American Journal of Infectious Diseases 5 (2): 142-147, 2009 ISSN 1553-6203 © 2009 Science Publications

Target Identification in Ory S1 Pollen Protein Allergen from *Oryza sativa* in the Course of Construction of Hypoallergenic Vaccines

Ruchi Sharma and A.K. Singh Department of Botany, Udaya Pratap College, Varanasi, Veer Bahadur Singh Purvanchal University, Jaunpur, Uttar Pradesh, India

Abstract: Problem statement: Recombinant-based approaches are mostly focused on genetic modification of allergens to produce molecules with reduced allergenic activity and conserved antigenicity, such as hypoallergens. Recombinant allergens represent promising tools for diagnosis and therapy of type I allergy. This approach was probably feasible with every allergen with known amino acid sequence. Approach: The primary aim of this study was to determine the consensus epitope from twenty homologous protein sequences of Ory S1 allergenic protein sequence from Oryza sativa (indica group) pollen. Molecular modeling calculations had been used to investigate the allergenic protein models for the epitope. Results: Oryza sativa (japonica), Phleum pratense, Poa pratensis, Holcus lanatus, Lolium perenne, Triticum aestivum, Dactylis glomerata and Zea mays were found more closely related (alignment score 1145-812) among all the homologs and investigated further. The major binding pocket comprised an area of 604.5 Å² and 970 Å³ volume and another key binding pocket had 425.6 Å² area and 658.8 Å³ volume. The residues found in the key site included ile2, lys13, cys14, ser15, lys16, pro17, ala25, leu26, ile27, tyr40, his41, phe42, asp43, leu44, ser45, gly46, leu47, ala48, met49, ala50, asp55, leu58, arg59, ala61, gly62, ile63, ile64, asp65, gln67, phe68; corresponding to the allergen binding site and the IgE binding epitope given in the title. Conclusion: These are the functional sites on the allergenic proteins that can be mutated to develop hypoallergenic vaccine. These sites can be rationalized on the basis of simple arguments that lead to vaccine development, by predicting the structure of the allergenic epitopes and comparative analysis.

Key words: Homology modeling, allergen binding epitope, allergenic proteins

INTRODUCTION

An allergen simply means a harmful immune response elicited by an antigen that is not itself intrinsically harmful. Grass pollens are well known among the health hazardous bio aerosols causing respiratory allergy. Being an important member of the grass family, the rice plants contribute a huge pollen load in agricultural fields during flowering.

Oryza sativa is the cultivated rice, used as staple food by majority of world's population. Pollen allergens of *Oryza sativa* is recognized by the International Union of Immunological Societies (IUIS) official list of allergens^[1] which include Ory S1, Ory S7 and Ory S12. Protein Ory S1 has been validated as an allergen on the basis of its recognition by IgE antibodies from allergic individuals^[2].

Allergenic site identification can be explained as the residues found in the binding pocket and in IgE binding epitope. Most allergens contain multiple motifs though all the motifs might not prove to be good targets. The target motif must be selective in terms of IgE binding epitopes^[3]. The knowledge of molecular nature of allergen-antibody interactions is important to understand the mechanism of conventional immunotherapy, as well as to design alternative immunotherapeutic strategies^[4]. The allergy process has been widely studied in last few decades, enhancing the better understanding of allergic problem that affects varied age group.

Vaccination is the most effective technique suggested nowadays for allergy prevention. The molecules developed for vaccination against allergy possess significantly reduced allergenicity in terms of IgE binding and therefore will not lead to anaphylactic reactions upon injection. This approach is probably feasible with every allergen with known amino acid sequence; irrespective of the source (pollen, food, mites) from which it may be derived^[5]. Also, the products of agricultural biotechnology should be subjected to a careful and complete safety assessment

Corresponding Author: Ruchi Sharma, Department of Botany, Udaya Pratap College, Varanasi, Uttar Pradesh, India Tel: 09633137687

for its allergenicity before commercialization. The identification and validation of protein allergens have become more important nowadays as more and more transgenic proteins are introduced into our food chains.

