
 

 
© 2018 Yi Liu, Muhammad Junaid, Naima Hamid, Chun-Di Chen and De-Sheng Pei. This open access article is distributed 

under a Creative Commons Attribution (CC-BY) 3.0 license. 

American Journal of Environmental Sciences 

 

 

Review Article  

Environmental Concerns and Toxicogenetic Endpoints of 

Priority Substances (PSs) and Contaminants of Emerging 

Concerns (CECs): A Comprehensive Review 
 

1,2*
Yi Liu, 

1,2*
Muhammad Junaid, 

1,2
Naima Hamid, 

1
Chun-Di Chen and 

1
De-Sheng Pei 

 
1Key Laboratory of Reservoir Aquatic Environment, 

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China 
2University of Chinese Academy of Sciences, Beijing 100049, China 

 
Article history 

Received: 14-05-2018 
Revised: 15-05-2018 
Accepted: 06-07-2018 
 
Corresponding Author: 
De-Sheng Pei 
Key Laboratory of Reservoir 
Aquatic Environment, 
Chongqing Institute of Green 
and Intelligent Technology, 
Chinese Academy of Sciences, 
Chongqing 400714, China 
Emails: peids@cigit.ac.cn  
 deshengpei@gmail.com 
 
*These authors contributed 
equally to this work.  

Abstract: Priority Substance (PSs) and Contaminant of Emerging Concerns 

(CECs) exhibited a wide range of environmental and public health concerns 

worldwide. This review summarized the documented studies related to the 

current surface water occurrence, spatial distribution, ecological risks and 

toxicity of selected PSs, such as polycyclic aromatic hydrocarbons (PAHs) and 

CECs, such as Di(2-Ethylhexyl) Phthalate (DEHP) and Pharmaceuticals and 

Personal Care Products (PPCPs). The spatial distribution analysis revealed 

alarming levels of PAHs in the surface waters of Asian counties, e.g., 84210 ng 

L
−1

 in Gomti River, India, 29325 ng L
−1

 in Daya Bay, China and 1287 ng L
−1

 in 

Chenab River, Pakistan. As for DEHP, the highest concentrations of 13050 µg 

L
−1

 in Liao River, China, and 2306 µg L
−1

 in Rivers of Eastern Cape, South 

Africa were reported. These environmental levels of PAHs and DEHP were 

many folds higher than the surface water permissible levels devised by WHO 

and USEPA. Contrarily, the emerging PPCPs were reported in relatively lower 

levels in the surface waters globally, compared to that of PAHs and DEHP. 

Consistent with the environmental levels, PAHs and DEHP revealed alarming 

ecological risks in the surface water sources, compared to that of PPCPs. 

Regarding to the sources of PSs and CECs, PAHs emissions were mostly linked 

to the incomplete combustion of petroleum products, DEHP contamination was 

associated to its applications in consumption and production of plastic 

appliances and PPCPs emissions were largely related to the domestic and 

industrial effluents. As for toxic endpoints of PAHs, DEHP and PPCPs, all of 

these were reported to cause DNA damage, genotoxicity, reproductive 

toxicity, developmental toxicity and immunotoxicity, as revealed in reviewed 

in vitro/vivo studies. In addition, the current review also highlighted the 

existing environmental regulations to control the emissions of these pollutants 

to the environmental matrices. Taken together, this review concluded that 

despite the existing environmental regulations, the current levels of organic 

pollutants are still on rising, especially in Asian countries. Therefore, the strict 

implementation of the existing regulations is highly necessary to control these 

pollutants to ensure public health and ecological integrity.  
 
Keywords: PAHs, DEHP, PPCPs, Environmental Occurrence, Ecological 

Risks, Toxicity  
 

Background Information 

Recent population growth and rapid economic 

development have imposed immense pressures on 

environmental resources, including the deteriorated 

water quality, worldwide (Han et al., 2016). Despite the 

serious threat to the freshwater resources, the water 

quality grading system still largely depends on the 

concentrations of basic organic pollution indicators, such 

as Biological Oxygen Demand (BOD) and Chemical 
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Oxygen Demand (COD) and inorganic contaminants 

such as ammonia (NH4), phosphate (PO4 and heavy 

metals (Han and Currell, 2016). Generally, baseline data 

are still elusive on the specific classes of organic 

pollutants, despite the fact that the past-half century has 

been capitalized by scientists all over the world to 

investigate environmental hazards of Persistent Organic 

Pollutants (POPs) (Loganathan and Lam, 2012), 

especially after the Stockholm Convention (UNEP, 

2009) and Aarhus Protocol on POPs (UNECE, 1998). 

Water pollution decreases the availability of freshwater 

resources, which in return increases the pressure on 

demand, especially in the countries that have limited 

sources of fresh water, such as China. China has about 

one-fifth of the world’s population, but only retains 5% 

(2.73×10
12

 m
3
) of world’s freshwater resources (MWR, 

2015). This situation is not limited to China, many other 

countries are also facing serious challenges to control 

water pollution and overcome the water scarcity (Gleick, 

2009). Di(2-Ethylhexyl) Phthalate (DEHP), Polycyclic 

Aromatic Hydrocarbons (PAHs) and Pharmaceuticals 

and Personal Care Products (PPCPs) are known as 

Priority Substances (PSs)/contaminants of emerging 

concerns (CECs), usually present in ng/L to µg/L 

concentrations in the aquatic environment. They have 

shown alarming ecotoxicological concerns in recent 

years (Sousa et al., 2017; Tijani et al., 2016). These 

ubiquitous compounds have pseudo-persistent behavior 

and also have potentials to trigger adverse toxicological 

effects due to their continuous introduction into the 

water resources (Wilkinson et al., 2017).  

Existing Regulations for Priority Substances (PSs) 

and Contaminants of Emerging Concerns (CECs) 

Based on the presence or absence of regulations, the 

organic pollutants are classified as PSs or CECs  

(Gorito et al., 2017; Sousa et al., 2017). A European 

environmental legislative body Water Framework 

Directive (WFD) defines PSs as “presenting a significant 

risk to or via the aquatic environment” and includes 

compounds, such as PAHs, Polychlorinated Biphenyls 

(PCBs) and etc. CECs comprise several types of 

compounds, such as PPCPs, phthalates and etc. (WFD, 

2000). Previously, it wasn’t pre-requisite to perform 

chemical analysis of PSs and CECs in the water bodies 

for environmental regulation (Tiedeken et al., 2017). 

However, increasing environmental concerns of these 

contaminants in the aquatic resources have greatly 

acknowledged their qualitative and quantitative analysis 

for the regulatory purpose to improve water quality and 

WFD has recommended continuous monitoring of these 

organic pollutants for all of the EU countries (WFD, 

2015). The environmental regulation of PSs in the 

surface waters dated back to the year 2000, when WFD 

(2000/60/EC) launched a water policy framework to 

identify some chemicals that need to monitor in the 

environment to provide necessary mitigation measures 

(WFD, 2000). In the same year, The Stockholm 

Convention on POPs was first signed in 2001 

(2455/2001/EC) that later adopted to EU legislation in 

2004 (850/2004) and also ratified by 180 countries 

(UNEP, 2009). Five years later, the first list of 

Environmental Quality Standards (EQS) was published 

by WFD (2008/105/EC) for basic water quality 

parameters and that list was later revised in 2013 for PSs 

(2013/39/EU) (WFD, 2013). The PSs, e.g., PAHs, 

pharmaceuticals and pesticides have been added to 

Annex A by WFD in 2013 and monitoring of these PSs 

declared compulsory in surface waters and article 16(4) 

of this legislation bounded the EU member states to 

revise the list of these PSs and their levels shall not 

exceed the threshold values (WFD 2013). 

