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Abstract: Microcystin-LR (2.5 µg/25 g) was injected intraperitoneally to the 

fish Heteropneustes fossilis on day 1, 10 and 20 kept in either freshwater or 

freshwater containing ZnCl2. The fishes were killed on day 5, 10, 20 and 30 

day. The serum calcium levels was estimated and ultimobranchial glands were 

processed for routine histology. Microcystin-LR administration to fish 

Heteropneustes fossilis induced hypocalcemia and ultimobranchial gland 

exhibit decreased nuclear volume of the ultimobranchial cells. Degenerative 

ultimobranchial gland cells were obtained after day 20. While the fish injected 

with MC-LR kept in ZnCl2 has shown no change in serum calcium levels as 

well as in histology of ultimobranchial gland cells. 
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Introduction 

Cyanobacteria or blue green algae, proliferate in water 

bodies such as lakes, ponds, reservoirs and slow running 

streams when nutrients are available and the water is 

warm. Cyanobacteria, well recognized for their ability to 

fix atmospheric nitrogen, are the most primitive gram 

negative, oxygenic photosynthesizer prokaryotes. Several 

species of cyanobacteria are known to produce toxins, 

these are microcystins, out of which a few are toxic. Toxic 

cyanobacteria have been reported from marine, brackish 

water and freshwater habitat throughout the world 

(Kumar and Sinha, 2014). The first report regarding toxic 

cyanobacteria (Nodularia spcimigena) was published by 

(Francis, 1878), which prompted many workers in several 

countries to investigate the same. Wide occurrence of 

toxic cyanobacterial blooms are creating serious problems 

in freshwater environment (Carmichael, 1992; 1994; 

Sivonen, 1996; Codd et al., 1999; Tyagi et al., 1999; 

Nasri et al., 2004; Wiegand and Pflugmacher, 2005).  
Two thousand species of cyanobacteria have been 

reported to occur globally in aquatic habitats which are 

surviving in wide range of environmental conditions. The 

production of toxin has been correlated with period of rapid 

growth (bloom) and 25-70% blooms are reported as toxic 

(Rogers et al., 2005). The cell wall of algae burst when it 

dies, thus the toxins released into the water. Microcystins 

are extremely stable and resist common chemical 

breakdown such as oxidation under conditions found in 

most natural water bodies. Cyanotoxin are chemical 

substances of a diverse group having different 

toxicological properties. Several cyanotoxins, produced 

as bioactive compounds of cyanobacterial origin, have 

been recognized as priority hazard to human and animal 

health (Carmichael, 2001; Rao et al., 2002). These 

cyanotoxins contain three types of neurotoxic alkaloids 

(anatoxin-a, anatoxin-a (S), saxitoxins), cyclic peptides, 

which are chiefly hepatotoxic (microcystins and 

nodularins), hepatotoxic and cytotoxic alkaloid 

cylindrospermopsin and dermatotoxic compounds from 

marine cyanobacteria (aplysiatoxins and lyngbyatoxins). 

Moreover, the integral parts of cell walls of microcystins 

i.e., lipopolysaccharides cause irritant and pyrogenic 

effects (Chorus, 2001; Codd et al., 2005).  
No study has yet been carried out with respect to 

Microcystin-LR (MC-LR) toxicity on fish calcium 
regulating endocrine organ i.e., Ultimobranchial Glands 
(UBG), that is why it was aimed to study the effect of the 
toxin released from MC-LR on UBG of catfish H. fossilis. 

Materials and Methods 

Collection and Acclimatization of Test Animal 

Freshwater catfish Heteropneustes fossilis (both sexes, 

average body weight 25-35 g) were collected and 

acclimatized for two weeks in 250 L plastic pool during 

the experiment. Small mesh dip net of soft material was 

used for gentle handling of fish for experiment. Care 

was taken to minimize stress to the fish. Dead fish were 

removed immediately. 
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Experimental Design 

Microcystin was dissolved in ethanol (1 mL) and 

diluted with 0.6% saline to prepare the stock solution 

(100 μg/50 mL). 160 fish were used in the experiment and 

divided into four groups each containing 40 fish and 

employed as follow: 

 

Group A: Fish from this group served as control and were 

given intraperitoneal injection of 0.6% saline 

(vehicle) at the initiation of experiment and on 

10 and 20 days 

Group B: Fish from this group were intraperitoneally 

injected with microcystin-LR (2.5 µg/25 g) at 

the initiation of the experiment and on 10 and 

20 days 

Group C: Fish were treated same as group B and kept in 

freshwater containing 5 mg ZnCl2/L 

Group D: Fish from this group were injected similarly 

as in group A and kept in freshwater 

containing 5 mg ZnCl2/L 

 

Biochemical Estimations 

Fish were sacrificed (under slight anesthesia with 
MS222) from group A, B, C and D after 5, 10, 20 and 30 
days after initiation of the experiment. Blood was 
collected after sectioning of caudal peduncle and sera 
were separated by centrifugation at 3,500 rpm and 
analyzed for calcium (calcium kit, RFCL Limited, India) 
and inorganic phosphate levels (inorganic phosphorous 
reagent kit, RFCL Limited, India) and expressed as 
mg/100 mL. 

Preparation for Histological Slides 

The area adjoining the heart along with the oesophagus 
were removed and fixed in aqueous Bouin’s fluid. 

Tissues were routinely processed in graded series of 
alcohols, cleared in xylene and embedded in paraffin. 
Serial sections were cut at 6 m. 