We need to look for the Immunoglobulin Epsilon (IgE) epitopes to confirm the allergy response of any allergenic or transgenic protein. If the bioinformatics methods are standardized and optimized, it may lead to complete exploitation of the transgenic food and for the identification of targets to create hypoallergenic vaccines. Moreover, many attempts have been well documented to predict allergenicity of a query protein by its amino acid sequences^[6].

The present study was intended to obtain homologous sequences for Ory S1 allergenic proteins, analyze the homologous protein sequences for allergenic sites in sequence and to validate the obtained targets, pertaining to effective identification of consensus epitope and distinct sequence features.

MATERIALS AND METHODS

Sequence retrieval: Ory S1 Protein (query protein) sequence from *Oryza sativa* was retrieved from NCBI database^[7]. Basic local alignment search tool was used to retrieve the homologous sequences by querying against non-redundant database (nr).

Pair wise sequence alignment: Dynamic programming algorithm was used to align individual homologous sequence(s) with the query protein sequence to find the proximity. LALIGN program which implements Huang and Miller algorithm was utilized for this study^[8].

Multiple sequence alignment: Nine close homologous sequences were selected for further study based on pairwise alignment score. ClustalW, a neighbor joining algorithm based tool was used to find the Multiple Sequence Alignment (MSA)^[9] and a consensus sequence was prepared based on the MSA.

Domain and motif detection: Domain positions of the sequences were identified using InterPro, an integrated resource for protein families, domains and sites that combines a number of databases (referred to as member databases) using diverse methodologies and a varying degree of biological information on well-characterized proteins to derive domain positions in the protein sequence^[10]. Multiple Em for Motif Elicitation (MEME) was also used to find common motifs found in the MSA^[11].

Protein homology modeling: All 20 allergen homolog sequences and the consensus domain sequences were modeled using homology modeling method using same template (1n10A). MODELLER, a homology modeling tool which implements comparative protein structure modeling by spatial restraints, was utilized for the present study to construct protein models^[12,13].

Binding pocket exploration: CASTp server, which used weighted Delaunay triangulation and the alpha complex by shape measurement of the domain structure was used for the present study to locate the binding pockets^[14]. This tool measures analytically the area and volume of each pocket and cavity, both in solvent accessible surface (SA, Richards' surface) and molecular surface (MS, Connolly's surface). The obtained pockets were validated based on their functional significance and its contribution to the essentiality and allergenicity of the organisms. Finally, the target's functionality significance and its role in IgE interactions were validated in the light of literature search.

RESULTS

BLAST search was performed to fetch significant homologous sequences of Ory S1 and were short listed for comparison (Table 1). Pairwise alignment of query sequence (Orv S1) with the individual short listed homologs was performed and the results were tabulated (Table 2). The three Dimensional structures were modeled for the homologous sequences and were validated for plausibility. The RMSD value for all the structures with that of the template (1n10A) was calculated to elucidate 3-Dimensional homology (Table 3). Based on RMSD score and similarity score, the most homologous sequences with good modeled structure were selected for target identification. The conserved residues in the domains of the structures were identified (Table 4) and the property of the conserved domains were analyzed (Fig. 1). Based on position-specific probability matrix (Fig. 1) the probabilities of each possible amino acid letter appearing at each possible position in the conserved domain were elucidated. From all these sequences selected, subsets of highly conserved residues were retrieved and a multiple sequence alignment was performed to get the consensus sequences (Fig. 2). Furthermore, the binding analysis were also done all the structures and the potential pocket was identified based on Castp rating (Fig. 3). Moreover, the residues spanning the potential pocket were tabulated in Table 5.