United States Environmental Protection Agency 
(USEPA) classified DEHP as a top-priority environmental 
pollutant and also listed it as B2 class compound 
(probable human carcinogen) (USEPA, 2000). Further, 
Agency for Toxic Substances and Disease Registry 

(ATSDR) also categorized DEHP as an epigenetic 
toxicant and an endocrine disruptor (ATSDR, 2002). EU 
also banned the use of six phthalates including DEHP 
in plastics in 2005 (EU, 2008). In the U.S., similar 
kinds of efforts were made in 2008 to ban phthalates 
(Magdouli et al., 2013). In 2000, the Ministry of Health 

and Welfare of Japan also restricted the use of DEHP in 
plastics (Suzuki et al., 2001; Tsumura et al., 2003). WFD 
categorized DEHP as PSs (WFD, 2013) due to the various 
factors, such as high detection frequency and persistence 
in environmental compartments (Luo et al., 2014) and 
augmented toxicity and bioaccumulation in aquatic 

species (Sousa et al., 2017). PAHs were also declared as 
PSs by ATSDR and WFD a long-time ago (ATDSR, 
1995; WFD, 2000) and PAHs exhibited fused aromatic 
ring structure with mutagenic and carcinogenic 
properties, long-half lives and potential to generate 
heteroaromatic hydrocarbons after chemical reactions 

(Kafilzadeh, 2015; Nagy et al., 2013). 
U.S. Food and Drug Administration (FDA) 

implemented the ecological risk assessment (ERA) for 

pharmaceuticals under the National Environmental 

Policy Act (NEPA) (FDA, 1969) and later Center for 

Drug Evaluation and Research (CDER) established the 

guidelines for a tiered risk assessment method (CDER, 

1998). In the same year, USEPA enacted regulations for 

pharmaceutical industry to control their both air 

emissions and effluent discharges (USEPA, 1998). In 

2006, European Medicine Agency (EMA) devised the 

first guidelines for ERA for human pharmaceuticals 

(EMA, 2006). Similarly, Australian Therapeutic Goods 

Administration (ATGA) devised the regulations and 

ERA for newly registered PPCPs (TGA, 2008). China 
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promulgated the Environmental Management Methods 

(EMMs) for newly produced chemicals in 2010 and 

recently in 2013. Recently, another similar regulation, 

“Environmental Management and Registration Method 

for Hazardous Chemicals” (MEP’s order 22), was also 

formulated (MEP, 2010; 2012). The ingredients of drugs 

(including that of NSAIDs) and personal care products 

(PCPs) have been regulated under these laws. The 

livestock wastes comprising veterinary drugs and 

effluents have been also regulated by Ministry of 

Environment Protection (MEP), China (MEP, 2001). 

Further, the wastewater discharge containing 16 different 

types of pharmaceuticals, such as Ibuprofen (IBU), 

Sulfadiazine (SDZ) and Caffeine (CAF), have been 

regulated in China (MEP, 2008). Recently, WFD 

recommended to establish water treatment strategies and 

monitor 54 PSs including 49 organic pollutants and 4 

metals (WFD, 2015). For CECs, no definite EQS are 

existed, however, the previous studies have suggested a 

prioritization system based on two indicators, the extent of 

exceedance and the frequency of exceedance of predicted 

no effect concentrations (PNECs) (Ohe and Dulio, 2013; 

Tiedeken et al., 2017). Recently, WFD has listed 17 CECs 

to their Watch List (Decision 2015/495/EU), including 

five pharmaceuticals, such as erythromycin (ERY) and 

Diclofenac (DIC), etc. (WFD, 2015). DIC belongs to non-

steroidal anti-inflammatory (NSAIDs), which is of great 

concern due both to the largest over-the-counter drugs and 

their wide administration as pain relievers, worldwide 

(Shanmugam et al., 2014). Altogether, this section clearly 

listed the major global and local regulations to control 

the emissions of PSs and CECs.  

Sources of DEHP, PAHs and PPCPs 

The major sources of DEHP, PAHs and PPCPs are 

illustrated in Fig. 1. To track the diverse sources of 

organic pollutants is of immense importance to 

implement control measures and source base regulations 

(Ribeiro et al., 2016). Different industrial processes, 

such as raw material processing, manufacturing and 

distribution, are the possible sources of organic 

pollutants (Barbosa et al., 2016a). Multiple sources of 

DEHP have been reported in the literature based on its 

widespread applications and detection across different 

environmental compartments (Fig. 1A). DEHP releases 

into the environment through dissolution and volatilization 

processes during transportation, storage and production 

(Magdouli et al., 2013; Sirivithayapakorn and Limtrakul, 

2008). The potential release of DEHP may attributes to 

its applications in PPCPs, paints, medical devices and 

laboratory equipment (Chen et al., 2008; Franco et al., 

2011; Koniecki et al., 2011). Its intensive applications as 

plasticizer have been also reported in non-polyvinyl 

chloride materials, such as natural and synthetic, rubber, 

polyvinyl butyral, chlorinated rubber, ethyl cellulose and 

nitrocellulose (NTP, 2011; SPMP, 2001; Teil et al., 

2007). Globally, the annual production of DEHP is 

reported as more than 2 million tons (Chan et al., 2007; 

Koch et al., 2003b). For example, EU produces 

approximately 1 million tons of phthalates each year, with 

50% DEHP as a dominant compound (Lin et al., 2009). 

Similarly, 60% phthalates production with the annual 

potential of 250, 000 tons is attributed to DEHP in 

Germany and 100,000 tons of DEHP-laden waste is 

released into the environment (Koch et al., 2003a; 2003b).   

 

 
(A) 

Food packaging 

Medical instruments 

Synthetic 

Industrial 

Film evaporation 

Industrial waste 

Surface water 
Atmosphere Water 

Soil, 

sediment 

DEHP 
Spray coating 

Burning plastic 

Groundwater 

Drinking water 

Sewage irrigation 

Solid waste 

Rain shower 



Yi Liu et al. / American Journal of Environmental Sciences 2018, 14 (3): 129.155 

DOI: 10.3844/ajessp.2018.129.155 

 

132 

 
 (B) 

 

 
 (C) 

 
Fig. 1: Potential sources of DEHP (A), PAHs (B) and PPCPs (C) 

 

PAHs comprise of both the natural and anthropogenic 

sources (Fig. 1B). The natural sources of PAHs include 

carbonization, hydrothermal process, forest fire and 

volcanic eruption and anthropogenic sources comprise 

incomplete combustion of fossil fuels, pyrolysis of 

hydrocarbon materials, the release of oil and petroleum 

products (Lee et al. 1981; Ravindra et al., 2008). The 

anthropogenic sources of PAHs are further classified as 

pyrogenic (combustion) and petrogenic (non-

combustion). PAHs have unique characteristics, such as 

ubiquitous nature, resistance to degradation and long-

range transportations through environmental media 

(Turner et al., 2014; Yunker et al., 2002). The surface 

water contamination of PAHs is usually linked to the 

industrial emissions through atmospheric deposition and 

industrial effluents (Han and Currell, 2016).  

