.76 

csw1 67.73±4.22 14.43±2.2 0.30±0.06* 3.27±1.27 3.86±1.40 2.54±0.70 

csw2 71.25±5.90 11.32±2.47 0.26±0.09* 1.90±0.81 1.34±0.37* 1.64±0.42* 

csw3 68.67±6.85 9.93±3.16 0.21±0.05* 4.77±0.69 1.38±0.17* 0.93±0.25* 

*,p≤0.05 in one way ANOVA. Each result was the mean of 4 followed individual fish ± SEM. The results represented changes in the 

percent of leukocytes following five different stress treatments. The cell percentage was calculated from 30000 cells identified by 

FACSCalibur in the gated area and analyzed by the FlowJo software. Cell type was identified by cell sorting, binding of monoclonal 

mouse anti carp IgG to leukocytes, phagocytosing FITC-Staphylococcus albus and by cell staining. ctrl, control; as, acute stress; csw1, 

one week of chronic stress; csw2, two weeks of chronic stress; csw3, three weeks of chronic stress. 
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Fig. 1. Four main leukocytes groups A, B, C and D were sorted by FACS and then the sorted samples were cytocentrifuged on slides, fixed 

by methanol and stained with MayGrunwald/Giemsa/Wright stains. Cell classification was performed by microscopy (x100) 
 

 
 

 
 

 
 
Fig. 2. Percent of leukocytes in carp lymphatic organs following chronic stress treatments: *, one way ANOVA p≤0.05; t*, a 

significant trend of elevation/decrease of cells ≤ 0.05. The results represent the mean of 6-8 carp ± SEM. Carp were treated in 

chronic stress along three weeks. At each week leukocytes from lymphatic organs were separated. Cell percent levels were 

calculated from 30000 cells identified at the gated area by FACSCalibur and analyzed by the FlowJo software. ctrl, control; 

csw1, one week of chronic stress; csw2, two weeks of chronic stress; csw3, three weeks of stress 
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Fig. 3. Comparative cytokine levels in common carp spleen following different stress treatments. Cytokines were produced from 

mixed 500 ng cDNA of 8 fish by PCR amplification and loaded on 1.3% agarose gel with TBE running solution. 1, control; 2, 

acute stress; 3, one week of chronic stress; 4, two weeks of chronic stress; 5, three weeks of chronic stress 

 

 
 

 
 
Fig. 4. Immune component levels during chronic stress. *, p<0.05 in one way ANOVA. Each result was a mean of 8 carp spleens ± 

SEM, Component levels were measured by qPCR after three air exposure regimes per week. Results were normalized to 40S 

rRNA and the component ratio to the control was calculated by the ∆∆Cq method. ctrl, control fish; csw1, one week of 

chronic stress; csw2, two weeks of chronic stress; csw3, three weeks of chronic stress 
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Table 3. Normalized ratio of carp spleen cytokines following acute stress induction 

 IL1b IL6 IL8 IL10 INFγ2b TNFa C3s IgM FoxP3 TGFβ CD4 CD8a 

ctrl  1±0.12 1±0.18 1±0.13 1±0.15 1±0.12 1±0.14 1±0.8 1±0.12 1±0.14 1±0.14 1±0.12 1±0.15 

as 5.15±0.67* 1.47±0.28* 0.81±0.08 3.01±0.34* 1.4±0.19 3.73±0.27* 0.79±0.21 1.35±0.16 2.51±0.73 1.98±0.21* 0.84±0.1 1.3±0.18 

*, T test significance, p≤0.05. Each result represents a mean of 8 carp ± SEM. Acute stress was induced by a single regime of air 

exposure. Spleen cytokine levels were evaluated 24 h. after air exposure by qPCR amplification. Results were normalized to 40S 

rRNA and the ratio calculated by the ∆∆Cq method. ctrl, control; as, acute stress 

 

Discussion 

In the present study, we followed changes in 

leukocytes profiles of blood and lymphatic organs and 

measured levels of components representing the main 

functions of the immune system during acute and 

chronic stresses in order to further elucidate the involved 

cellular and molecular mechanisms. The spleen was used 

mainly to follow changes in immune constituents in the 

humoral system because preliminary experiments (data 

not shown) revealed that the cytokines level profile in 

the spleen was similar to that of the blood and provided 

more material for gene expression experiments than the 

blood. In addition, the leukocyte spread of spleen and 

peripheral blood displayed similar patterns, while that 

of kidney and head kidney were different. Whereas, the 

lymphocytes levels were higher than those of PMN 

cells in the peripheral blood and the spleen, the levels 

of both populations were almost similar in the kidney 

and the head kidney (Fig. 2). 