	Am. J.	Infect.	Dis.,	5	(2): .	142-1	147,	2009
--	--------	---------	-------	---	--------	-------	------	------

Sequence No.	Accession No.	Protein name	Organism	Sequence length
1	AAA86533.1	Ory S1 (Query sequence)	Oryza sativa	263
2	NP_001048686.1	Pollen allergen	Oryza sativa (japonica)	264
3	CAA81613.1	Pollen allergen Phl pI	Phleum pratense	263
4	CAA10520.1	Group I pollen allergen	Poa pratensis	263
5	CAA10140.1	Major group I allergen Hol 1 1	Holcus lanatus	263
6	CAB63699.1	Pollen allergen	Lolium perenne	263
7	AAP96760.1	Group 1 allergen Dac g 1.02 precursor	Dactylis glomerata	264
8	AAS48882.1	Expansin EXPB4	Triticum aestivum	270
9	ABF81662.1	EXPB10	Zea mays	269
10	CAC40805.1	Beta expansin B2	Festuca pratensis	269
11	ABB83474.1	Beta-expansin precursor	Solanum lycopersicum	275
12	AAZ08315.1	Putative beta-expansin	Eucalyptus globulus	210
13	NP_190182.2	ATEXLA3	Arabidopsis thaliana	215
14	ABK93417.1	Unknown	Populus trichocarpa	259
15	AAV85475.1	Expansin	Populus tomentosa	258
16	ACB45301.1	Beta-expansin EXPB4	Hordeum vulgare	273
17	ABJ90221.1	Expansin 2	Malus hupehensis	253
18	AAT11859.2	Expansin 1	Mangifera indica	260
19	BAC67192.1	Expansin	Pyrus communis	253
20	BAC66787.1	Expansin	Prunus persica	260

Table1: Sequences and data obtained from NCBI server

Table 2:	Alignment	scores	for	the	homologous	sequences	with	the
	query sequ	ence						

	Name of sequence with							
Sr.	which query sequence Ory			Alignment				
No.	S1 (Oryza sativa) is aligned	Identities	Positives	Gaps	score			
1	Oryza sativa (japonica	89	91	0	1145			
	cultivar-group)							
2	Phleum pratense [Phl pI]	70	82	3	910			
3	Poa pratensis (group I	67	80	3	881			
	pollen allergen)		-		0.44			
4	Holcus lanatus (Hol I 1)	66	79	3	864			
5	Lolium perenne (pollen allergen)	67	78	3	860			
6	Dactylis glomerata	69	80	3	889			
	(Dac g 1.02 precursor)							
7	Timothy grass pollen	69	80	3	884			
	Allergen (Phl P 1)							
8	Triticum aestivum	64	79	6	830			
	(expansin EXPB4)							
9	Zea mays (EXPB10)	65	77	5	812			
10	Festuca pratensis (beta	49	66	1	578			
	expansin B2)							
11	Solanum lycopersicum	42	62	5	442			
	(Beta-expansin precursor)							
12	Eucalyptus globulus	41	61	6	420			
	(putative beta-expansin)							
13	Arabidopsis thaliana	35	53	8	261			
	(ATEXLA3)							
14	Populus trichocarpa	30	49	1	246			
	(unknown)							
15	Populus tomentosa	31	48	14	197			
	(expansin)							
16	Hordeum vulgare	47	65	5	226			
	(EXPB4)							
17	Malus hupehensis	29	45	15	180			
	(expansin 2)							
18	Mangifera indica	30	47	13	184			
10	(expansin 1)	•						
19	Pyrus communis	29	46	13	176			
20	(expansin)	20	45	12	170			
20	Prunus persica	30	45	13	1/9			
	(expansin)							

Table 3:	RMSD	values	for	all	the	structures	modeled	with	1N10A	as
	templat	e struct	ure							

S. No.	Sequence ID	RMSD values (A)
1	AAA86533.1	0.47
2	NP_001048686.1	0.42
3	CAA81613.1	0.38
4	CAA10520.1	0.30
5	CAA10140.1	0.41
6	CAB63699.1	0.30
7	AAP96760.1	0.33
8	AAS48882.1	0.33
9	ABF81662.1	0.42
10	CAC40805.1	0.59
11	ABB83474.1	0.46
12	AAZ08315.1	0.60
13	NP_190182.2	1.05
14	ABK93417.1	0.81
15	AAV85475.1	0.99
16	ACB45301.1	0.49
17	ABJ90221.1	0.91
18	AAT11859.2	1.01
19	BAC67192.1	1.11
20	BAC66787.1	1.08