Regarding the sources of PPCPs, domestic 

wastewater and hospital effluents are the significant 

contributing sources for their presence in surface waters 

(Fig. 1C). Pharmaceuticals are not fully metabolized in 

the human body, therefore, the parent compound and 

associated metabolites excrete and make their way to 

Wastewater Treatment Plants (WWTPs) (Ribeiro et al., 

2016). Agriculture run-off is also reported as a 

significant source of organic pollutants (Moore et al., 

2002). Further, the farming of livestock has been also 
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reported to produce wastewater containing veterinary drugs 

that are excreted by animals (Moore et al., 2002). Sewage 

treatment facilities and leaching of dumping sites and 

environmental disaster are also the other possible 

sources PPCPs (Ribeiro et al., 2015). Although many of 

the basic water pollutants efficiently remove via 

WWTPs, the removal of organic pollutants especially 

pharmaceutical is still a dilemma that has attracted the 

significant attention of the scientific community, recently 

(Fattakassinos et al., 2015; Luo et al., 2014). The 

conventional WWTPs are not usually designed to 

remove organic pollutants, therefore, the introduction of 

such pollutants to waterways is inevitable and a serious 

threat for ecological and human health (Barbosa et al., 

2016b). Tracking the point and non-point sources of 

organic pollutants is of immense importance to control 

the emissions at the source level, albeit the studies are 

still scarce related to specific source inventories for 

emerging organic contaminants. 

Occurrence and Spatial Distribution of DEHP, 

PAHs and PPCPs in the Surface Water 

DEHP 

Due to the ubiquitous nature of organic pollutants, 

they have been detected in most of the waterways 

worldwide. The compositional pattern of organic 

compounds greatly varies according to different spatial 

and temporal scenarios, albeit their occurrence in the 

surface waters has been reported substantially higher than 

that of groundwater and drinking water and only a few 

contaminants are regulated till now (Benotti and 

Brownawell, 2009; Caliman and Gavrilescu, 2009; 

NACWA, 2012). In 2007, the European WFD has devised 

the permissible limit of DEHP in the surface water as 1.3 

µg L
−1

 (Magdouli et al., 2013). Previously, alarming 

levels of DEHP as high as 13050 µg L
−1

 in the Liao 

River (China), 2306 µg L
−1

 in the Eastern Cape River 

(South Africa), 1390 µg L
−1

 in Kunming Lake (China), 

1299 µg L
−1

 in the Xuanwu Lake (China), 380 µg L
−1

 in 

the Kulis River (South Africa) and 97.87 µg L
−1

 in Furu 

River (Japan), have been reported in different freshwater 

systems (An and Jin, 2000; Fatoki and Noma, 2002; 

Fromme et al., 2002; Olujimi et al., 2012; Shen et al., 

2010; Yu et al., 2011a) (Table S1). Further, the elevated 

but relatively lower levels of DEHP have been also reported 

in other riverine systems in China, such as 54.73 µg L
−1

 in 

the Wuhan section, Yangtze River, 34.20 µg L
−1

 in the Hun 

River and 24 µg L
−1

 in the Yellow River (Li et al., 2015a; 

Sha et al., 2006; Wang et al., 2008). However, DEHP 

level was less in the rivers of EU countries, e.g., 6.44 µg 

L
−1

 in the Seine River estuary (France), 1.70 µg L
−1

 in the 

River of France and <0.44 µg L
−1

 in North-West River 

(Spain) (Dargnat et al., 2009; Regueiro et al., 2008;     

Tran et al., 2015). Similarly, the lower DEHP levels have 

been reported at <1.10 µg L
−1

 in the Bang Pa-kong and 

other River (Thailand), 1.4 µg L
−1

 in the Kaveri River 

(India), 0.38 µg L
−1

 in the Selangor River (Malaysia) 

(Santhi and Mustafa, 2013; Selvaraj et al., 2015; 

Sirivithayapakorn and Thuyviang, 2010). 

The main sources of DEHP in the water bodies can 

be attributed to the discharge of the untreated industrial 

wastewater, cosmetics, lubricants and adhesive wastes 

containing traces of plastics (Chen et al., 2012). The 

spatial distribution of DEHP levels (µg/L) in surface 

waters worldwide revealed elevated levels in Asian and 

African regions (Fig. 2A). For instance, the levels of 

DEHP (µg/L) were reported highest in China; Liao 

River, Anshan (13050 µg L
−1

) followed by Kunming 

Lake (1390 µg L
−1

) and Yangtze river (1299 µg L
−1

)  

(Yu et al., 2011a; He et al., 2011a; An and Jin, 2000). 

Overall, the DEHP levels from the world indicated the 

highest loads in Asia followed by Africa, Europe and 

North America (Fatoki and Noma, 2002; Dargnat et al., 

2009; Fromme et al., 2002; Yu et al., 2011a). Perhaps 

the main reason behind the rapid industrialization in the 

Asian region, especially in China. It is reported that in 

China, over one million tons of phthalates (including 

DEHP) is consumed per year, accounting for one-fifth of 

the global consumption (Liu et al., 2014). 

PAHs 

Regarding the environmental occurrence of PAHs, 
the elevated levels have been reported in the rivers 
those stretch through densely populated regions in 
China, such as Yangtze River (Chongqing and 
Shanghai sections), Haihe River (Tianjin), Taihu Lake 
(Beijing), Tonghui River (Beijing) (Han and Currell 
2016). Some of the previous studies are summarized in 
Table S2. The maximum values of PAHs were reported as 
high as 43,226 ng L

−1
 in the Lanzhou section of the 

Yellow River (Li et al., 2006), 35,210 ng L
−1

 in the 
Tianjin section of the Haihe River (Cao et al., 2005), 
96,210 ng L

−1
 in the Hangzhou River (Zhu et al., 

2004), 26,920 ng L
−1

 in the Jiulong River Estuary 
(Maskaoui et al., 2002), 34,000 ng L

−1
 in the Taihu 

Lake (Guo and Fang, 2012), 474,000 ng L
−1

 in the 
Minjiang River Estuary (Zhang et al., 2004) and 34,338 
ng L

−1
 in Humen section of the Pearl River (Yang et al., 

2004). These reported values in different riverine 
systems of China are substantially higher than that of 
PAHs permissible values of 100 ng L

−1
 (WFD 98/83/EC) 

and 200 ng L
−1

, respectively devised by WFD and 
USEPA (Han and Currell, 2016). Similarly, the 
alarming levels of PAHs have been reported in the 
Gomti, River, India (60-84,210 ng L

−1
) (Malik et al., 

2011). These high levels of PAHs can induce alarming 
ecological risk and acute toxicity to aquatic species. 
In comparison, the rivers from USA, Europe and 
Australia have been reported with lower PAHs levels 
than those in Asia, as reviewed previously (Han and 
Currell 2016). For example, PAHs concentrations 
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were detected at 12.4 to 2321 ng L
−1

 in the Sarno 
River, Italy (Montuori and Triassi 2012), 4-36 ng L

−1
 

in the Seine River, France (Fernandes et al. 1997), 

5.1-12 ng L
−1

 in the Brisbane River, Australia (Shaw 
et al., 2004) and 12-434 ng L

−1
 in the lower 

Mississippi River, USA (Mitra and Bianchi 2003). 