In acute stress, our results are in agreement with 

previous studies (Barker et al., 1991; Banerjee and 

Leptin, 2014) showing significant increased levels of 

pro-inflammatory cytokines (IL1β, IL6 and TNFα), as 

well as of down-regulatory ones (IL10 and TGFβ) (Table 

3). It is possible that the joint elevation of these 

regulatory cytokines with that of the pro-inflammatory 

ones was involved in the shortened time of the pro-

inflammatory response and the restoring of homeostasis. 

The pro-inflammatory cytokines are known to be 

involved in "fight or flight" response (Tort, 2011) in 

order to overcome ephemeral stressors. 

The effect of stress on fish was widely variable 

between individuals. Consequently, the leukocyte 

averages in lymphatic organs were ambiguous (Fig. 2). 

Therefore, a follow up of changes in leukocyte levels of 

peripheral blood throughout stress treatments (Table 2) 

elicited the question of the sampling size, or of the 

research tool. As a result, following changes in leukocyte 

levels of peripheral blood were considered as a 

significant parameter. 

In acute stress, the leukocytes levels showed 

significant changes only by following levels in 

peripheral blood. Lymphocytes decreased 10% 

possibly due to the significant decrease of up to 50% 

in the B-cell like (Table 2). 

In chronic stress, CD4 and CD8a mRNA levels 

decreased up to the second week (p≤0.05), but while 

CD4 mRNA remained depressed towards the third week, 

CD8a mRNA returned to homeostasis (Fig. 4C). This 

may explain the drastic decrease of 80% of 

macrophages, B-cell like and plasma-cell like in 

peripheral blood (Table 2). These results were in 

agreement with the decrease in leukocyte numbers in 

Oncorhynchus mykiss (Cristea et al., 2012), suppression 

of phagocytic and lymphocyte proliferative activities in 

Platichthys flesus and Solea senegalensis (Pulsford et 

al., 1995) and apoptosis of B cells in Cyprinus carpio 

(Verburg-Van Kemenade et al., 1999). Nevertheless, 

IL12b and IFNγ2b mRNA products (Fig. 4B) decreased 

to null throughout 22 days and their levels did not 

recover even after the third week of chronic stress. It was 

possible that this dramatic decrease was a result of the 

deleterious functions of producing IFNγ2b and IL12b 

mRNA in CD4 cells, especially following the 

impairment of Th1 cells (Wojtaszek et al., 2002;   

Cristea et al., 2012). Production in Th1 cells alone can't 

explain the zero levels of IFNγ2b. Therefore, it is 

suggested that additional impaired cell types like NK 

cells, might be involved because of the partial decline in 

CD8a mRNA. The sharp decrease in IFNγ2b production, 

macrophages levels, B-cell like and plasma-cell like 

amounts might explain the increased susceptibility to 

diseases occurring in chronic stress (Saeij et al., 2003; 

Small and Bilodeau, 2005; Mauri et al., 2011;     

Elenkov and Chrousos, 1999; Maule et al., 1989). 

Moreover, the improvement of CD4 mRNA amounts 

from 6 to 55% of control levels, which occurred between 

second and third weeks of chronic stress (Fig. 4C) may 

explain the recovery of inflammatory and regulatory 

functions at that time. 

The IL17 PCR results (produced in Th17 cells) (Fig 

3) suggest that its levels decline in acute and chronic 

stresses but increase towards the third week as seen in 

the case of CD4 elevation (Fig. 4C). This finding might 

reveal a recovery of the inflammatory functions in 

progressing chronic stress. 

IL1β (p≤0.05) and IL6 (p≤0.06) mRNA ratios which 

decreased during the second week of chronic stress, 

reached homeostasis at the third week, whereas, TNFα 

mRNA (Fig. 4A) remained stable along three weeks of 

stress. This result was slightly different from that 

reported for cortisol induced chronic stress in rainbow 

trout (Cortés et al., 2013), which showed that TNFα and 

IL1β increased after 5 days. That occurred in our study 

in the acute stress but not in the chronic stress. This 
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contradiction might be due to differences in experimental 

conditions, i.e., the use of cortisol implants versus 

repeated air exposure. The unchanged levels of TNFα 

and minor temporarily changes in IL1β and IL6 levels 

throughout the chronic stress (Fig. 4A), even though 

there was a drastic decrease in macrophages/monocytes, 

B-cells like, plasma-cells like (Table 2) and supposedly 

Th1 and NK cells, might point on additional stable pro-

inflammatory resources. Moreover, the chemoattractant 

IL8 which was down-regulated along 22 days of the 

chronic stress (Fig. 4A) and did not relieve after the third 

week may explain the macrophage/neutrophil/leukocyte 

mobilization decline in different compartments of the 

body as shown by others (Wojtaszek et al., 2002). 

FoxP3, known to be produced by regulatory cells 

(CD4 cells) decreased towards the second week before 

being elevated to homeostasis levels at the third week 

as also seen by the moderate elevation of CD4 mRNA 

(Fig. 4C and 4E). 