Fig. 1: The information content diagram showing most highly conserved positions in the motif

Am. J. Infect. Dis., 5 (2): 142-147, 2009

CAB63699.1	MASSSS-VLLVVALFAVFLGSAH-GIAKVPPGPNITAEYGDKWLDAKSTWY 49
AA P9 676 0.1	MASSSSSVLLVVALFAVFLGSAH-GIPKVPPGPNITATYGDKWLDAKSTWY 50
CAA10520.1	MASSSS-VLLVVALFAVFLGTAH-GIAKVPPGPNITATYGDKWLDAKSTWY 49
CAA10140.1	MASSSL-VLLVVALFAVFLGTAH-GIAKVPPGPNITATYGDKWLDAKSTWY 49
CAA81613 1	WASSSS-VI.LVVALFAVELGSAH-GIPK VP PG PNITATYGDKWLDAKSTWY 49
AAS48882 1	MASSSSSVLIVAAVIAAVVCGAH-GTAKVPBGPNITASPTSVGNKWLDAKTTWY 53
ABE81662 1	MTV VS TMMSL VO VOVI VA VALSEL VC CAN CC DDK VD DCKNT TAN V CS DWL DA KA TWY 57
AAA86533 1	
ND 001049696 1	
MI _001040000.11	
G > D C 2 C 0 0 1	
CAB6 369 9.1	GKP TG AGPKD NG GAC GY KD VDK AP FN GMT GC GNT PI FK DGR GC GS CFE IK CTK PE SC SGE 109
AA P96760.1	GKP TG AGPKD NG GAC GYKD VDK AP FN GMT GC GNT PI FK DGR GC GS CFE IK CTK PE SC SGE 110
CAAL0520.1	GKPTGAGPRDNGGACGYRDVDRAPFSGMTGCGNTPIFRSGRGCGSCFEIKCTKPESCSGE 109
CAA10140.1	GKP TG AG PKD NG GAC GY KD VDK PP FS GMT GC GNT PI FK SGR GC GS CFE IK CTK PE SC SGE 109
CAA81613.1	GKP TA AG PKDNG GAC GY KD VDK PP FS GMT GC GNT PI FK SGR GC GS CFE IK CTK PE AC SGE 109
AAS48882.1	GKP TG AG PKD NG GAC GY KE VDK AP FH GMT SC GNI PI FK DGR GC GS CFE LK CTK PE AC SGE 113
ABF81662.1	GKP TG AG PDD NG GGC GY KD VNK AP FN SMG AC GNV PI FK DGL GC GS CFE IK CDK PA EC SGK 117
AA A8 6533.1	VRP RV LAPKD NG GAC GY KD VDK AP FL GMN SC GND PI FK DGK GC GS CFE IK CSK PE AC SDK 109
NP_001048686.1	GAPKGAGPKDNGGACGYKDVDKAPFLGMNSCGNDPIFKDGKGCGSCFEIKCSKPEACSDK 109
	* .*.***.******************************
CAB63699.1	AVT VT IT DDN EE PIA PY HF DLS GH AF GSM AK KGE EQ KLRSAGE LE LQF RR VKC KY PD GTK 169
AA P9 6760.1	AVT VH IT DDN EE PIA PY HF DLS GH AF GSMAK KGE EQ KLRSAGE LE LQF RRVKC KY PE GTK 170
CAA10520.1	PVL VH IT DDN EE PIA AY HF DLS GK AF GAM AK KGE EQ KLRSAGE LE LKF RR VKC EY PE GTK 169