 

 
(A) 

 

 
(B) 

 
Fig. 2: Spatial distribution of DEHP (µg/L)(A) and Σ PAHs (ng/L)(B) in the surface waters 



Yi Liu et al. / American Journal of Environmental Sciences 2018, 14 (3): 129.155 

DOI: 10.3844/ajessp.2018.129.155 

 

135 

The major route of PAHs entering in the water bodies 

is the direct release of the untreated domestic waste 

water, industrial discharges, petroleum spills and through 

atmospheric deposition (Hamid et al., 2016). Due to the 

hydrophobic nature of PAHs, in the aquatic environment 

it rapidly tends to become associated with the particulate 

matter and deposited in the sediments (Srinivasa et al., 

2005). Globally, a comparative spatial distribution 

analysis revealed that the environmental levels of PAHs 

in surface water were in the following order: India> 

China> Poland> Taiwan> Pakistan (Fig. 2B). ∑PAHs 

concentration levels ranged between 0.10 ng L
−1

 (Todos 

os Santos Bay, Brazil) and 75570 ng L
−1

 (Gomti river 

system, India) (Jose celino et al., 2012). Industrialization 

and urbanization have escalated rapidly during the last 

few decades in India. The massive biomass burning to 

meet fuel requirements aggravates the situation    

(Malik et al., 2004). In contrast with, China is 

considered to the 3
rd

 major PAHs emitter country 

because of large coal production (Zhang and Tao, 2009). 

Worldwide, the PAHs pollution was in the order of 

Asia>Africa> Europe respectively.  

PPCPs 

Wastewater from domestic and industrial WWTPs 

is mainly responsible for the occurrence of PPCPs in 

the aquatic environment due to the poor removal 

efficiency of conventional treatment plants for PPCPs 

(Deblonde et al., 2011; Ke et al., 2015). Further, 

improper dumping of unused and expired 

pharmaceuticals also directly contribute to the 

abundance of pharmaceuticals’ in the waterways, which 

are basically originated from toilet sinks or solid waste 

(Aydin and Talinli, 2013; Barbosa et al., 2016a; Gorito et 

al., 2017). Aquatic environment has been reported with 

the contamination of more than 80 PPCPs and several 

metabolites (Heberer, 2002; Jelic et al., 2011). The basic 

reasons behind the wide existence of PPCPs are the ease 

of excess and product proliferation, which significantly 

contribute to the invasion of these xenobiotics to the 

natural and built environments (NACWA, 2012). 

However, the detection of PPCPs in the aquatic 

environment is not new, as they have gained 

considerable attention during last decade due to their 

alarming levels, diverse and growing ecotoxicological 

risks in the environment (Wilkinson et al., 2017). For 

instance, Jones et al. (2002) modelled the concentrations 

of the frequently used 25 pharmaceuticals including 

antiepileptic and analgesic drugs in the aquatic 

environment of the U.K and conservative estimates 

revealed the concentration was exceeding 1 ng L
−1

 for 

most of the pharmaceuticals. Pharmaceuticals used for 

the treatment of different disease, such as antidepressant, 

asthma, central nervous system stimulus and cholesterol-

regulating medication are also detected in the surface 

waters of U.S. (CDC, 2010). In 2000, U.S. Geological 

Survey conducted a comprehensive study on 95 most 

common PPCPs in 136 different streams and rivers 

running through the urban centers of U.S. The findings 

of this survey generally revealed low levels of PPCPs in 

surface waters and even lower than that of drinking 

water quality standards. However, the detection 

frequency of PPCPs was as high as 82 out of 95 total 

PPCPs (Buxton and Kolpin, 2005; Kolpin et al., 2002). 

Further, the physiologically active compounds were also 

found in the surface waters that were known to be 

endocrine disruptors. In addition, the median number for 

PPCPs mixture found in an individual river was 7 and 

the maximum number was 38, implying the combined or 

co-existence of these compounds (Kolpin et al., 2002). 

PPCPs can be further classified into several categories 

and this review included two of them, i.e. PCPs and 

NSAIDs. The comparative highest environmental levels 

of NSAIDs and PCPs are listed in Table S3 and S4. 

NSAIDs, e.g. IBU, NAP and DIC are easily accessible, 

commonly prescribed and highly consumed drugs, 

worldwide. Recently, the environmental concentration of 

NSAIDs has been reported to be constant over the years 

in specific regions. The median levels of IBU and NAP 

have been measured at 200 and 550 ng L
−1

 in the surface 

water samples from canals of Canada and New Jersey, 

respectively (Li, 2014). Further, the concentration of 

PCPs, such as synthetic musks, e.g., musk xylene (MX) 

and musk ketone (MK), typically ranged between 150-

16700 ng L
−1

 and these PCPs have widely used in 

cosmetics, lotions, perfumes, soaps and deodorants   

(Lee et al., 2010; Roosens et al., 2007).  

In China, the pharmaceutical fraction of PPCPs 

revealed wide occurrence in the major riverine systems, 

such as Yangtze River (Zhou et al., 2011), Pearl River 

(Peng et al., 2008), Hai River, Liao River and Yellow 

River (Wang et al., 2010). Due to the dilution effect of 

rainfall, the median concentrations and detection 

frequency were reported to be lower during the high flow 

seasons than that of low flow seasons (Peng et al., 2008). 

Further, the sampling sites near metropolis appeared 

more contaminated with pharmaceuticals because of the 

direct disposal of pharmaceuticals to the surface waters 

via untreated wastewater from WWTPs and domestic 

sources (Wang et al., 2010; Yu et al., 2011b). Similarly, 

the elevated levels of pharmaceuticals were reported in 

the Rivers from Brazil (Stumpf et al. 1999), Japan 

(Nakada et al., 2008), Korea (Kim et al., 2007), U.S. 

(Kolpin et al., 2004) and U.K. (Thomas and Hilton, 

2004). Comparatively, the Vantaa River in Finland 

appeared with low concentrations of pharmaceuticals 

(Vieno et al., 2007). For PCPs, the elevated 
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concentration was reported in the urban rivers of Pearl 

Delta region, Guangzhou. PCPs, such as Methylparaben 

(MP) and Propylparaben (PP), Triclosan (TCS) and 

Triclocarban (TCC) were detected with high frequency 

(Liu and Wong 2013; Peng et al., 2008; Zhao et al., 

2009). Similarly, TCS and TCC were also reported in the 

Liao River, Hai River, Yellow River, Pearl River and 

Dongjiang River in China (Zhao et al., 2013). The 

Shanghai section of the Yangtze River was also reported 

with elevated concentrations and detection frequency of 

synthetic musks (Zhang et al., 2008). The extremely 

high concentration of TCS was reported in the 

Tamiraparani River, Kaveri River and Vellar River in 

India (Ramaswamy et al., 2011).  