The ultimobranchial glands were stained with 
Hematoxylin-Eosin (HE) 

Nuclear Volume 

Nuclear indexes (maximum length and maximum 
width) of ultimobranchial cells were taken with the aid of 
ocular micrometer and then the nuclear volume was 
calculated as: 
 

24 / 3volume ab  
 
where, ‘a’ is the major semi axis and ‘b’ is the minor semi 

axis. In the gland, when there are degenerating nuclei, 

only the indexes of intact nuclei were measured. 

Statistical Analysis 

All data were presented as the mean ± SE of six 
specimens and Student’s t test was used for the 
determination of statistical significance. In all studies, the 
experimental group was compared with its specific time 
control group. 

Results 

There was no perceivable change in the serum calcium 
level in group A fishes throughout the experiment. The 
serum calcium level of microcystin-LR injected 
Heteropneustes fossilis (group B) showed no change up to 
day 5. The level exhibited a decrease from day 10 to day 30 
(close of experiment). In microcystin-LR injected fish kept 
in ZnCl2 (group C), the serum calcium level showed no 
perceivable change throughout the experiment. In group D 
fishes kept in ZnCl2 no change in serum calcium level was 
observed throughout the experiment (Fig. 1). 

 

 
 
Fig. 1:  Serum calcium levels of saline or microcystin treated Heteropneustes fossils kept either in freshwater or kept in water containing 

ZnCl2. Values are mean ± S.E. of six specimens. Asterisk indicates significant differences (P<0.05) from control 

5 10 20 30 

Days 

20 

 
10 

 
0 

S
er

u
m

 c
al

ci
u

m
 (

m
g

/1
0

0
 m

L
) 

MCLR Control MCLR+ ZnCl2 ZnCl2 



Chandra Prakash and Sunil Kumar Srivastav / American Journal of Environmental Sciences 2021, 17 (3): 43.48 

DOI: 10.3844/ajessp.2021.43.48 

 

45 

Ultimobranchial gland of vehicle treated 

Heteropneustes fossilis (group A; Fig. 2) is similar in the 

histological structure as described earlier for control fish 

(Prakash et al., 2016). There was no change in 

histological architecture of UBG cell throughout the 

experiment. In microcystin-LR treated fish (group B) 

the nuclear volume of UBG cell exhibits no change up 

to day 5. Thereafter the nuclear volume exhibits a 

progressive decrease from day 10 to day 30 (Fig. 3). On 

day 10 and day 20 degeneration of ultimobranchial 

cells sets in (Fig. 4). Extremely degenerated cells were 

observed on day 30 (Fig. 5). 

In group C fishes (MCLR injected and kept in 

ZnCl2) histological structure and the nuclear volume of 

UBG cells exhibit almost no change throughout the 

experiment. The nuclear volume and histological 

structure of UBG cells of group D fish were similar to 

control fish (group A). 

 

 
 

Fig. 2: Ultimobranchial gland of control Heteropneustes fossilis exhibiting follicles and cell cords (broken arrow). HE X 200 

 

 
 
Fig. 3: Nuclear volume of ultimobranchial cells of saline or microcystin treated Heteropneustes fossils kept either in freshwater or kept 

in water containing ZnCl2. Values are mean ± SE of six specimens. Asterisk indicates significant differences (P<0.05) from 

control group 
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Fig. 4: Ultimobranchial gland of 20 days microcystin treated Heteropneustes fossils kept in freshwater exhibiting degeneration (arrow). 

HE X 500 

 

 

 
Fig. 5: Ultimobranchial gland of 30 days microcystin treated Heteropneustes fossils kept in freshwater exhibiting extremely 

degeneration (arrow). HE X 500 

 

Discussion 

In the present study the nuclear volume of UBG 

exhibited a progressive decrease from day 10 to day 30. 

Moreover, the UBG cells show degeneration from day 10 

to day 30. The inactivity of UBG could be explained on 

the basis of prolonged hypocalcemia caused by MCLR 

treatment. Earlier to the present study, there exists no 

study regarding the effect of Microcystin on the fish UBG. 

The observed inactivity and degeneration of UBG in 

treated fish derives support from the similar observations 

reported by other investigators after exposure of the fish 

to different toxicants-deltamethrin (Srivastav et al., 

2002), metacid (Mishra et al., 2004), cypermethrin 

(Mishra et al., 2005), cadmium (Rai et al., 2009), botanical 

pesticide (Prasad et al., 2011a; 2011b; Kumar et al., 2013) 

and mercury (Agarwal, 2013). Inactivity with prominent 

degenerating changes in UBG cells were reported by 

(Srivastav et al., 2019) in frog Euphlyctis cyanophlyctis. 

The foregoing study is also in conformity with the 

earlier reports on the UBG in which 

hypoactivity/inactivity of the gland has been reported 
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in response to calcitonin induced hypocalcemia in the 

fish-Anguilla anguilla (Peignoux-Deville et al., 1975), 

Gasterosteus aculeatus (Bonga, 1980), Clarias batrachus 

(Srivastav et al., 1989), Amphipnous cuchia (Tiwari, 1993) 

and Heteropneustes fossilis (Srivastav et al., 2009). 

Prolonged hypocalcemia caused by microcystin exposure 

provoked continuous disuse of the ultimobranchial gland 

resulting into degeneration and vacuolization of the gland. 

ZnCl2 has been reported to be protective against MC-LR 

toxicity on blood calcium and phosphate level of 

Heteropneustes fossilis (Prakash et al., 2016). 

Conclusion 

We conclude that microcystin-LR exposure to fish 

Heteropneustes fossilis alters the blood electrolyte 

(calcium) inducing hypocalcemia. Microcystin-LR all 

showed degenerative changes in ultimobranchial gland. 

When ZnCl2 was added to media containing the fish 

calcium level showed recovery and ultimobranchial gland 

was not affected, indicating Zn++ acted as protective agent 

against microcystin-LR toxicity. 
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