CAA10140.1	PIVVHITDDNEEPIAAYHLDLSGKAFGAMAKKGEEQKLRSAGELELKFRRVKCEYPKGTK 169
CAA81613.1	PVV VHITDDNEE PIA AYHFDLSGIAFGSMAKKGDEQKLRSAGE VEIQFRRVKCKYPEGTK 169
AAS48882.1	PTM VT IT DKN EE PIA PY HF DLS GH AF GSMAK KGE EO KLRDAGE VE IKF RR VKC KY PAGTK 173
ABF81662.1	PVV VY ITDMN YE PIA AY HFDLAGT AFGAMAK KGE EE KLRKAGI ID MQF RR VKC KY GSK 175
AA A8 6533.1	PALIH VT DMN DE PIA AY HF DLSGLAMAK DGK DE ELRKAGI ID TOF RR VKC KY PADTK 166
NP 001048686.1	PAL TH VT DMN DE PTA AY HE DLSGLAMAK DGK DE ELRKAGT TO TOF RR VKCKY PADTK 166
	· · · · · · · · · · · · · · · · · · ·
CAB63699.1	PTF HV EK ASN PN YLA IL VK YVD GD GD VVA VD IKE KG KD KWIEL KE SWG AV WRIDT PD KLT 229
AAP96760 1	VTE HVEK GSN PN YLA LLVK YVD GD GD VVA VD TKE KG KD KWT AL KE SWG AT WPV DT PD KLT 230
CAA10520 1	VTE HV EK GSN PN YLA LLVK YVT GD GD VVA VD IKE KG KDKWI EL KE SWG SI WRV DT PD KLT 229
CAA10140 1	VTE HVEK GSN PN YLALL VK YVD GD GD VVA VD IKE KG KDKWI EL KE SWG AVWRV DT PD KLT 229
CAA81613 1	VTE HVEK GSN EN YLA LLVK FVA GD GD VVA VD IKE KGKD KWI AL KE SWG AT WEI DT PE VLK 229
AAS48882 1	UNE HVER SSNEN VLATVER FLOCE OD VVGVD TKOKO ED KWTELNE SWOAVWET DT DHKLL 233
ABF81662 1	VTEHLEK GON PN YLALL VK YVD GD GD IVA VD IKE KG SD TYE PL KH SWG AT WRK DS DK PIK 235
7796522 1	TTENT PRACENDARY ATT WE VIA COCOUVER VETVERCE PEWEAT VECON AT WETDER DUDIE 226
NP 001048686 1	TTENT FKASNEN THAT I VK YVAGD GD VVE VETKEKG SEFWKALKE SWGAT WETDTEK 1. K 226
MI_001040000.1	
CAR62600 1	
ADD 5750 1	
AAP90700.1	
CARLU320.1	GPF TV KTITLE GG TKU EA ED VIP EG WKADTATASK Z05
CAALU14U.1	GPF IVELILE GETEV EA ED VIP EG WEADTALESK 203
LAA81013.1	GPF IV KIIIE GG ING EAKD VIF EG WKADTAIESK $$ 203
AA 54 000 2.1	GPF SVRITTEGGTKT VVDDVTPAGWRPDTSTEAR GGY- 270
ABF81662.1	GPITVRLTTEGGTKTVYDDVIPTDWRPNTAYTTK 269
AAA86533.1	GPF SV RV TTE GARRS SAEDAIP DP GRRQR V - QVN VQ AR 263
NP_UUIU48686.1	GPF SV RV TTE GG EKI IA ED AIP DG WK ADS VY KSN VQ AK 264
	×ו × × × * * *