 

 
(A) 

 

 
(B) 

 
Fig. 3: Spatial distribution of ΣPPCPs levels (ng/L) in terms of Personal Care Products (PCPs) (A) and Non-Steroid Anti-Inflammatory 

Drugs (NSAIDs) (B) inthe surface waters worldwide. The maximal reported concentrations of DEHP in the surface waters of 

different riverine systems are used to develop this map. Σ PCPs included Methylparaben (MP), Propylparaben (PP) and Musk 

Xylene (MX) and Σ NSAIDs included Naproxen (NAP), Ibuprofen (IBU) and Diclofenac (DIC) 
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There are few limited studies reported in surface water 

of PCPs, worldwide. The spatial distribution analysis of 

the reported PCPs in the surface waters clearly showed 

that the rivers in Asia are appeared to be more polluted 

with PCP’s than the rivers in Europe and Africa (Fig. 3A). 

In China, the Liaohe River, Liaoning was found the 

maximum levels reported (123.875 ng L
−1

), followed by the 

Huangpu River, Shanghai (121.5 ng L
−1

) and the Yangtze 

River, Nanjing section, (118.73 ng L
−1

) (Liu et al., 2015a;    

Gao et al., 2016; Yang et al., 2011). NSAIDs enter in the 

aquatic environment is through the untreated waste-water 

coming from the pharmaceutical industries. However, the 

residues contain trace levels of NSAIDs. The spatial 

distribution of NSAIDs showed that the highest 

concentration was found in the Liaohe River, Liaoning 

(1003.7 ng L
−1

) followed by Pearl River, Guangdong 

(1475 ng L
−1

) and Cardener River, Castellgali, Spain 

(484 ng L
−1

). (Liu et al., 2015a; 2015b; Chitescu et al., 

2015) (Fig. 3B). Limited studies are available for 

NSAIDS creates a gap and difficult to define the global 

distribution pattern. Therefore, comprehensive 

quantification evaluation is required to assess the 

toxicity in the aquatic environment. 

Ecological risks of PAHs, DEHP and PPCPs 

The presence of pollutants in the aquatic environment 

has been reported to cause ecotoxicological risks, which 

is yet elusive for several organic contaminants in many 

surface waters resources and hotspot locations, 

worldwide (Gorito et al., 2017). The lower concentration 

of organic pollutants may not capable of inducing the 

acute toxic effects, albeit chronic exposure can cause 

adverse impacts that are more difficult to investigate 

(Tijani et al., 2016). Contrarily, previous studies 

revealed that even the low concentrations of organic 

pollutants have potentials to impair biological functions 

in aquatic species. In addition, the bioaccumulation of 

organic pollutants in the aquatic species can also cause 

adverse impacts by disturbing immune system and 

endocrine disruption, which can lead to the neurological, 

reproductive and developmental abnormalities 

(UNESCO, 2015).  

Several methods have been devised till now to 

quantify the ecological risks of organic pollutants to the 

aquatic species. The most common method is to calculate 

Risk Quotients (RQs) based on spatial exposure by using 

Measured Environmental Concentrations (MECs) and 

compared them with the Predicted No-Effect 

Concentrations (PNECs) for acute exposure or chronic 

exposures (Slobodnik et al., 2012; Tousova et al., 2017). 

The RQs were calculated as the ratio between the 

maximum MECs (95%) and the lowest PNECs, which 

actually highlight the levels ecological risks associated 

to a specific class of pollutants (Pc et al., 2011). Further, 

the ecological risks are also calculated by using the 

guidelines devised by EMA. In which the RQs are 

extracted as the ratio between Predicted Environmental 

Concentrations (PECs) and PNECs (EMA, 2006). For a 

better understanding, the ecological risks are usually 

classified on the basis of RQs, such as the values < 0.1 

indicating the low-level risk, 0.1-1 meaning the medium-

level risks and the values >1 indicating the high-level 

risks (Hernando et al., 2006; Paiga et al., 2016). 
The lack of ecological risk inventory for acute and 

chronic adverse effects of organic pollutants in the 
aquatic environment demands precautionary measures 
(Deblonde et al., 2011; Gavrilescu et al., 2015). 
Ecological risk/hazard assessment is to investigate the 
changes in aquatic species as result of exposure to 
environmental stressors, such as organic contaminants 
(Ogbeide et al., 2015). The tracking of ecological risks 
of organic pollutants is of critical importance to regulate 
the PSs and CECs and the adverse effects may 
accumulate continuously to cause irreversible molecular 
damages to the aquatic ecosystems (Jjemba, 2006). 
Another alarming concern related to ecological risk is 
the synergistic interactions of organic pollutants that can 
cause unexpected adverse impacts on the aquatic species 
(Aydin and Talinli, 2013; Dai et al., 2015).  

We also calculated the ecological risks of DEHP, 

PAHs and PPCPs in terms of RQs using MECs and 

PNECs reported in the surface waters, worldwide. The 

spatial distribution of RQs for DEHP indicated that 

the highest risks were observed in terms of RQs in the 

rivers of China, such as Liao River, Anshan (371.7) 

followed by Kunming Lake (39.5) and Yangtze River 

(37) than the river present in South Africa (65.6) (Fig 

4a). DEHP is the most ubiquitous chemical phthalate 

in the aquatic environment with the ability to pose 

high level risks in the ecological environment. Based 

on the calculated high level risks found in China’s 

surface water, necessary mitigation actions should be 

taken by the government agencies to overcome the 

associated effects (Chen et al., 2012). Globally, for 

the estimation of the ecological risk caused by PAH’s 

in surface waters, the results of spatial distribution 

showed that RQs order was in accordance with the 

PAHs levels i.e. India (311) > China (110) > 

Poland>(38.5) Taiwan (17.5) > Pakistan (5.3) 

respectively. While lower level risk reported inthe 

rivers of Brazil, Italy and Europe (Fig 4b). 