Other regulatory cytokines, IL10 and TGFβ behaved 
in different ways throughout the stress period. While, 
IL10, was down-regulated throughout the three weeks of 
chronic stress and slightly rose at the third week 
(p≤0.09), TGFβ showed considerable changes only at the 
second week of chronic stress and increased at the third 
week to homeostasis levels (Fig. 4E). This may indicate 
that regulatory functions may have different resources 
that respond in different ways to stress. In general, 
regulatory functions were indeed influenced by chronic 
stress but only for a while and eventually almost 
returned to homeostasis. 

The increase of TGFβ together with IL6 mRNA at 

the third week may also explain the recovery of Th17 

cells as indicated by the followed up-regulation of IL17 

(Fig. 3) and CD4 mRNA (Fig 4C). IgM mRNA levels 

neither changed in acute stress nor in chronic stress in 

our experimental conditions (Table 3, Fig 3 and 4D). 

This result was in contradiction with husbandry, 

confinement or crowding induced stresses findings 

(Varsamos et al., 2006; Nagae et al., 1994; Maule et al., 

1989; Rotllant et al., 1997; Ruane et al., 1999) and to the 

decrease in B-cell likes and plasma-cell likes (Table 2 

and trend in Fig. 2), but in agreement with other studies 

(Douxfils et al., 2011; Cuesta et al., 2004;            

Vargas-Chacoff et al., 2014). These discrepancies were 

also shown in our lab as a result of pollution and 

temperature stress (not yet published) and it might be 

due to a presence of inhibitor controlling IgM humoral 

activity. Similarly, C3s mRNA showed no significant 

changes in both acute and chronic stresses, although its 

levels fluctuated throughout the chronic stress period 

(Fig. 3 and 4D). These results differ from the hemolytic 

findings of previous reports (Demers and Bayne, 1997; 

Sunyer and Tort, 1995; Mauri et al., 2011), but were in 

agreement with the reported hypoxia and cortisol 

induced stress (Douxfils et al., 2012; Eslamloo et al., 

2014). However, one cannot disregard that the measured 

plasma ACH50 which reported above (Demers and 

Bayne, 1997; Sunyer and Tort, 1995; Mauri et al., 2011) 

is based on the sum of the protein cascade in the 

complement activity and not solely on the C3s mRNA 

production. Therefore, it is likely that during stressful 

events complement protein variants, stress intensity and 

its duration, individual variations and the presence of 

inhibitors, represented a possible cause of these 

disagreements and fluctuations in C3s levels. 

The involvement of some immune components in 

acute and chronic stresses, as discussed above, 

emphasizes which of these functions need further 

clarifications as follows: (1) The unchanged production 

in IgM and C3s mRNA levels in our study is not in 

agreement with the reported decrease in their activity in 

the blood (Varsamos et al., 2006; Nagae et al., 1994; 

Maule et al., 1989; Rotllant et al., 1997; Ruane et al., 

1999; Demers and Bayne, 1997; Sunyer and Tort, 1995; 

Mauri et al., 2011). This discrepancy elicited the 

necessity to further clarify the existence of inhibitory 

functions during chronic stress. (2) Were the zero levels 

in IFNγ2b and IL12b throughout chronic stress, due only 

to the impairment in monocytes, NK/Th1 and B cells? 

(3) The unchanged levels of TNFa and almost 

unchanged levels of IL1b and IL6, even after a decrease 

up to 80% in monocytes/macrophages levels, might 

enable the verification of the involved cellular 

mechanisms in the production of these cytokines during 

chronic stress. (4) We need to clarify the meaning of a 

persistent increase of PMN cell levels in the head kidney 

in trend tests (p≤0.05) (Fig. 2). 

Conclusion 

Based on the above findings, it can be concluded that: 
 

• The decrease up to null in mRNA levels of IFNγ2b 

and IL12b throughout chronic stress is probably due 

to the presence of an additional impaired population 

of cells, producing these cytokines, besides probable 

Th1 and/or NK cells 

• The cells that were the most affected by chronic 

stress were macrophages, B-cell likes, plasma-cell 

likes and to a certain extent, the Th1 cells and 

subtypes of the NK cells/cytotoxic cells. This 

decline in these cells might explain the susceptibly 

to diseases during chronic stress 

• The decrease in IL8 mRNA levels during chronic 

stress undoubtedly reduced leukocytes mobilization. 

As a result, the leukocyte recruitment at the affected 

sites might be injured 

• The increase in pro-inflammatory and regulatory 

cytokines seems to counter balance temporary 

stresses but these cytokines stay almost unchanged 

throughout chronic stress 
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• The levels of some constituents of innate immunity 

such as C3s and IgM mRNA were unchanged 

following acute and chronic stresses 
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