Fig. 2: Multiple sequence alignment for the domain position in nine most related sequences based on alignment score and RMSD value

Fig. 3: Binding domains (pockets) using CASTp for domain structure

Table 4: Binding domains positions using PROSITE for nine most similar sequences

S. No.	Sequence	Domain position
1	AAA86533.1	78-154
2	NP_001048686.1	78-154
3	CAA81613.1	78-157
4	CAA10520.1	78-157
5	CAA10140.1	78-157
6	CAB63699.1	78-157
7	AAP96760.1	69-178
8	AAS48882.1	82-161
9	ABF81662.1	86-165

Table 5: Binding domains (pockets) using CASTp for domain structure

Pocket	Area, Å ²	Volume, Å ³	Color	Amino acid residues (name: position)
6	604.5	970.0	Green	I:12 K:13 C:14 S:15 K:16 P:17
				A:25 L:26 I:27 Y:40 H:41 F:42 D:43
				L:44 S:45 G:46 L:47 A:48 M:49
				A:50 D:55 L:58 R:59 A:61 G:62
				I:63 I:64 D:65 Q:67 F:68
5	425.6	658.8	Blue	K:1 D:2 G:3 G:5 C:6 S:8 F:10 I:27
				H:28 V:29 T:30 D:31 M:32 N:33
				P:36 A:39 Y:40 H:41 F:42 D:43
				L:44 S:45
4	29.6	19.9	Cyan	G:46 L:47 D:55 R:59
3	4.7	9.5	Yellow	K:23 K:51 D:52
2	1.2	2.2	Magenta	Y:40 F:68
1	28.4	13.7	Pink	I:12 F:42 L:44

DISCUSSION

The homology search for ORY S1 fetched 20 homologous Sequences ranging from grasses to higher plants (Table 1). The three Dimensional structures were modeled for the homologous sequences and were validated by RMSD value with that of the template

(1n10A) was found between 0.30 and 1.11. Hence, indicative of the plausible model obtained (Table 3). Based on RMSD score (0.30-0.47) and sequence similarity score (1145-812) (Table 2), nine most homologous sequences with good modeled structure were selected: Oryza sativa (japonica), Phleum pratense, Poa pratensis, Holcus lanatus, Lolium perenne, Triticum aestivum, Dactylis glomerata and Zea mays for target identification. Conserved domains of the structures selected showed identity from position 86-164 (Table 4) in all these sequences which confirms the evolutionary relatedness. These active domains were reported to be of DPBB_1 domain (a conserved region from rare lipoprotein A (RlpA) that has the Double-Psi Beta-Barrel (DPBB) fold. Based on position-specific probability matrix derived (Fig. 1) the probability of each possible amino acid letter appearing at each conserved position was identified and it shows high conservation of cysteine residues and hence confirming the well documented role of disulfide bonds formed between cysteines in IgE binding and in several other allergens^[15,16]. Consensus derived from the subset (82-154 residues) (Table 4) of Multiple sequence alignment was subjected to prositescan, which fetch the following domain pattern: K-[DS]-G-[KR]-G-C-G-S-C-F-E-I-K-C-[ST]-K-P-E-[AS]-C-S-[DG]-[EK]-[AP]-[AIV]-x-[IV]-x-[IV]-T-D-x-N-[DE]-E-P-I-A-[AP]-Y-H-[FL]-D-L-S-G-x-A-[FM]-[AG]. The consensus domain was modeled based on homology with (1n10A) as template. Structure for the domain position showed a total of six binding pockets, out of which the first major pocket had an area of 604.5 Å² (Fig. 3) and 970 Å³ volume, indicative of sufficient volume for antigenantibody interactions. As these are common pocket from nine structures, the outcome of this strategy can be used to identify common allergenic epitopes for similar structures at a single stretch. The role of conserved cysteines (Table 5) shall also play a major role in determining the allergenicity and this falls in line with the previously documented studies^[15,16]. Hence, the procured consensus region shall be utilized for effective vaccine design against food allergens.

CONCLUSION

Consensus epitope identification using the available allergenic region has geared up the swiftness to fulfill the demands of the patients. If bioinformatics approaches are standardized and optimized, it can be used for the rapid identification of potential antigenic regions to develop hypoallergenic vaccines. The present study shows that allergenic epitopes have some common amino acid conservations in the allergenic domain positions: 82-154, which are conserved with hydrophobic residues. Amino acids cys, lys, gly, ser and pro was found more conserved in the allergenic motif as well as in binding pocket. Cysteine residue highly conserved at four positions shall play a crucial role in antigenicity. We present the results of this study to the medical community for vaccine development.