In comparison with the risk calculated for PAHs and 

DEHP, PCP’s showed relatively low levels. The low-

level RQs range (0.001-0.2) were extracted for PCPs 

reported in the surface waters of different rivers 

worldwide (Liu and Wong, 2013; Yu et al., 2011b) (Fig 

5a). Likewise, for NSAIDs, the calculated RQs showed 

negligible risk (0.001-0.2) (Fig 5b). Contrarily, some of 

the previous studies revealed alarming ecological risks in 

the surface water resources associated to NSAIDs and 

other pharmaceuticals (Nie et al., 2015; Xu et al., 2013).  
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(B) 

 

Fig. 4: Spatial distribution of ecological risks in terms of risk quotients (RQ) of DEHP (A) and ΣPAHs (B) observed in the surface 
waters worldwide. RQs were calculated as a ratio of Measured Environmental Concentrations (MECs) and Predicted no 
Effect Concentrations (PNECs) of DEHP and PAHs reported previously. MECs used in this study for ecological risk 
assessment of DEHP and PAHs are given in Table S1 and S2. PNECs for DEHP and PAHs were respectively extracted from 
Liu et al. (2016 and Cao et al., 2005) 

 

Liu et al. (2016) performed ERA of DEHP in surface 

waters of China and found that DEHP caused elevated 

risks to the reproduction and other biochemical functions 

in aquatic species. Yan et al. reported that 3-ring and 4-

ring PAHs induced higher ecological risk than 2-ring, 5-

ring and 6-ring PAHs based on their corresponding 

environmental levels in Hai River basin China (Jia et al., 

2016). A study from Denmark evaluated the ecological 

risk of 25 commonly used pharmaceuticals in the aquatic 

environment and RQs higher than 1 were reported for 

IBU, paracetamol and acetylsalicylic acid 

(Stuerlauridsen et al., 2000). Similarly, the RQs of 

mefenamic acid, oxytetracycline and amoxicillin in the 

Rivers of U.K. were also higher than 1 (Jones et al., 
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2002). Another comprehensive study from France 

investigated 120 pharmaceuticals and their metabolites 

in the aquatic environment and 49 pharmaceuticals and 

14 metabolites needed immediate control on the basis of 

their bio-chemical properties and PECs (Besse and 

Garric, 2008). A prioritization approach based study on 

200 drugs was conducted in the U.S. that highlighted 

montelukast sodium and levothyroxine with the highest 

scores (Dong et al., 2013). Similarly, a ranking based 

study was performed on 39 pharmaceuticals in China, 

which revealed DIC and IBU with elevated concerns 

among investigated pharmaceuticals (Sui et al., 2012). 

Further, NSAIDs and lipid-lowering drugs were 

respectively revealed 100% and 71% as priority drugs, 

while for antibiotics it was only 32%. This study 

concluded that NSAIDs posed the highest ecological 

risks in aquatic systems in China (Sui et al., 2012). 

Similarly, the pharmaceuticals, such as amoxicillin, 

sulfasalazine, trimethoprim, oxytetracycline and 

erythromycin, also showed elevated ecological risks 

(RQs values > 1) in different aquatic environments in 

China (Chen et al., 2015). 
 

 
(A) 

 

 
(B) 

 
Fig. 5: Spatial distribution of ecological risks in terms of Risk Quotients (RQ) of ΣPCPs (A) and ΣNSAIDs (B) observed in the 

surface waters worldwide. RQs were calculated as a ratio of Measured Environmental Concentrations (MECs) and Predicted 

no Effect Concentrations (PNECs) of ΣPCPs and ΣNSAIDs reported previously. MECs used in this study for ecological risk 

assessment of ΣPCPs and ΣNSAIDs are given in Table S1 and S2. PNECs for PCPPs were extracted by Barbosa et al. 

(2016a). ΣPCPs included Methylparaben (MP), Propylparaben (PP) and Musk Xylene (MX) and ΣNSAIDs included 
Naproxen (NAP), Ibuprofen (IBU) and Diclofenac (DIC) 
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Potential Toxicity of DEHP, PAHs and PPCPs in 

Vitro/Vivo 

DEHP contamination and associated toxicity caught a 

considerable amount of attention of the scientific 

community because of its ubiquitous presence in 

different environmental compartments (Caldwell, 2012). 

Although a significant number of previous studies have 

revealed the potential toxicity of DEHP, the researchers 

recommended for further in-depth studies to understand 

conclusive toxic hazards of DEHP after acute and chronic 

exposures (Magdouli et al., 2013). The general 

toxicological concerns of DEHP exposure are illustrated 

in Fig. 6A. DEHP is well known as an endocrine 

disruptor. It can alter the regulation of reproductive 

hormones in rat, cause hyperplasia in the Leydig cells, and 

disturb the systematic physiology (Akingbemi et al., 2004; 

Sharpe 2001). Further, the speculation exists that the 

acute toxicity of DEHP is relatively low, whereas 

chronic exposure can induce drastic effects both in 

vitro/vivo (Shea, 2003). Further, the inevitable evidence 

also showed the genotoxicity caused by DEHP through 

different signaling pathways, such as Peroxisome 

Proliferator-Activated Receptor (PPAR) and pregnane X 

receptor (PXR) (Desvergne et al., 2009; Hurst and 

Waxman, 2004). The PPAR regulates the energy 

homeostasis and is also responsible for the regulation of 

hormones involved in the metabolism of lipid, 

carbohydrates and xenobiotics (Singh and Li, 2011). As 

a result of PPAR activation after DEHP exposure, other 

nuclear receptors, such as the Vascular Endothelial 

Growth Factor A (VEGFA), Estrogen Receptor 1 

(ESR1) and Retinoid X Receptor (RXR), are also 

activated, which play critical roles in 

hepatocarcinogenesis and atherosclerosis (Botelho et al., 

2009; Feige et al., 2010). Further, DEHP promoted the lipid 

accumulation in HepG2 cells via activating the SREBP-1c 

and PPAR α-signaling pathways (Wang et al., 2016). 

DEHP can cause apoptosis and down regulate 

lactotransferrin in MCF-7 and MDA-MB-231 cell lines 

(Tanay et al., 2014) and induce hepatocellular adenomas 

in mice (Takashima et al., 2008). Previous studies also 

showed that DEHP exhibited potential to induce 

developmental toxicity and disturb the balance of Thyroid 

Hormones (THs) through activation of HPT axis pathway 

in zebrafish at Environmentally Relevant Concentrations 

(ERCs) (Gao et al., 2016; Ma et al., 2017). 

The general view of PAHs mediated toxicity is 

highlighted in Fig. 6B. The toxic impacts of PAHs 

exposure have been immensely investigated because 

of their known genotoxic, carcinogenic and mutagenic 

nature (Kim et al., 2013). Some of PAHs congeners 

are not classified as the carcinogen, albeit they may 

induce synergistic toxic impacts (Staal et al., 2007). 

PAH binary mixtures revealed synergistic effects on 

cell cycle blockage and apoptosis in HepG2 cells 

(Staal et al., 2007). The dermal exposure of rats to 

petroleum products containing high molecular weight 

(HMW) PAHs can induce developmental toxicity, 

such as reduced body weights, skeletal malformations 

and other teratogenic effects (Mackerer 1996). 

Another study highlighted that the exposure to 

individual PAHs: naphthalene (Nap), phenanthrene 

(Phe), Benzo(a)Anthracene (BaA) and benzo(a)pyrene 

(BaP) altered the molecular markers in the whole 

blood of rat and these molecular alterations can be 

used for discriminating different PAHs congeners 

(Jung et al., 2011). 
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Fig. 6: Toxicological concerns of DEHP (A), PAHs (B) and PPCPs (C) revealed in different in vitro 

 

Hook et al. (2010) reported that the PAHs 

exposure altered the genetic expression of cyp1a3 in 

the liver of trout fish. Further, the enzymes involved 

in xenobiotic metabolism and immune systems, such 

as GSTs, were also significantly altered, which might 

be an indicator of oxidative stress, PAHs congeners 

induced genetic toxicity through activation of PPAR 

and Mitogen-Activated Protein Kinase (MAPK) 

signaling pathways in liver tissues of exposed rats 

(Jung et al., 2013). PAHs with similar structures 

induced comparable levels of genetic alterations, 

which was ascribed to the same metabolic pathway, 

such as cytochromes P450 (CYP450) associated 

oxidation. Structural variations in PAHs can induce 

diversified developmental abnormalities and skeleton 

malformations in fish (Huang et al., 2013; Zhang et al., 

2012). A transcriptome analysis based study revealed 

that exposure to BaA altered the genetic expressions 

hox and fox in zebrafish and these genes control the 

skeletal development in zebrafish. The genetic 

expression of hox was also altered by other PAHs 

congeners, such as pyrene (Pyr) and 

benzo[b]fluoracene (BbF) (Goodale et al., 2013; 

Hawliczek et al., 2012). The pax6 gene that is 

responsible for the morphogenesis of eye was also 

found with abnormal expressions after exposure to 

Phe (Huang et al., 2013). Further, exposure to BaP (a 

model carcinogen) can induce negative effects on the 

Sonic Hedgehog (SHH) signaling pathway in rockfish, 

which also play a crucial role in skeleton development 

(He et al., 2011a).  

PAHs commonly plays an important role through Aryl 

hydrocarbon Receptor (AhR) pathway and alters the 

expression levels of CYP450 family enzymes (Staal et al., 

2006; Xie et al., 2017). However, the Low Molecular 

Weight (LMW) PAHs (3- and 4-ring), such as Fluorene 

(Flu), Acenaphthene (Ace), Acenaphthylene (Acp) and Phe, 

showed no affinity to AhR (Xu et al., 2015). Although 3-
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ring Phe revealed no AhR activity, its exposure at elevated 

doses can cause developmental effects on cardiac 

dysfunction in zebrafish. These studies suggested that AhR 

pathway may not be the only mode of action associated 

with PAHs toxic impacts (Incardona et al., 2004). In 

addition, the exposure to BaA, BbF and BaP also caused 

AhR mediated cardiac toxicity in fish. Whereas, 

Benzo[k]Fluoranthene (BkF) and Pyr were reported to 

induce cardiac malformations via the signaling pathways 

other than AhR (Huang et al., 2012; Incardona et al., 

2011). Estrogen receptor (ER) pathway is also activated 

after exposure to BaP through the upregulation of cyp19 

aromatase, which might increase ER activity and 

ultimately induced the developmental toxicity in 

zebrafish (Hoffmann and Oris, 2006).  

Exposure to the elevated levels of PPCPs may lead to 

the subtle effects (Fig. 6C). The continuous introduction 

of PPCPs to the environment and their accumulation in 

animals can induce irreversible toxic effect, e.g. DIC 

caused a substantial decline in the population of white-

necked vultures in Pakistan (Brausch and Rand, 2011; 

Oaks et al., 2004). Certain pharmaceuticals act as 

endocrine disruptors and cause reproductive and 

developmental toxicity through the induction of 

vitellogenesis in males (the generation of vitellogenin in 

plasma), intersex phenomenon, feminization of males 

and infertility (Lai et al., 2002). Among PCPs, UV filters 

and parabens also act as endocrine disrupting chemicals 

(Gomez et al., 2005). Further, the pharmaceuticals: TCS, 

TCC, GEM, CAF also exhibit potentials to disturb the 

endocrine system in different fish and other aquatic 

species (Foran et al., 2000; Kudrjashov et al., 2010; 

Rosal et al., 2010). In addition, the reduced hatching 

rates were observed in Japanese medaka after exposure 

to propranolol (Huggett et al., 2002). The exposure to 

synthetic musks and Carbamazepine (CBZ) induced 

oxidative stress in rainbow trout and goldfish (Fang et al., 

2012; Li et al., 2010). Further, DIC induced gill 

disruptions and renal lesions in rainbow trout  

(Schwaiger et al., 2004). In addition, the mixture toxicity 

of CBZ, DIC and IBU on Daphnia magna revealed 

synergistic effects that were significantly higher than that 

of the individual pharmaceuticals (Cleuvers, 2003). 

Bioaccumulation of PPCPs is also responsible for their 

innate toxicity. Synthetic musks, disinfectants and UV 

filters are reported to accumulate in biological systems 

and caused adverse impacts via bio-magnification 

(Brausch and Rand, 2011).  

Concluding Remarks and Recommendations 

In summary, this review revealed the jolting 

environmental concentrations of DEHP and PAHs in 

the surface water resources of Asian counties, albeit 

the levels of emerging PPCPs were relatively low. 

The spatial distribution analysis of environmental 

levels and associated ecological risk of DEHP, PAHs 

and PPCPs further highlighted that the riverine 

systems of Asian countries especially that of China 

and India were expressed that alarming situation and 

need immediate rehabilitation measures. 

Comparatively, the riverine systems in Europe were 

relatively less contaminated and pose fewer risks to 

the ecological resources. Although considerable 

environmental regulations are existing to control 

legacy organic pollutants, the strict implementation of 

those regulations in Asian counties is specifically 

needed. In case of emerging environmental pollutants, 

such as PPCPs, the studies are still scarce and the 

environmental regulations are also not available. 

Therefore, more studies are recommended to unveil 

the current environmental occurrence, spatial 

distribution, sources and occurrence especially in 

South Asian countries. The petroleum products and 

incomplete combustion of fossil fuels were mentioned 

as the primary sources of PAHs in the environment, 

while DEHP is solely produced from plastic laden 

consumed products and medical appliances. 

Regarding the sources of PPCPs, the effluents from 

households, hospitals   and PPCPs manufacturing 

units were listed as principal sources of PCPs and 

NSAIDs in the   environment.  PAHs  were reported 

to cause the elicited  toxicological concerns in terms 

of carcinogenicity, mutagenicity, developmental 

toxicity, and genotoxicity, while DEHP exhibited 

specific toxicity for reproductive, immune and 

nervous systems. PPCPs-appeared with least toxic 

concerns, such as developmental abnormalities, DNA 

damage, and genotoxicity. In a nutshell, this review 

unveiled the  current  alarming environmental levels 

of emerging  and  legacy  organic  pollutants  and 

their toxicological impacts. On the basis of these 

findings, the strict implementation of environmental 

regulations is recommended to avoid future worst 

scenarios and ensure the ecological integrity and 

environmental safety.  
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Table S1: Comparative levels of DEHP reported in the surface waters worldwide 