REFERENCES

- Marsh, D.G., L. Goodfriend, T.P. King, H. Lowenstein and T.A. Platts-Mills, 1986. Allergen nomenclature. Bull, 64: 767-774.
- Russell, S.D., P.L. Bhalla and M.B. Singh, 2008. Transcriptome-based examination of putative pollen allergens of rice (*Oryza sativa* ssp. japonica) Mol. Plant, 1: 751-759. DOI: 10.1093/mp/ssn036
- 3. Kong, T.S.T., L. Tham and K.W. Choo, 2006. Improved prediction of allergenicity by combination of multiple sequence motifs. Silico Biol., 7: 6-6.

http://www.bioinfo.de/isb/2006/07/0006/main.html

- Smith, A.M. and M.D. Chapman Clin, 1997. Localization of antigenic sites on Der p 2 using oligonucleotide-directed mutagenesis targeted to predicted surface residues. Exp. Allerg., 27: 593-599. DOI: 10.1111/j.1365-2222.1997.tb00750.x
- Kumar and Shelokar, 2008. An SVM method using evolutionary information for the identification of allergenic proteins. Bioinformation, 2: 253-256. http://www.bioinformation.net/002/005700022008.pdf
- Ferreira, F., C. Ebner, B. Kramer, G. Casari, P. Briza and A.J. Kungl *et al.*, 1998. Modulation of IgE reactivity of allergens by site-directed mutagenesis: Potential use of hypoallergenic variants for immunotherapy. FASEB. J., 12: 231-242. http://www.fasebj.org/cgi/content/abstract/12/2/231
- 7. National Centre for Biotechnology Information; www.ncbi.nlm.nih.gov
- Huang and Miller, 1991. The lalign program implements the algorithm of Huang and Miller. Adv. Appl. Math., 12: 337-357. http://www.ch.embnet.org/software/LALIGN_form.html
- Larkin, M.A., G. Blackshields, N.P. Brown, R. Chenna and P.A. McGettigan *et al.*, 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23: 2947-2948. http://www.ncbi.nlm.nih.gov/pubmed/17846036
- Quevillon, E., V. Silventoinen, S. Pillai, N. Harte, N. Mulder, R. Apweiler and R. Lopez, 2005. InterProScan: Protein domains identifier. Nucleic Acids Res., 33: W116-W120. http://www.ncbi.nlm.nih.gov/pubmed/15980438

- Bailey, T.L. and C. Elkan, 1994. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proceedings of the 2nd International Conference on Intelligent Systems for Molecular Biology, Aug. 1994, AAAI Press, Menlo Park, California, pp: 28-36. http://citeseerx.ist.psu.edu/viewdoc/summary?doi= 10.1.1.56.5763
- Sali, A. and T.L. Blundell, 1993. Comparative protein modeling by satisfaction of spatial restraints. J. Mol. Biol., 234: 779-815. http://www.ncbi.nlm.nih.gov/pubmed/8254673
- Fiser, R.K. Do and A. Sali, 2000. Modeling of loops in protein structures. Protein Sci., 9: 1753-1773. http://www.ncbi.nlm.nih.gov/pubmed/11045621
- Dundas, J., Z. Ouyang, J. Tseng, A. Binkowski, Y. Turpaz and J. Liang, 2006. CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acid Res., 34: 116-118. DOI: 10.1093/nar/gkl282

- 15. Lombardero, M., P.W. Heymann, T.A. Platts-Mills, J.W. Fox and M.D. Chapman, 1990. Conformational stability of B cell epitopes on group I and group II *Dermatophagoides* spp. allergens: Effect of thermal and chemical denaturation on the binding of murine IgG and human IgE antibodies. J. Immunol., 144: 1353-1360. http://www.ncbi.nlm.nih.gov/pubmed/1689351
- Olsson, S., M. van Hage-Hamsten and P. Whitley, 1998. Contribution of disulphide bonds to antigenicity of Lep d 2, the major allergen of the dust mite *Lepidoglyphus* destructor. Mol. Immunol., 35: 1017-1023. DOI: 10.1016/S0161-5890(98)00101-1
- Gasteiger E., A. Gattiker, C. Hoogland, I. Ivanyi, R.D. Appel and A. Bairoch, 2003. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res., 31: 3784-3788.

http://www.ncbi.nlm.nih.gov/pubmed/12824418