Locations DEHP levels (µg/L) References 

Wuhan section, Yangtze River, China 54.73 (Wang et al., 2008) 
Hun River, China 34.2 (Li et al., 2015b) 
Yellow River, China 24 (Sha et al., 2006) 
Songhua River, China 11.55 (Gao et al., 2014) 
Pearl River Estuary, China 12.1 (Li, 2016) 
Jiulong River, China 10.9 (Li et al., 2016) 
Wujin River, China 8.89 (Zhang et al., 2011) 
Pearl River Delta, China 8.84 (Li, 2015) 
Jiangsu section, Yangtze River, China 2.05 (He et al., 2011b) 
Liao River, Anshan, China 13050 (Yu et al., 2011a) 
Kunming Lake, China 1390 (An and Jin, 2000) 
Xuanwu Lake, Yangtze River, China 1299 (Shen et al., 2010) 
Kuils River 380 (Olujimi et al., 2012) 
Velwatchers River 280 
Mosselbank River 139 
Vygekraal River 62 
Diep River 7 
Kuils River, South Africa ND 
Rivers of Eastern Cape, South Africa 2306 (Fatoki and Noma, 2002) 
Rivers and lakes, Germany 98 (Fromme et al., 2002) 
Seine River estuary,France 6.44 (Dargnat et al., 2009) 
River of France 1.7 (Tran et al., 2015) 
Bang Pa-kong River, Chao Phraya River, <1.10 (Sirivithayapakorn, 2010) 
Tha-chin River, Mae-klong River,Thailand  
Kaveri River, India 1.4 (Selvaraj et al., 2015) 
Selangor River, Malaysia 0.97 (Veerasingam, 2013) 
Selangor River,Malaysia 0.38 (Santhi and Mustafa, 2013) 
Manzanares River and Jarama River,Spain ND (Dominguez et al., 2014) 
North-West River, Spain <0.44 (Regueiro et al., 2008) 
River, Spain  0.17 (Sanchez et al., 2011) 

The values listed here are the high-end (max.) reported concentrations 
 
Table S2: Comparative levels of ΣPAHs reported in the surface waters of China and worldwide 

Locations Concentration of ΣPAHs (ng/L) References 

Gao-ping River, Taiwan 9400 (Doong and Lin, 2004) 
Yellow River Delta, China 334 (Wang et al., 2009) 
Jiulong River Estuary, China 26920 (Maskaoui et al., 2002) 
Alexandria coast, Egypt 523 (El-Nemr and Abd-Allah, 2003) 
Tianjin, China 1272 (Shi et al., 2005) 
Kor River, Iran 375 (Kafilzadeh et al., 2011) 
Gomti River System, India 75570 (Malik et al., 2004) 
Daliao River watershed, China 13448.5 (Guo et al., 2007) 
Hangzhou City, China 9663 (Chen et al., 2004) 
Danube River, Hungarian 357 (Nagy et al., 2012) 
Bolgoda Lake, Sri Lanka 127 (Pathiratne et al., 2007) 
Tonghui River, China 2651 (Zhang et al., 2004) 
River Tiber, Italy 72 (Patrolecco et al., 2010) 
Chenab River, Pakistan 436.66-1287.9 (Farooq et al., 2011) 
Odra river,Poland 0.0-3349.9 (Wolska et al., 2003) 
Todos Os Santos Bay, Brazil 0.0029-0.1079 (Jose Celino et al., 2012) 
Danube branch, Hungary 6.7-3026 (Nagy et al., 2007) 
Danube River, Hungarian 25-1208 (Nagy et al., 2013) 
Daya Bay, China 4228-29325 (Zhoua and Maskaouib, 2003) 
Gomti River, India 60-84210 (Farooq et al., 2011) 
Pearl River Delta, China 944-6654 (Luo et al., 2004) 
Niteroi streams City, Brazil 4-870 (Ribeiro et al., 2012) 
Hai River Basin estuary, China 232.12-7596.56 (Yan et al., 2016) 
Soan River, Pakistan 61-207 (Aziz et al., 2014) 

The values listed here are the high-end (max.) reported concentrations 
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Table S3: Comparative levels (ng/L) of PPCPs reported in the surface waters of China and worldwide 

River name and location  ΣPCP's Reference 

Kunyu, Tonghui, Liangshui Rivers, Beijing, China  41.400 (Li et al., 2016) 
Pearl River, Guangdong, China 152.100 (Yu et al., 2011b) 
Pearl River, Guangdong, China 3204.000 (Peng et al., 2008) 
Yangtze River Zigui-Shanghai, China  26.000 (Liu et al., 2015b) 
 33.820 (Zhang et al., 2015) 
Sha River, Guangzhou, China 19.650  
 65.700 (Ramaswamy et al., 2011) 
Kaveri River, Tamilnadu, India 79.800  
Reservoir, Guangdong, China 178.000 (Peng et al., 2014) 
Geylang River, Singapore 0.370 (Xu et al., 2011; Wang and Kelly, 2016) 
 1.580 (Yamagishi et al., 1983) 
Kallang River, Singapore 0.300  
Tama River, Japan 0.023  
Elbe River, Germany 9.000 (Gatermann et al., 1998) 

The values listed here are the high-end (max.) reported concentrations. NPCPs included methylparaben (MP), propylparaben (PP) 

and musk xylene (MX)  

 
Table S4: Comparative levels (ng/L) of ΣNSAIDs reported in the surface waters of China and worldwide. 

Location ΣNSAIDs Reference 

Pearl River, Guangdong, China 1745.00 (Peng et al., 2008) 

Kaveri River, Tamilnadu, India 0.00 (Ramaswamy et al., 2011) 

Reservoir, Guangdong 40.50 (Peng et al., 2014) 

Geylang River, Singapore 91.00 (Xu et al., 2011; Wang and Kelly, 2016) 

Kallang River, Singapore 56.00 (Xu et al., 2011; Wang and Kelly, 2016) 

Beiyun River basin Beijing, China 121.60 (Ma et al., 2017) 

Danube River, Romania 188.00 (Chitescu et al., 2015) 

Mino River, Spain 46.00 (Iglesias et al., 2014) 

Dongting Lake, Hunan, China 249.80 (Barbosa et al., 2016b) 

Haihe River System, Beijing and Tianjin 190.00 (Heeb et al., 2012) 

Centeral and lower Yangtze River, China 99.30 (Wu et al., 2014) 

Mississippi River, Louisiana, USA 169.00 (Zhang et al., 2007) 

Huangpu River, Shanghai, China 142.60 (Gao et al., 2014) 

Yangtze River, Nanjing, China 442.00 (Liu et al., 2015a) 

Llobregat River, Castellgali, Spain 226.00 (Farre et al., 2012) 

Cardener River, Castellgali, Spain 484.00 (Farre et al., 2012) 

Singapore River, Singapore 110.00 (Xu et al., 2011) 

Ananymous Resvoir, Singapore 10.85 (You et al., 2015) 

Tributaries 22.05 (You et al., 2015) 

Pearl River, Guangdong 755.00 (Zhao et al., 2009) 

Pearl River, Guangdong 960.00 (Zhao et al., 2011) 

Pearl River Delta, Guangzhou, China 442.00 (Huang et al., 2011) 

Yangtze River Shanghai, China 843.00 (Yang et al., 2011) 

Haihe River, Tianjin, China 152.20 (Li et al., 2010) 

 46.40 (Li et al., 2010) 

Liaohe River, Liaoning 155.00 (Li et al., 2010) 

 963.00 (Li et al., 2010) 

Yellow River, China 74.20 (Li et al., 2010)  

 552.00 (Li et al., 2010) 

Zhangweinanyunhe River, Northern China 29.40 (Cao et al., 2010) 

Llobregat River, Spain 280.00 (Aldekoa et al., 2013) 

The values listed here are the high-end (max.) reported concentrations. ΣNSAIDs included naproxen (NAP), ibuprofen (IBU) and 

diclofenac (DIC) 
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